八年级数学上册第十三章轴对称1轴对称13.1.2线段的垂直平分线的性质8
13.1.2线段的垂直平分线的性质(1)+课件+2023—2024学年人教版数学八年级上册

3.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,
连接AE.若BC=6,AC=5,则△ACE的周长为( B )
A.8
B.11
C.16
D.17
4.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,交AC于点 E,ED垂直平分AB于点D,求证:BE+DE=AC. 证明:∵∠ACB=90°, ∴AC⊥BC. 又ED⊥AB,BE平分∠ABC, ∴CE=DE. ∵ED垂直平分AB, ∴AE=BE. ∴BE+DE=AE+CE=AC.
(2)若△ABC的周长为14 cm,AC=6 cm,求DC的长. 解:∵△ABC的周长为14 cm, ∴AB+BC+AC=14cm. ∵AC=6 cm, ∴AB+BC=8cm. ∵AB=EC,BD=DE, ∴DC=DE+EC=12(AB+BC)=12 ×8=4(cm).
7.如图,线段AB,BC的垂直平分线l1,l2相交于点O.若∠1=39°, 则∠AOC=__7_8_°__.
长为( C ) A.25
B.22
C.19
D.18
4.如图,在△ABC中,∠C=90°,DE垂直平分AB,分别交AB, BC于点D,E,若∠CAE=∠B+18°,则∠B的度数为__2_4_°__.
5.【几何直观、推理能力】如图,在△ABC中,DM,EN分别垂直 平分AC和BC,分别交AB于M,N两点,DM与EN相交于点F. (1)若△CMN的周长为15 cm,求AB的长; 解:∵DM,EN分别垂直平分AC和BC, ∴AM=CM,BN=CN. ∴△CMN的周长为CM+MN+CN=AM+MN+BN=AB. 又△CMN的周长为15 cm, ∴AB=15 cm.
∴AD=BC.
(2)点O在线段AB的垂直平分线上. ∠DOA=∠COB,
最新人教版初中八年级上册数学《轴对称》知识归纳

第十三章轴对称
13.1 轴对称(对称点)
轴对称图形:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合。
这条直线就是它的对称轴。
垂直平分线:经过线段中点并且垂直于这条线段的直线。
图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
线段垂直平分线的性质:垂直平分线上的点到两端的距离相等。
若PA=PB,点C为AB中点,则PC⊥AB或点P在线段AB的垂直平分线上。
13.2 画轴对称图形
先画对称点(过该点画对称轴的垂线,取等长),然后连接对称点,形成轴对称图形。
13.3 等腰三角形
概念:有两边相等的三角形。
性质:等边对等角,三线合一(顶角平分线、底边上的中线、底边上的高)。
判定:等角对等边
等边三角形:三边都相等的特殊的等腰三角形。
三个内角都相等,每个内角60º。
(判定:三个角都相等的三角形;有一个角是60º的等腰三角形。
)
在RtΔ中,如果一个锐角等于30º,那么它所对的直角边等于斜边的一半。
(在RtΔ中,斜边上的中线等于斜边的一半。
)
13.4 课题学习最短路径问题
利用轴对称、平移作出最短路径选择。
(两点之间线段最短)
作者留言:
非常感谢!您浏览到此文档。
为了提高文档质量,欢迎您点赞或留言告诉我文档的不足之处,以便于对该文档进行完善优化,在此本人深表感
谢!祝您天天快乐!。
八年级上册数学第十三章 轴对称思维导图

八年级上册数学第十三章
轴对称13.1 轴对称
13.1.1 轴对称
轴对称的定义
相关概念
对称轴1
对称点2
垂直平分线3
性质
13.1.2 线段的垂直平分线的性质
性质
判定
13.1.3 三角形的稳定性
三角形是具有稳定性的图形
四边形没有稳定性
13.2 画轴对称图形
轴对称图形特点
做轴对称图形方法
在平面直角坐标系中做轴对称图形
在平面直角坐标系中
找带你的轴对称点
13.3 等腰三角形
13.3.1 等腰三角形
等腰三角形定义4
等腰三角形性质
判定方法
13.3.2 等边三角形
等边三角形定义5
推论:
在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半
13.3 课题学习 最短路径问题通过利用轴对称、平移等变化把已知问题转化为容易解决的问题
从而作出最短路径的选择
八年级上册数学总大纲
备注:
1. 把一个图形沿着某一条直线折叠,如果它能够于与另一个图形重合,那么就说这两个图形关于这条直线(成轴)对称,这条直线叫做对称轴
2. 折叠后重合的点是对应点,叫做对称点
3. 经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线
4. 有两边相等的三角形是等腰三角形
5. 等边三角形的三个内角都相等,并且每一个角都等于60°三个角都相等的三角形是等边三角形有一个角是60°的等腰三角形是等边三角形。
课件1:13.1.2 线段的垂直平分线的性质

C F
B
D
小结: 如果两个图形关于某条直线对称,那么对称轴
是任何一对对应点所连线段的垂直平分线。
轴对称图形的对称轴,是任何一对对应点
所连线段的垂直平分线。 线段垂直平分线上的点与这条线段两个端点 的距离相等。
与一条线段两个端点距离相等的点,在这条线段的
垂直平分线上。
第 十 二 章
全
等
1 2
AB
的长为半径作弧(为什么),两弧相
交于C、D两点。
D
3、 作直线CD。 CD就是所求的直线 思考:怎样得到图形的对称轴?
聚焦中考
• △ABC中,AB>AC ,∠A的平分线与BC的垂直平 分线DM相交于D,过D作DE ⊥AB于E,作 DF⊥AC于F,求证:BE=CF ABiblioteka EMC FB
D
A
EM
图形轴对称的性质
• 如果两个图形关于某条直线对称,那么对称轴是 任何一对对应点所连线段的垂直平分线。
• 轴对称图形的对称轴,是任何一对对应点所连线 段的垂直平分线。
如图:
l垂直平分__A__A_’____, l垂直平分__B__B_’____, l垂直平分__C__C_’____.
--B------A------A---’------B--’-
第
第十
13.1.2 线段的垂直平分线
十三 一章章
的性质
三轴 角对
形称
— 1—
l
A.
. A1
B C
B1 C1
如经图过:线△段A中BC点和并△且A垂1B直1C于1关这于条直线线段l的对直称线,点,A1, B1, CC叫1C分1做与别这直是条线A线, l 有段B什,的么C垂的关直对系平称?分点线,(。线垂段直A平A分1,)BB1,
人教版八年级数学上册RJ精品课件 第13章 轴对称 第2课时 线段的垂直平分线的性质与判定

15.如图,在△ABC中,∠ABC=45°,CD⊥AB于点D,AC的垂直 平分线BE与CD交于点F,与AC交于点E.
(1)判断△DBC的形状并说明理由; (2)求证:BF=AC; (3)求证:CE=12BF.
(1)解:△DBC是等腰直角三角形.理由如下:∵∠ABC=45°,CD ⊥AB,∴∠BCD=45°,∴BD=CD,∴△DBC是等腰直角三角形;
∴CE=12BF.
核心素养
• 16.如图,在△ABC中,AB边的垂直平分线交直线BC于 点D,垂足为点F,AC边的垂直平分线交直线BC于点E,垂足 为点G.
•
•
•
• • (1)当∠BAC=100°时, ∠D2A0E=_____°; • (2)当∠BAC为钝角时,猜想∠DAE与∠BAC的关系,并证 明你的猜想.
• 7.如图,在△ABC中,AD⊥BC,BD=CD,点C在AE的垂 直平分线上.若AB=5 cm,BD=3 cm,求BE的长.
• • •
• 解:∵AD⊥BC,BD=DC,∴AB=AC.又∵点C在AE的垂直 平分线上,∴AC=EC,∴AB=AC=EC=5 cm.∵BD=CD=3 cm,∴BE=BD+CD+EC=3+3+5=11(cm).
•点,1且3.CD如垂图直,平在分△BEA,BCC中E平,分∠∠ACABC=D,90若°B,C=D,2,E是4则边ABA的B上长两为 ______.
• 14.如图,在△ABC中,已知点O是边AB,AC垂直平分线 的交点,点E是∠ABC,∠ACB角平分线的交点,若∠O+∠E 36 =180°,则∠A=______度.
下列结论不一定成立的是 • A.AB=AD
(C )
• B.AC平分∠BCD
• C.AB=BD
• D.△BEC≌△DEC
八年级数学上册 13.1.2 线段的垂直平分线的性质教案 (新版)新人教版 教案

13.1.2 线段垂直平分线◆教学目标◆◆知识与技能:理解线段垂直平分线的性质和判定,及其应用。
◆过程与方法:通过动手实践与观察体会两个图形成轴对称的性质,培养抽象思维能力.◆情感态度和价值观:通过探究活动来发现结论,经过知识的再发现过程,在探究活动的过程中培养创新思维能力,改变学习方式.◆教学重点与难点◆◆重点:线段垂直平分线的性质和判定和应用及成轴对称的两个图形的性质.◆难点:线段垂直平分线的性质和判定和应用及成轴对称的两个图形的性质。
◆教学过程◆一、温故知新:1.什么是轴对称图形?什么是轴对称?二、新知讲解:1.情景引入:如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,线段A A′、B B′、C C′与直线MN有什么关系?解题方法:1)可以利用直尺、圆规度2)可以利用轴对称的定义解题............结论:对称轴所在直线经过对称点所连线段的中点,并且垂直这条线段。
2.结论总结:线段的垂直平分线的定义:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线。
也叫这条的线段的中垂线.(课本32页)注:垂直平分线与线段有两种关系:位置关系——垂直,数量关系——平分3.性质探究:图形轴对称的性质:(1)成轴对称的两个图形全等。
(2)对称轴是任何一对对应点所连线段的垂直平分线。
(3)两个图形成轴对称如果它们的对应线段或延长线相交,则交点一定在对称轴上。
类似的,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
注:包含两层含义:已知一对对应点就能做出它们的对称轴,已知一点和对称轴就能做出该......................................点关于对称轴的对称点。
...........的性质归纳:性质定理:线段垂直平分线上的点与这条直线的两个端点距离相等.几何语言:∵直线l是线段AB的垂直平分线,点P在垂直平分线上,∴PA=PB。
线段的垂直平分线的性质人教版八年级数学上册

第2课 线段的垂直平分线的性质
新课学习
知识点1.线段的垂直平分线的定义
1. 定义: 垂直 于线段并且经过这条线段 的 中点 的直线叫这条线段的垂直平分线. 几何语言: ∵ CD⊥AB , AD=BD , ∴CD 垂直平分 AB.
ห้องสมุดไป่ตู้
知识点2.线段的垂直平分线的性质
2. 性质:线段垂直平分线上的点与这条线段两 个端点的距离 相等 .
(2)∵∠BAC=100°, ∴∠B+∠C=180°-∠BAC=80°. ∵AD=BD,AE=CE, ∴∠BAD=∠B,∠CAE=∠C. ∴∠BAD+∠CAE=80°. ∴∠DAE=∠BAC-(∠BAD+∠CAE)= 100°-80°=20°.
线段的垂直平分线的性质人教版八年 级数学 上册
线段的垂直平分线的性质人教版八年 级数学 上册
5. (例 2)如图,在 Rt△ ABC 中,∠C=90°,AB 边的垂直平分线 DE 交 BC 于点 E,垂足为 D, AC=4 cm,CB=8 cm,求△ ACE 的周长.
解:∵DE是AB边的垂直平分线,∴EA =EB. ∴△ACE的周长=AC+CE+EA =AC+CE+EB=AC+BC=12(cm).
∴Rt△AED≌Rt△AFD(HL).∴AE=AF. ∵AB=AC,∴BE=CF.
线段的垂直平分线的性质人教版八年 级数学 上册
线段的垂直平分线的性质人教版八年 级数学 上册
14. 如图,在△ ABC 中,AB,AC 的垂直平分线 分别交 BC 于 D,E,垂足分别是 M,N.
(1)若 BC=10,求△ ADE 的周长; (2)若∠BAC=100°,求∠DAE 的度数.
人教版数学八年级上册第十三章13.1.2线段的垂直平分线的性质

第十三章轴对称13.1 轴对称13.1.2 线段的垂直平分线的性质第1课时线段垂直平分线的性质和判定学习目标:1.理解并掌握线段的垂直平分线的性质和判定方法.2.会用尺规过一点作已知直线的垂线.3.能够运用线段的垂直平分线的性质和判定解决实际问题.重点:线段的垂直平分线的性质和判定方法难点:运用线段的垂直平分线的性质和判定解决实际问题自主学习一、知识链接线段是轴对称图形吗?通过折叠的方法作出线段AB的对称轴l,交AB与O.(1)点A的对称点是_______(2)量出AO与BO的长度,它们有什么关系?(3)AB与直线l在位置上有什么关系?经过线段________并且______于这条线段的________,叫做这条线段的垂直平分线.二、新知预习已知直线l垂直平分线段AB,交AB与O.点C是l上任意一点,连接AC,BC.(1)量出AC,BC的长度,它们有什么关系?(2)另在l上任找一点D,量出AD,DB的长度,它们有什么关系?(3)由(1),(2),你得到什么结论?要点归纳:线段垂直平分线上的点与这条线段两个端点的__________.三、自学自测如图所示,直线CD是线段PB的垂直平分线,点P为直线CD 上的一点,且PA=5,则线段PB的长为()A. 6B. 5C. 4D. 3四、我的疑惑___________________________________________________________________________一、要点探究探究点1:线段垂直平分线的性质 证一证:线段垂直平分线上的点和这条线段两个端点的距离相等. 已知:如图,直线MN ⊥AB ,垂足为C ,AC =CB ,点P 在MN 上.求证:PA =PB .典例精析 例1:如图,在△ABC 中,AB =AC =20cm ,DE 垂直平分AB ,垂足为E ,交AC 于D ,若△DBC 的周长为35cm ,则BC 的长为( ) A .5cm B .10cm C .15cm D .17.5cm方法总结:利用线段垂直平分线的性质,实现线段之间的相互转化,从而求出未知线段的长.例2: 已知:如图,在ΔABC 中,边AB ,BC 的垂直平分线交于P.求证:PA=PB=PC.结论:三角形三边垂直平分线交于一点,这一点到三角形三个顶点的距离相等. 实际应用:某区政府为了方便居民的生活,计划在三个住宅小区A 、B 、C 之间修建一个购物中心,试问,该购物中心应建于何处,才能使得它到三个小区的距离相等.例3:如图,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连接AE 、BE ,BE ⊥AE ,延课堂探究B ACM N M ' N ' PBAC长AE交BC的延长线于点F.求证:(1)FC=AD;(2)AB=BC+AD.方法总结:证明线段相等的方法一般有:1.由全等得对应线段相等;2.由线段垂直平分线的性质得出线段相等.针对训练1.如图,△ABC中,AC的垂直平分线交AB于点D,∠A=50°,则∠BDC=()第1题图第2题图2.如图,△ABC中,AB=AC=18cm,BC=10cm,AB的垂直平分线ED交AC于D点,则△BCD的周长为_________.3.如图,在△ABC中,∠ACB=90゜,BE平分∠ABC,交AC于E,DE垂直平分AB,交AB于D,求证:BE+DE=AC.探究点2:线段垂直平分线的判定1.做一做:用一根木棒和一根弹性均匀的橡皮筋,做一个简易的弓,箭通过木棒中央的孔射出去.图①图②(1)如图①要使CO垂直于AB,需要添加什么条件?为什么?点C在_____________上.(2)如图②,拉动C,到达D的位置,若AD=DB,那么点D在__________上.(3)由(1),(2),你得到什么猜想?要点归纳:DA BOOBAC与线段两个端点距离________的点在这条线段的______________上.2.证一证:已知:如图,PA =PB.求证:点P 在线段AB 的垂直平分线上.典例精析例4:已知:如图,点E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别为C,D,连接CD.求证:OE是CD的垂直平分线.针对训练1.三角形纸片上有一点P,量得PA=3cm,PB=3cm,则点P一定()A.是边AB的中点B.在边AB的中线上C.在边AB的高上D.在边AB的垂直平分线上2.小明做了一个如图所示的风筝,其中EH=FH,ED=FD,小明说不用测量就知道DH是EF的垂直平分线.其中蕴含的道理是__________________________________________.3.如图,在△ABC中,AD是高,在线段DC上取一点E,使BD=DE,已知AB+BD=DC,求证:E点在线段AC的垂直平分线上.二、课堂小结PA B线段垂直平分线的判定线段垂直平分线的性质与判定线段垂直平分线的性质三角形三边的垂直平分线的交点到三角形三个顶点的距离相等.证明线段相1.如图所示,AC=AD,BC=BD,则下列说法正确的是( ) A .AB 垂直平分CD B .CD 垂直平分AB C .AB 与CD 互相垂直平分 D .CD 平分∠ ACB2.在锐角三角形ABC 内一点P,,满足PA=PB=PC,则点P 是△ABC ( )A.三条角平分线的交点B.三条中线的交点C.三条高的交点D.三边垂直平分线的交点3.已知线段AB ,在平面上找到三个点D 、E 、F ,使DA =DB ,EA =EB,FA =FB ,这样的点的组合共有_________种.4.下列说法:①若点P 、E 是线段AB 的垂直平分线上两点,则EA =EB ,PA =PB ; ②若PA =PB ,EA =EB ,则直线PE 垂直平分线段AB ;③若PA =PB ,则点P 必是线段AB的垂直平分线上的点;④若EA =EB ,则经过点E 的直线垂直平分线段AB .其中正确的有_________(填序号).5.如图,△ABC 中,AB=AC,AB 的垂直平分线交AC 于E,连接BE ,AB+BC=16cm,则△BCE 的周长是_________cm.6.如图所示,在△ABC 中,AD 平分∠BAC ,DE ⊥AB 于点E ,DF ⊥AC 于点F ,试说明AD 与EF 的位置关系.拓展提升7.如图,在四边形ADBC 中,AB 与CD 互相垂直平分,垂足为点O. (1)找出图中相等的线段;(2)OE ,OF 分别是点O 到∠CAD 两边的垂线段,试说明它们的大小有什么关系.当堂检测ABDC第十三章轴对称13.1 轴对称13.1.2 线段的垂直平分线的性质第2课时线段垂直平分线的有关作图学习目标:1.能用尺规作已知线段的垂直平分线.2.进一步了解尺规作图的一般步骤和作图语言,理解作图的依据.3.能够运用尺规作图的方法解决简单的作图问题.重点:用尺规作已知线段的垂直平分线.难点:运用尺规作图的方法解决简单的作图问题温故知新1.按如下要求,用尺规作图:(1)作一条线段等于已知线段;(2)作一个角等于已知角;(3)作一个角的平分线;(4)经过已知直线外一点作这条直线的垂线.2.轴对称图形的性质是_______________________________________.3.线段垂直平分线的性质是_______________________________________.二、要点探究探究点1:线段垂直平分线的画法问题1:如何验证两个图形是轴对称的?不折叠图形,你能准确地作出图形的对称轴吗?图①图②问题2:如何作出线段的垂直平分线?[提示:由两点确定一条直线和线段垂直平分线的性质,只要作出到线段两端点距离相等的两点即可.]已知:线段AB.求作:线段AB的垂直平分线.作法:思考1:在上述作法中,为什么要以“大于AB的长”为半径作弧?思考2:根据上面作法中的步骤,请你说明CD为什么是AB的垂直平分线,并与同伴进行交流.归纳总结:可以运用线段垂直平分线的尺规作图,确定线段的中点.典例精析例1:如图,已知点A、点B以及直线l.(1)用尺规作图的方法在直线l上求作一点P,使PA=PB.(保留作图痕迹,不要求写出作法);(2)在(1)中所作的图中,若AM=PN,BN=PM,求证:∠MAP=∠NPB.例2:如图,某地有两所大学和两条交叉的公路.图中点M,N表示大学,OA,OB表示公路,现计划修建一座物资仓库,希望仓库到两所大学的距离相同,到两条公路的距离也相同,你能确定出仓库P应该建在什么位置吗?请在图中画出你的设计(尺规作图,不写作法,保留作图痕迹).方法总结:到角两边距离相等的点在角的平分线上,到两点距离相等的点在两点连线段的垂直平分线上.课堂探究探究点2:作轴对称图形的对称轴问题:下图中的五角星有几条对称轴?如何作出这些对称轴呢?方法总结:对于轴对称图形,只要找到任意一组对称点,作出对称点所连线段的垂直平分线,即能得此图形的对称轴.典例精析如图,△ABC和△A′B′C′关于直线l对称,请用无刻度的直尺作出它们的对称轴.方法总结:成轴对称的两个图形对称点连线段(或延长线)相交,交点必定在对称轴上.针对训练1.作出下列图形的一条对称轴.和同学比较一下,你们作出的对称轴一样吗?2.如图,小河边有两个村庄,要在河岸边建一自来水厂向A村与B村供水,若要使厂部到A,B 的距离相等,则应选在哪里?二、课堂小结ABCA′B′C′线段垂直平分线的有关作图用尺规作图作线段垂直平分线作轴对称图形的对称轴作对称轴的重要方法l1.如图,在△ABC中,分别以点A,B为圆心,大于12AB长为半径画弧,两弧分别交于点D,E,则直线DE是()A.∠A的平分线B.AC边的中线C.BC边的高线D.AB边的垂直平分线第1题图第2题图2.如图,已知线段AB的垂直平分线CP交AB于点P,且AP=2PC,现欲在线段AB上求作两点D,E,使其满足AD=DC=CE=EB,对于以下甲、乙两种作法:甲:分别作∠ACP、∠BCP的平分线,分别交AB于D、E,则D、E即为所求;乙:分别作AC、BC的垂直平分线,分别交AB于D、E,则D、E两点即为所求.下列说法正确的是()A.甲、乙都正确B.甲、乙都错误C.甲正确,乙错误D.甲错误,乙正确3.如图,与图形A 成轴对称的是哪个图形?画出它的对称轴.4.如图,角是轴对称图形吗?如果是,它的对称轴是什么?5.如图,有A,B,C三个村庄,现准备要建一所希望小学,要求学校到三个村庄的距离相等,请你确定学校的位置.当堂检测A BC DCAB。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十三章 13.1.2线段的垂直平分线的性质
知识点:线段垂直平分线的性质
(1)线段垂直平分线的定义:经过线段的中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.
(2)线段垂直平分线的性质:
①线段垂直平分线上的点与这条线段两个端点的距离相等.
②与一条线段两个端点的距离相等的点在这条线段的垂直平分线上.
如图所示,直线l是线段AB的垂直平分线,P在直线l上,则AP=BP.
用几何符号表示:
∵l是线段AB的垂直平分线,∴AP=BP.
如果反过来,也是成立的.若AP=BP,则点P在线段AB的垂直平分线上.用几何语言表示:
∵AP=BP,∴点P在线段AB的垂直平分线上.
反思:线段垂直平分线的两个性质是定理及逆定理的关系,有时也将性质“与一条线段两个端点的距离相等的点在这条线段的垂直平分线上”看作是线段垂直平分线的判定定理.借助于线段垂直平分线的两条性质,可以对其用集合进行定义,线段垂直平分线可以看成是到线段两个端点的距离相等的所有点的集合.这一定义揭示了线段垂直平分线的本质.
考点1:线段垂直平分线的性质应用
【例1】如图 (1),有分别过A,B两个加油站的公路l1,l2,l1,l2相交于点O,现准备在∠AOB内建一个油库,要求油库的位置点P满足到A,B两个加油站的距离相等,而且P到两个公路l1,l2的距离也相等.请用尺规作图,作出点P.(不写作法,保留作图痕迹)
解:作出的点P如图 (2)所示.
(1) (2)
点拨:到两点距离相等的点,在这两点所连线段的垂直平分线上.在角的内部到角两边距离相等的点在角的平分线上.这两条线的交点就是加油站的位置.
考点2:利用线段垂直平分线的性质及判定解题
【例2】如图,OP平分∠AOB,PA⊥OA,PB⊥OB,垂足分别为A,B.下列结论中不一定成立的是( )
A.PA=PB
B.PO平分∠APB
C.OA=OB
D.AB垂直平分OP
答案:D
点拨:∵OP平分∠AOB,PA⊥OA,PB⊥OB,∴在△AOP与△BOP中,∴△AOP≌△BOP,∴结论A,B,C均正确,故选D.
∙
∙。