初二第二学期期末试题数学
八下数学期末考试试卷

八下数学期末考试试卷一、选择题(本大题共10小题,每小题3分,共30分。
每小题只有一个选项是正确的,请将正确答案的字母填入括号内。
)1. 下列哪个选项是二次根式?A. 3x^2B. √xC. 2xD. x/32. 以下哪个函数是一次函数?A. y = 2x^2B. y = 3x + 1C. y = 4/xD. y = x^33. 计算下列哪个表达式的值等于1?A. (-2)^2B. (-2)^3C. (-2)^4D. (-2)^54. 以下哪个图形是轴对称图形?A. 平行四边形B. 梯形C. 等腰三角形D. 不规则多边形5. 一个圆的半径是3厘米,那么它的周长是多少?A. 6π厘米B. 9π厘米C. 12π厘米D. 18π厘米6. 一个等差数列的首项是2,公差是3,那么它的第五项是多少?A. 17B. 14C. 11D. 87. 以下哪个选项是不等式?A. 3x + 2 = 7B. 2x - 5 > 3C. 4x^2 - 9 = 0D. 5y - 6 ≤ 98. 以下哪个选项是完全平方数?A. 16B. 18C. 20D. 229. 一个三角形的三个内角之和是多少?A. 90°B. 180°C. 360°D. 450°10. 以下哪个选项是正比例函数?A. y = 2x + 3B. y = -4xC. y = 5/xD. y = x^2二、填空题(本大题共5小题,每小题4分,共20分。
请将答案直接写在横线上。
)11. 一个数的相反数是-5,那么这个数是________。
12. 如果一个等腰三角形的底角是40°,那么它的顶角是________。
13. 计算 (2/3)^2 的结果是________。
14. 一个数的立方根是2,那么这个数是________。
15. 一个长方体的长、宽、高分别是2cm、3cm、4cm,那么它的体积是________立方厘米。
八年级数学(下)期末试卷含答案

ABCDEF八年级数学(下)期末试卷考生注意:本试卷共120分,考试时间100分钟.一、选择题:本大题共10小题,每小题3分,共30分.每小题只有一个正确选项,将此选项选择题(每题3分,本大题共30分)1、下列根式中,与3 是同类二次根式的是( ) A 、8 B 、0.3 C 、23D 、12 2、 若2(3)3a a -=-,则a 与3的大小关系是( )A 、 3a <B 、3a ≤C 、3a >D 、3a ≥3.、若实数a 、b 满足ab <0,则一次函数y =ax +b 的图象可能是( )A .B .C .D .4、已知P 1(-1,y 1),P 2(2,y 2)是一次函数1y x =-+图象上的两个点,则y 1,y 2的大小关系是( )A 、12y y =B 、12y y <C 、12y y >D 、不能确定 5、平行四边形, 矩形,菱形,正方形都具有的性质是( ) A 、对角线相等 B 、对角线互相平分 C 、对角线平分一组对角 D 、对角线互相垂直6、2022年将在北京张家口举办冬季奥运会,很多学校开设了相关的课程如表记录了某校4名同学短道速滑选拔赛成绩的平均数与方差:队员1 队员2 队员3 队员4 平均数 51 50 51 50 方差根据表中数据,要从中选择一名成绩好又发挥稳定的运动员参加比赛,应选择A. 队员1B. 队员2C. 队员3 D. 队员47、如图,直线l 1 : y = 4x - 2 与l 2 : y = x +1的图象相交于点 P ,那么关于 x ,y 的二元一次方程组 4x - y = 2的解是 ( ) x-y=-18. 在平面直角坐标系中,一次函数 y = kx + b 的图象与直线 y = 2x 平行,且经过点A (0,6).则一次函数的解析式为 ( )A 、y=2x-3B 、y=2x+6C 、y=-2x+3D 、y=-2x-6 9.如图,在正方形ABCD 的外侧,作等边三角形ADE ,AC 、BE 相交于点F ,则∠BFC 为( )A 、75︒B 、60︒C 、55︒D 、45︒10.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y (m)与挖掘时间x (h )之间的关系如图5所示.根据图象所提供的信息,下列说法正确的是( ) A .甲队开挖到30 m 时,用了2 h B .开挖6 h 时,甲队比乙队多挖了60 mC .乙队在0≤x ≤6的时段,y 与x 之间的关系式为y =5x +20D .当x 为4 h 时,甲、乙两队所挖河渠的长度相等 二、填空题(每题3分,本大题共24分) 11、函数y=12xx-+中,自变量x 的取值范围为 . 12、若函数y = -2x m +2 +n -2正比例函数,则m 的值是 ,n 的值为________.243221323+⨯-÷13、 如图,菱形ABCD 的对角线AC 和BD 相交于点O ,过点O 的直线分别交AB 和CD 于点E 、F ,BD=6,AC=4,则图中阴影部分的面积和为 .14.、一组数据1,6,x ,5,9的平均数是5,那么这组数据的中位数是______,方差是______.15、将矩形纸片ABCD 沿直线AF 翻折,使点B 恰好落在CD 边的中点E 处,点F 在BC 边上,若CD =6,则FC = .16、如图,直线y =x +b 与直线y =kx +6交于点P (3,5),则关于 x 的不等式kx +6<x +b 的解集是_____________.17、如图所示,四边形OABC 是正方形,边长为4,点A 、C 分别在x 轴、y 轴的正半轴上,点D 在OA 上,且D 点的坐标为 (1,0),P 是OB 上一动点,则PA +PD 的最小值为 .18.、如图,平行四边形 ABCD 的周长是 52cm ,对角线 AC 与 BD 交于点 O ,AC ⊥AB ,E 是BC 中点,△AOD 的周长比 △AOB 的周长多 6cm ,则 AE 的长度为 .三、解答题(本大题共66分) 19、计算.(每小题4分,共计8分)(1)(2)20、(7分)已知a ,b ,c 满足|a -8|+b -5+(c -18)2=0. (1)求a ,b ,c 的值;并求出以a,b,c 为三边的三角形周长; (2)试问以a ,b ,c 为边能否构成直角三角形?请说明理由。
2023北京海淀区初二(下)期末数学试题及答案

2023北京海淀初二(下)期末数 学考生须知:1.本试卷共8页,共3道大题,26道小题.满分100分.考试时间90分钟.2.在试卷上准确填写学校名称、班级名称、姓名.3.答案一律填涂或书写在试卷上,用黑色字迹签字笔作答.4考试结束,请将本试卷交回.一、选择题(本大题共24分,每小题3分)在下列各题的四个备选答案中,符合题意的选项只有一个.1. x 的取值范围是( )A. 0x > B. 0x < C. 0x ≥ D. 0x ≤2. 用长度相等的火柴棒首尾相连拼接直角三角形,若其中两条直角边分别用6根和8根火柴棒,则斜边需用火柴棒的根数为( )A. 12B. 10C. 8D. 63. 下列化简正确的是( )3=13= C. 3==4. 在平面直角坐标系xOy 中,点()12,A y ,()23,B y 在函数3y x =-的图像上,则( )A. 12y y > B. 12y y = C. 12y y < D. 以上都有可能5. 如图,A ,B 两点被池塘隔开,小林在池塘外选定一点C ,然后测量出CA ,CB 的中点D ,E 的距离,若5m DE =,则A ,B 两点间的距离为( )A. 5mB. 7.5mC. 10mD. 15m6. 一次函数y ax b =+的自变量和函数值的部分对应值如下表所示:x 05y35则关于x 的不等式ax b x +>的解集是( )A. 5x <B. 5x >C. 0x <D. 0x >7. 如图,12AB =,45A ∠=︒,点D 是射线AF 上的一个动点,DC AB ⊥,垂足为点C ,点E 为DB的中点,则线段CE 的长的最小值为( )A. 6B. D. 8. 某校足球队队员年龄分布如图所示,下面关于该队年龄统计数据的法正确的是( )A. 平均数比16大B. 中位数比众数小C. 若今年和去年的球队成员完全一样,则今年方差比去年大D. 若年龄最大的选手离队,则方差将变小二、填空题(本大题共18分,每小题3分)9. 在ABCD Y 中,若140A C ∠+∠=︒,则B ∠=__________︒.10. 如图,数轴上点A ,B ,C ,D 所对应的数分别是1-,1,2,3,若点E 对应的数是E 落在__________之间.(填序号)①A 和B ②B 和C ③C 和D11. 如图,大正方形是由四个全等的直角三角形和面积分别为1S ,2S 的两个正方形所拼成的.若直角三角形的斜边长为2,则12S S +的值为__________.12. 在一次演讲比赛中,甲的演讲内容、演讲能力、演讲效果成绩如下表所示:项目演讲内容演讲能力演讲效果成绩908090若按照演讲内容占50%,演讲能力占40%,演讲效果占10%,计算选手的综合成绩,则该选手的综合成绩为__________.13. 在矩形ABCD 中,BAD ∠的角平分线交BC 于点E ,连接ED ,若5ED =,3CE =,则线段AE 的长为__________.14. 已知直线:(0)l y kx b k =+≠,将直线l 向上平移5个单位后经过点(3,7),将直线l 向下平移5个单位后经过点(7,7),那么直线l 向__________(填“左”或“右”)平移__________个单位后过点(1,7).三、解答题(本大题共58分,第15题6分,16~21题,每题4分,22题~24题,每题5分,25题6分,26题7分)15. 计算:(1);(2.16. 如图,将平行四边形ABCD 的对角线BD 向两个方向延长,分别至点E 和点F ,且使BE DF =.求证:四边形AECF 是平行四边形.17. 已知一次函数21y x =-+.(1)在下图所示的平面直角坐标系中,画出该一次函数的图象;(2)该一次函数图象与x 轴交点坐标为__________.当0y <时,自变量x 的取值范围是__________.18. 如图,小明在方格纸中选择格点作为顶点画ABCD Y 和BCE .(1)请你在方格纸中找到点D ,补全ABCD Y ;(2)若每个正方形小格的边长为1,请计算线段CE 的长度并判断AD 与CE 的位置关系,并说明理由.19. 快递公司为顾客交寄的快递提供纸箱包装服务.现有三款包装纸箱,底面规格如下表:型号长宽小号20cm 18cm中号25cm20cm大号30cm 25cm已知甲、乙两件礼品底面都是正方形,底面积分别为280cm ,2180cm ,若要将它们合在一个包装箱中寄出,底面摆放方式如左上图,从节约枌料的角度考虑,应选择哪种底面型号的纸箱?请说明理由.20. 已知一次函数的图像经过点(2,4)A ,(1,1)B -.(1)求这个一次函数的解析式;(2)若正比例函数(0)y mx m =≠的图像与线段AB 有公共点,直接写出m 的取值范围.21. 如图,在ABC 中,AB AC =,点D ,E ,F 分别为BC ,AB ,AC 的中点.(1)求证:四边形AEDF 是菱形;(2)若6AB =,10BC =,求四边形AEDF 的面积.22.的矩形叫做“黄金矩形”.黄金矩形给我们以协调、匀称的美感.若要将一张边长为2的正方形纸片ABCD 剪出一个以AB 为边的黄金矩形ABMN ,小松同学的作法如下:①作AB 的垂直平分线分别交AB ,CD 于点E ,F ;②连接AF ,作BAF ∠的角平分线,交BC 于点M ;③过点M 作MN AD ⊥于点N ;矩形ABMN 即为所求.(1)根据上述作图过程,补全图形;(2)小松证明四边形ABMN 是黄金矩形的思路如下:作MP AF ⊥于点P ,连接MF ,设BM x =,根据角平分线的性质,可知MP BM x ==.根据条件,可求得AF 的长度为__________,AP 的长度为__________.在Rt MPF △和Rt CMF △中,由勾股定理可得22222MP PF MF MC CF +==+.由此可列关于x 的方程为__________.解得BM x ==__________.所以BM AB =,矩形ABMN 为黄金矩形.23. 甲、乙两名选手参加25米手枪速射资格赛.资格赛规则为每名选手完成60发射击,得分按整数计.例如:9.7环计9分,每发最高得10分,满分600分.甲、乙各射击60发的成绩如下表所示:得分频数选手678910甲332121乙331227已知甲、乙两名选手在资格赛中9分段的详细数据如下:甲的9分段频数分布表分组(环)频数9.09.2x ≤<29.29.4x ≤<39.49.6x ≤<29.69.8x ≤<59.810x ≤<9根据以上信息,整理分析两名选手得分数据如下:选手平均数中位数众数甲8.99,10乙9(1)补全上述表格中的信息;(2)进入决赛后,资格赛成绩不带入决赛,每名选手最多完成40发,每发按照“击中”或“脱靶”统计,9.6环及以上计为击中,9.6环以下计为脱靶、只有击中才累计环数,按照总环数高低进行排名.若甲、乙两名选手均进入决赛,请你推断哪位选手更可能获胜,并说明理由.24. 实数a 与b 满足b =.(1)写出a 与b 的取值范围;(2是有理数.①当a 是正整数时,求b 的值;②当a 是整数时,将符合条件的a 的值从大到小排列,请直接写出排在第3个位置和第11个位置的数.25. 在正方形ABCD 中,点E 在射线BD 上,点M 在BC 的延长线上,CN 为DCM ∠的角平分线,点F 为射线CN 上一点,且CE FE =.(1)如图,当点E 在线段BD 上时,补全图形,求证:2180BEC CEF ∠+∠=︒;(2)在(1)的条件下,用等式表示线段CF ,DE ,BE 之间的数量关系,并证明;(3)若4AB =,3BE DE =,直接写出线段CF 的长.26. 在平面直角坐标系xOy 中,对于点00(,)P x y ,给出如下定义:若存在实数1x ,2x ,1y ,2y 使得0112x x x x -=-且0112y y y y -=-,则称点P 为以点11(,)x y 和22(,)x y 为端点的线段的等差点.(1)若线段m 的两个端点坐标分别为(1,2)和(3,2)-,则下列点是线段m 等差点的有__________;(填写序号即可)①1(16)P -,;②2(20)P ,;③3(4,4)P -;④4(5,6)P -.(2)点A ,B 都在直线y x =-上,已知点A 的横坐标为2-,(0)M t ,,(11)N t +,.①如图1,当1t =-时,线段AB 的等差点在线段MN 上,求满足条件的点B 的坐标;②如图2,点B 横坐标为2,以AB 为对角线构造正方形ACBD ,在正方形ACBD 的边上(包括顶点)任取两点连接的线段中,若线段MN 上存在其中某条线段的等差点,直接写出t 的取值范围__________.参考答案一、选择题(本大题共24分,每小题3分)在下列各题的四个备选答案中,符合题意的选项只有一个.题号12345678答案CBDACADD二、填空题(本大题共18分,每小题3分)9. 110︒10.③.11. 4.12. 8613. .14.左,4.三、解答题(本大题共58分,第15题6分,16~21题,每题4分,22题~24题,每题5分,25题6分,26题7分)15.(1)解:-+=-+=(2=42=-2=16.证明:如图,连接AC ,设AC 与BD 交于点O .四边形ABCD 是平行四边形,OA OC ∴=,OB OD =,…………………1分又BE DF = ,OE OF ∴=.…………………3分∴四边形AECF 是平行四边形.…………………4分17. (1)解:当0x =时,2011y =-⨯+=,当0y =时,021=-+x ,∴12x =.如图,…………………2分(2)∵0y =时,12x =,∴一次函数图象与x 轴交点坐标为1,02⎛⎫ ⎪⎝⎭.…………………3分由图象可知,当0y <时,自变量x 的取值范围是12x >.故答案为:1,02⎛⎫ ⎪⎝⎭,12x >.…………………4分18. (1)解:如图所示,即为所求;(2)解:如图所示,过点C 作CH AB ⊥于H ,记AD 与CE 相交于点F 理由如下:∵∴CE BC ====∵10BE =,∴222CE BC BE +=∴90BCE ∠=︒,…………………3分∵四边形ABCD 是平行四边形,∴AD BC ∥,∴90AFE ∠=︒∴AD CE ⊥.…………………4分19. =…………………1分=,…………………2分∴甲、乙两件礼品的边长之和为=,∵2025=<<<,61820<=<…………………3分∴应选择中号的纸箱.…………………4分20. (1)解:设一次函数解析式为(0)y kx b k =+≠∵一次函数的图像经过点(2,4)A ,(1,1)B -,,∴241k b k b +=⎧⎨-+=⎩,…………………1分解得,12k b =⎧⎨=⎩,…………………2分∴一次函数解析式为2y x =+.(2)12m m ≤-≥或21.(1)∵AB AC =,点D 为BC 的中点∴AD BC⊥∴90ADB ADC ∠=∠= …………………1分∵点E ,F 分别为AB ,AC 的中点,∴DE 是ABC 的中位线,12AF AC =,∴12DE AC AF ==,同理可得12DF AB AE ==,∴DE AF AE DF ===,∴四边形AEDF 是菱形;(2)解:设AD EF 、交于O ,同理可证EF 是ABC 的中位线,∴152EF BC ==,∵6AB =,∴3AE =,∵四边形AEDF 是菱形,∴12.52AD EF OE EF ==⊥,,2AD OA =,在Rt AEO △中,由勾股定理得OA ==∴AD =,∴12AEDF S AD EF =⋅=菱形.22.(1)解:如图所示,即为所求;(2)证明:作MP AF ⊥于点P ,连接MF ,设BM x =,则2CM x =-,根据角平分线的性质,可知MP BM x ==,∵EF 是AB 的垂直平分线, ∴112DF CF AD ===,∴AF ==∵AM AM BM PM ==,,∴()Rt Rt HL ABM APM △≌△,∴2AP AB ==,∴2PF AF AP =-=-,在Rt MPF △和Rt CMF △中,由勾股定理可得22222MP PF MF MC CF +==+.∴)()2222212x x -+=+- .解得1BM x ==-.所以BM AB =,∴矩形ABMN 为黄金矩形.23. (1)解:∵每名选手完成60发射击,∴甲得分为8的频数为:6033212112----=,乙得分为9的频数为:6033122715----=,∴甲乙射击的图如下所示, 得分频数选手678910甲12乙15…………………1分选手平均数中位数众数甲9乙910…………………4分(2)解:乙更可能获胜,理由如下:①从“击中”个数来看,甲在资格赛中射出9.6环以上共35次,乙在资格赛中射出9.6环及以上共38次,乙比甲多;②从累计环数来看,若将甲9.69.8x ≤<分段的按9.8分计,9.810x ≤<分段的按10分计,甲的最高累计环数为9.851091021349,⨯+⨯+⨯=而将乙9.69.8x ≤<分段的按9.6分计,9.810x ≤<分段的按9.8分计,乙的最低累计环数为9.639.881027377.2⨯+⨯+⨯=,乙的最低累计环数比甲的最高累计环数还高…………………5分24. (1)解:由题可知:40a b -≥⎧⎨≥⎩解得:40a b ≤≥,;…………………2分(2)①∵a 是正整数时,∴a 可以取1234,,,,这时b 0,,是有理数,∴b =或0b =;…………………4分是有理数,∴b 当a 是正整数时,则41a a ==,,由①可知第3个数b =11个数b =,即4124300a a -=-=,,解得:8296a a =-=-,.…………………5分25. (1)解:如图所示,即为所求;…………………1分∵四边形ABCD 是正方形,∴4590DBC BCD DCM =︒==︒∠,∠∠,∵CN 为DCM ∠的角平分线,∴1452FCM DCM ==︒∠∠,∴FCM DBC =∠∠,∴BD CF ,∴BEC ECF ∠=∠,∵CE FE =,∴ECF EFC ∠=∠,∵180ECF EFC CEF ∠+∠+∠=︒,∴2180ECF CEF ∠+∠=︒,∴2180BEC CEF ∠+∠=︒;(2)解:BE CF DE =+,证明如下:如图所示,在BD 上截取BH CF =,连接CH DF 、,∵CN 为DCM ∠的角平分线,∴1452DCF DCM ==︒∠,∵四边形ABCD 是正方形,∴45DBC BC CD ∠=︒=,,∴CBH DCF =∠∠,∴()SAS CBH DCF △≌△,∴CH DF =,CHB DFC =∠∠,∵CF BD ∥,∴180BDF DFC ∠+∠=︒,∵180DHC BHC +=︒∠∠,∴EHC EDF =∠∠,∵2180BEC CEF ∠+∠=︒,180BEC CEF DEF ∠+∠+=︒∠,∴CEH FED =∠∠,∴()AAS CEH FED △≌△,∴HE DE =,∵BE BH HE =+,∴BE CF DE =+;(3)解:如图3-1所示,当点E 在BD 上时,∵在正方形ABCD 中,4AB =,∴490BC CD BCD ===︒,∠,∴BD ==∵3BE DE =,∴3144BE BD DE BD ====,由(2)的结论可知BE CF DE =+,∴CF BE DE =-=;如图3-2所示,当点E 在BD 延长线上时,在射线BE 上截取BH CF =,连接CH DF 、,同理可证明CBH DCF △≌△,∴CH DF =,CHB DFC =∠∠,∵CF BD ∥,∴FDE CFD =∠∠,DEC ECF HEF EFC ==∠∠,∠∠∴FDE CHE =∠∠;∵EC EF =,∴ECF EFC ∠=∠,∴DEC HEF =∠∠,∴DEF HEC=∠∠∴()AAS DEF HEC △≌△,∴HE DE =,∵BH BE EH =+,∴CF BE DE =+,∵3BE DE BD ==,,∴BE DE ==∴CF =;综上所述,CF =CF =.26. (1)解:m 的两个端点坐标分别为(1,2)和(3,2)-①1(16)P -,:∵1113,622(2)--=--=--∴1(16)P -,是等差点;②2(20)P ,:∵2113,-¹-且2331-¹-∴2(20)P ,不是等差点;③3(4,4)P -:∵4113-¹-,且4331-¹-∴3(4,4)P -不是等差点;④4(5,6)P -:∵5331-=-且6(2)(2)2---=--∴4(5,6)P -是等差点.故答案为①④.(2)解:①∵点A 直线y x =-上,横坐标为2-,∴(2,2)A -当1t =-时,(1,0)M -,(0,1)N 设直线MN 解析式为(0)y kx b k =+≠,则01k b b -+=⎧⎨=⎩,解得11k b =⎧⎨=⎩,∴直线MN 解析式为1y x =+,联立y x =-,得1y x y x =+⎧⎨=-⎩,解得0.50.5x y =-⎧⎨=⎩∴交点即等差点坐标为(0.5,0.5)-;设点(,)B a a -,则0.5(2),a a --=--或0.5(2)(2)a ---=--,解得 1.25a =-或 3.5a =-∴( 1.25,1.25)B -或( 3.5,3.5)-;②如图,点B 横坐标为2,以AB 为对角线构造正方形ACBD ,可知(2,2)A -,(2,2),(2,2),(2,2)B C D ---,(0)M t ,,(11)N t +,,分别在x 轴、直线1y =上,如图,根据等差点定义知,正方形上两点()()2,2,2,1.5-的一个等差点为(6,1)-,点(11)N t +,位于1(6,1)N -时,t 取最小值,16t +=-,7t =-;如图,正方形上两点(2,2),(2,1)-的一个等差点为(6,0),点(0)M t ,位于4(6,0)M 时,t 取最大值,6t =;正方形ACBD 的边上(包括顶点)任取两点连接的线段的等差点不可能出现在正方形内部,故2t ≤-,或12t +≥,即1t ≥,综上,72t -≤≤-或16t ≤≤.。
数学八年级下册数学期末试卷测试卷附答案

数学八年级下册数学期末试卷测试卷附答案数学八年级下册数学期末试卷及答案一、选择题1.下列各式中,一定是二次根式的是()A。
aB。
1/a^2C。
-a^2D。
a^2+12.下列数组中,能构成直角三角形的是()A。
1.1.3B。
2.3.5C。
0.2.0.3.0.5D。
1/11.1/45.1/33.如图,在ABCD中,点E,F分别在边BC,AD上。
若从下列条件中只选择一个添加到图中的条件中,那么不能使四边形AECF是平行四边形的条件是()A。
AE//CFB。
AE=CFC。
BE=DFD。
∠BAE=∠DCF4.某次数学趣味竞赛共有10组题目,某班得分情况如下表。
全班40名学生成绩的众数是人数。
成绩(分)5.1370.6080.7390.100A。
75B。
70C。
80D。
905.如图,顺次连接四边形ABCD各边中点得四边形EFGH,要使四边形EFGH为矩形,应添加的条件是()A。
AB//DCB。
AC=BDC。
AC⊥BDD。
AB=DC6.如图,在菱形ABCD中,AB=4,∠BAD=120°,O是对角线BD的中点,过点O作OE⊥CD于点E,连结OA。
则四边形AOED的周长为()A。
9+√23B。
9+√3C。
7+√23D。
87.如图,在ABC中,D,E分别是AB,AC的中点,AC=20,F是DE上一点,连接AF,CF,DF=4.若∠AFC=90°,则BC的长度为()A。
24B。
28C。
20D。
128.一个内有进水管和出水管,开始4min内只进水不出水,在随后的8min内既进水又出水,第12min后只出水不进水。
进水管每分钟的进水量和出水量每分钟的出水量始终不变,内水量y(单位:L)与时间x(单位:min)之间的关系如图所示。
根据图象有下列说法:①进水管每分钟的进水量为5L;②4≤x≤12时,y=x+15;③当x=12时,y=30;④当y=15时,x=3,或x=17.其中正确说法的个数是()A。
1个B。
八年级数学下册期末考试卷(附带有答案)

八年级数学下册期末考试卷(附带有答案)(满分: 120 分 考试时间: 120 分钟)一、选择题1、 以下问题,不适合用普查的是( )A. 了解全班同学每周体育锻炼的时间B. 旅客上飞机前的安检C. 学校招聘教师,对应聘人员面试D. 了解全市中小学生每天的零花钱 2、 下列图案中,不是中心对称图形的是( )3A. 全体实数B.x≠1C.x=1D. x >14、 把 118化为最简二次根式得( )1 1 1 1A. 18 18B. 18C. 2D.18 6 3 25、 若反比例函数y = (2m 1)x m 2-2 的图象在第二,四象限,则 m 的值是( )A. −1 或 1B. 小于 12 的任意实数C. −1D. 不能确定k6、 如图,在同一直角坐标系中,正比例函数 y=kx+3 与反比例函数 y = 的图象位置可能是( )x第 1 页 共 12 页3、 如果分式 有意义,则 x 的取值范围是( ) x 1第 2 页 共 12 页A. 1B. 2C. 一、填空题9、 当 x 时,分式 3 D. 4x 1的值为 0. x10、 若 x = 5 3 ,则 x 2 + 6x + 5 的值为 .12、 袋子里有 5 只红球,3 只白球,每只球除颜色以外都相同,从中任意摸出 1 只球,是红球的可能性 (选 填“大于”“小于”或“等于”)是白球的可能性。
13、 矩形 ABCD 的对角线 AC 、BD 交于点 O , ∠AOD =120 ,AC =4,则△ABO 的周长为 .14、 若关于 x 的分式方程 有增根,则.15、 某校高一年级一班数学单元测试全班所有学生成绩的频数分布直方图如图所示(满分 100 分,学生成绩取整数),则成绩在 90.5 95.5 这一分数段的频率是a + 3b c11、 若 a:b:c=1:2:3,则 =a 3b + c第 3 页 共 12 页2 和 y =x△PAB 的面积是 3,则 k = .17、 图 1 所示矩形 ABCD 中, BC =x ,CD =y ,y 与 x 满足的反比例函数关系如图 2 所示,等腰直角三角形 AEF 的斜边 EF 过 C 点, M 为 EF 的中点,则下列结论正确的序号是 . ①当 x =3 时, EC <EM③当 x 增大时, EC ⋅CF 的值增大18、 如图 1,边长为 a 的正方形发生形变后成为边长为 a 的菱形,如果这个菱形的一组对边之间的距离为h , a我们把 的值叫做这个菱形的“形变度”。
初二数学下册期末考试题及答案

初二数学下册期末考试题及答案数学试卷一、选择题(每小题4分,共40分,每小题只有一个正确答案)1、下列运算中,正确的是()A.$\frac{y^2}{a}·\frac{a}{y}=y$B.$\frac{y^2}{2x}·\frac{2x}{y}=y$C.$\frac{2x}{x+a}+\frac{y}{a+b}=1$D.$\frac{2x+xy}{x+y}+\frac{a+b}{a}=\frac{a+b+2x}{a}$2、下列说法中,不正确的是()A.为了解一种灯泡的使用寿命,宜采用抽样的方法B.众数在一组数据中不一定唯一C.方差反映了一组数据与其平均数的偏离程度D.对于简单随机样本,可以用样本的方差去估计总体的方差3、能判定四边形是平行四边形的条件是()A.一组对边平行,另一组对边相等B.一组对边相等,一组邻角相等C.一组对边平行,一组邻角相等D.一组对边平行,一组对角相等4、反比例函数$y=\frac{k}{x}$,在第一象限的图象如图所示,则$k$的值可能是()A.1 B.2 C.3 D.45、在平面直角坐标系中,已知点$A(1,2)$,$B(-2,3)$,$C(4,-2)$,$D(2,-1)$,则以这四个点为顶点的四边形$ABCD$是()A.矩形 B.菱形 C.正方形 D.梯形6、某校八年级(2)班的10名团员在“情系灾区献爱心”捐款活动中,捐款情况如下(单位:元):10、8、12、15、10、12、11、9、10、13,则这组数据的()A.平均数是11 B.中位数是10 C.众数是10.5 D.方差是3.97、一个三角形三边的长分别为15cm,20cm和25cm,则这个三角形最长边上的高为()A.15cmB.20cmC.25cmD.12cm8、已知,反比例函数的图像经过点$M(1,1)$和$N(-2,-3)$,则这个反比例函数是()A。
$y=\frac{11}{6x}$ B。
江苏省无锡2024届数学八年级第二学期期末达标检测试题含解析

江苏省无锡2024届数学八年级第二学期期末达标检测试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题(每小题3分,共30分)1.如图,在长方形ABCD 中,点M 为CD 中点,将MBC △沿BM 翻折至MBE △,若∠=AME α,ABE β∠=,则α与β之间的数量关系为( )A .3180αβ+=︒B .20βα-=︒C .80αβ+=︒D .3290βα-=︒2.在下列以线段a 、b 、c 的长为边,能构成直角三角形的是( )A .a =3,b =4,c =6B .a =5,b =6,c =7C .a =6,b =8,c =9D .a =7,b =24,c =253.如图,平行四边形ABCD 中,∠A 的平分线AE 交CD 于E , AB=5,BC=3,则EC 的长( )A .2B .3C .4D .2.54.如图,在ABC ∆中,90C =∠,30A ∠=,AB 的垂直平分线分别交,AB AC 于点,D E ,若4AE =,则EC 的长是( )A .4B .3C .2D .15.如图,平行四边形ABCD 中,对角线AC 、BD 交于点O ,点E 是BC 的中点,若OE=3cm ,则AB 的长为( )A.3cm B.6cm C.9cm D.12cm6.如图,EF是Rt△ABC的中位线,∠BAC=90°,AD是斜边BC边上的中线,EF和AD相交于点O,则下列结论不正确的是()A.AO=OD B.EF=AD C.S△AEO=S△AOF D.S△ABC=2S△AEF7.如图,已知一条直线经过点、点,将这条直线向左平移与轴、轴分别交于点、点.若,则直线的函数解析式为()A.B.C.D.8.若两个相似多边形的面积之比为1∶3,则对应边的比为()A.1∶3 B.3∶1 C.1:3D.3:19.某蓄水池的横断面示意图如图所示,分深水区和浅水区,如果以固定的流量把水蓄满蓄水池,下面的图象能大致表示水的深度h和注水时间t之间关系的是()A.B.C.D.10.下列关于矩形对角线的说法中,正确的是()A .对角线相互垂直B .面积等于对角线乘积的一半C .对角线平分一组对角D .对角线相等二、填空题(每小题3分,共24分) 11.如图,折叠矩形纸片ABCD ,使点B 落在边AD 上,折痕EF 的两端分别在AB 、BC 上(含端点),且AB=6cm ,BC=10cm .则折痕EF 的最大值是 cm .12.四边形ABCD 为菱形,该菱形的周长为16,面积为8,则∠ABC 为_____度.13.如果在五张完全相同的纸片背后分别写上平行四边形、矩形、菱形、正方形、等腰梯形,打乱后随机抽取其中一张,那么抽取的图形既是轴对称图形又是中心对称图形的概率等于_____.14.每本书的厚度为0.62cm ,把这些书摞在一起总厚度h (单位:cm )随书的本数n 的变化而变化,请写出h 关于n 的函数解析式_____.15.因式分解:x 2﹣9y 2= .16.如图,在平面直角坐标系中,矩形的边在轴上,边在轴上,点的坐标为.将矩形沿对角线翻折,点落在点的位置,且交轴于点,那么点的坐标为______.17.若关于x 的一元二次方程240x x a +-=有两个不相等的实数根,则a 的取值范围是________.18.已知关于x 的方程113=--ax a x有解2x =,则a 的值为____________. 三、解答题(共66分)19.(10分)如图,AD 是等腰△ABC 底边BC 上的中线,点O 是AC 中点,延长DO 到E ,使OE =OD ,连接AE ,CE ,求证:四边形ADCE 的是矩形.20.(6分)计算:(1)81223+-- (2)(37)(37)2(22)-++-21.(6分)如图,点O 为平面直角坐标系的原点,点A 在x 轴的正半轴上,正方形OABC 的边长是3,点D 在AB 上,且1AD =.将OAD ∆绕着点O 逆时针旋转得到OCE ∆.(1)求证:OE OD ⊥;(2)在x 轴上找一点P ,使得PD PE +的值最小,求出点P 的坐标.22.(8分)如图,四边形中,,,,是边的中点,连接并延长与的延长线相交于点.(1)求证:四边形是平行四边形;(2)若,求四边形的面积.23.(8分)已知,5a b +=,6ab =,求33a b ab +的值.24.(8分)九年一班竞选班长时,规定:思想表现、学习成绩、工作能力三个方面的重要性之比为3:3:1.请根据下表信息,确定谁会被聘选为班长:小明 小英 思想表现91 98 学习成绩96 96 工作能力98 9125.(10分)如图,点D 在等边三角形ABC 的边BC 上,延长CA 至E ,使AE BD =,连接DE 交AB 于F . 求证:DF EF =.26.(10分)如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形ABCD的外角∠DCG 的平分线CF于点F.(1)如图2,取AB的中点H,连接HE,求证:AE=EF.(2)如图3,若点E是BC的延长线上(除C点外)的任意一点,其他条件不变结论“AE=EF”仍然成立吗?如果正确,写出证明过程:如果不正确,请说明理由.参考答案一、选择题(每小题3分,共30分)1、D【解题分析】直接利用平行线的性质结合翻折变换的性质得出△ADM≌△BCM(SAS),进而利用直角三角形的性质得出答案.【题目详解】∵M为CD中点,∴DM=CM,在△ADM和△BCM中∵AD BCD C DM CM=⎧⎪∠=∠⎨⎪=⎩,∴△ADM≌△BCM(SAS),∴∠AMD=∠BMC,AM=BM∴∠MAB=∠MBA∵将点C绕着BM翻折到点E处,∴∠EBM=∠CBM,∠BME=∠BMC=∠AMD ∴∠DME=∠AMB∴∠EBM=∠CBM=12(90°-β)∴∠MBA=12(90°-β)+ β=12(90°+β)∴∠MAB=∠MBA=12(90°+β)∴∠DME=∠AMB=180°-∠MAB-∠MBA=90°-β∵长方形ABCD中,∴CD∥AB∴∠DMA=∠MAB=12(90°+β)∴∠DME+∠AME=∠ABE+∠MBE ∵∠AME=α,∠ABE=β,∴90°-β+α=β+12(90°-β)∴3β-2α=90°故选D.【题目点拨】本题考查的知识点是平行线的性质,解题关键是利用全等三角形对应角相等即可求解.2、D【解题分析】A选项:32+42≠62,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;B选项:52+62≠72,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;C选项:62+82≠92,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;D选项:72+242=252,故符合勾股定理的逆定理,能组成直角三角形,故正确.故选D.3、A【解题分析】根据平行四边形的性质可得AB=CD=5,AD=BC=3,AB∥CD,然后根据平行线的性质可得∠EAB=∠AED,然后根据角平分线的定义可得∠EAB=∠EAD,从而得出∠EAD=∠AED,根据等角对等边可得DA=DE=3,即可求出EC的长.【题目详解】解:∵四边形ABCD是平行四边形,AB=5,BC=3,∴AB=CD=5,AD=BC=3,AB∥CD∴∠EAB=∠AED∵AE平分∠DAB∴∠EAB=∠EAD∴∠EAD=∠AED∴DA=DE=3∴EC=CD-DE=2故选A.【题目点拨】此题考查的是平行四边形的性质、平行线的性质、角平分线的定义和等腰三角形的判定,掌握平行四边形的性质、平行线的性质、角平分线的定义和等角对等边是解决此题的关键.4、C【解题分析】连接BE,根据线段垂直平分线上的点到线段两端点的距离相等可得AE=BE,再根据等边对等角的性质求出∠ABE=∠A,然后根据三角形的内角和定理求出∠CBE,再根据30°角所对的直角边等于斜边的一半求出CE.【题目详解】如图,连接BE,∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,在△ABC中,∠CBE=180°-∠A-∠ABE-∠C=180°-30°-30°-90°=30°,∴CE=12BE=12×4=2,故选C.【题目点拨】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,30°角所对的直角边等于斜边的一半的性质,勾股定理的应用,熟记性质并作出辅助线是解题的关键.5、B【解题分析】根据平行四边形对角线互相平分的性质可得OA=OC,又因点E是BC的中点,所以OE是△ABC的中位线,再由三角形的中位线定理可得AB的值.【题目详解】解:在平行四边形ABCD中,对角线AC、BD交于点O,∴OA=OC∴点O是AC的中点又∵点E是BC的中点∴OE是△ABC的中位线∴AB=2OE=6cm故选:B【题目点拨】本体考查了平行四边形的性质、三角形的中位线定理,掌握平行四边形的性质,三角形的中位线定理是解题的关键.6、D【解题分析】根据三角形中位线定理以及直角三角形斜边上的中线等于斜边的一半逐项分析即可.【题目详解】解:∵EF是Rt△ABC的中位线,∴EF 12BC ,∵AD是斜边BC边上的中线,∴AD=12 BC,∴EF=AD,故选项B正确;∵AE=BE,EO∥BD,∴AO=OD,故选项A正确;∵E,O,F,分别是AB,AD,AC中点,∴EO=12BD,OF=12DC,∵BD=CD,∴OE=OF,又∵EF∥BC,∴S△AEO=S△AOF,故选项C正确;∵EF∥BC,∴△ABC∽△AEF,∵EF是Rt△ABC的中位线,∴S△ABC:S△AEF=4:1,即S△ABC=4S△AEF≠2S△AEF,故选D错误,故选:D.【题目点拨】本题考查了三角形中位线定理的运用、直角三角形斜边上的中线的性质以及全等三角形的判断和性质,证明EO,OF 是三角形的中位线是解题的关键.7、A【解题分析】先求出直线AB的解析式,再根据BD=DC计算出平移方式和距离,最后根据平移的性质求直线CD的解析式.【题目详解】设直线AB的解析式为y=kx+b,∵A(0,2)、点B(1,0)在直线AB上,∴解得,∴直线AB的解析式为y=−2x+2;∵BD=DC,∴△BCD为等腰三角形又∵AD⊥BC,∴CO=BO(三线合一),∴C(-1,0)即B点向左平移两个单位为C,也就是直线AB向左平移两个单位得直线CD∴平移以后的函数解析式为:y=−2(x+2)+2,化简为y=-2x-2故选A.【题目点拨】本题考查一次函数图象与几何变换,解决本题要会根据图像上的点求一次函数解析式和利用平移的性质得出平移后函数解析式,能根据BD=DC计算出平移方向和距离是解决本题的关键.8、C【解题分析】直接根据相似多边形的性质进行解答即可.【题目详解】∵两个相似多边形的面积之比为1:3,13.3故选C.【题目点拨】本题考查的是相似多边形的性质,即相似多边形面积的比等于相似比的平方.9、C【解题分析】首先看图可知,蓄水池的下部分比上部分的体积小,故h与t的关系为先快后慢.【题目详解】根据题意和图形的形状,可知水的最大深度h与时间t之间的关系分为两段,每一段h随t的增大而增大,增大的速度是先快后慢.故选C.【题目点拨】此题考查了函数的图象,根据几何图形的性质确定函数的图象和函数图象的作图能力.要能根据几何图形和图形上的数据分析得出所对应的函数的类型和所需要的条件,结合实际意义画出正确的图象.10、D【解题分析】根据矩形的性质:矩形的对角线相等且互相平分得到正确选项.【题目详解】解:矩形的对角线相等,故选:D.【题目点拨】此题考查了矩形的性质,熟练掌握矩形的性质是解本题的关键.二、填空题(每小题3分,共24分)11、10103.【解题分析】试题分析:点F与点C重合时,折痕EF最大,由翻折的性质得,BC=B′C=10cm,在Rt△B′DC中,2222106B C CD--'=8cm,∴AB′=AD﹣B′D=10﹣8=2cm,设BE=x,则B′E=BE=x,AE=AB﹣BE=6﹣x,在Rt△AB′E中,AE2+AB′2=B′E2,即(6﹣x)2+22=x2,解得x=103,在Rt△BEF中,222210101010BC BE⎛⎫+=+=⎪cm.故答案是10103.考点:翻折变换(折叠问题).12、30或150【解题分析】如图1所示:当∠A为钝角,过A作AE⊥BC,∵菱形ABCD的周长为l6,∴AB=4,∵面积为8,∴AE=2,∴∠ABE=30°,∴∠ABC=60°,当∠A为锐角时,如图2,过D作DE⊥AB,∵菱形ABCD的周长为l6,∴AD=4,∵面积为8,∴DE=2,∴∠A=30°,∴∠ABC=150°,故答案为30或150.13、3 5【解题分析】先从平行四边形、矩形、菱形、正方形、等腰梯形找出既是轴对称图形又是中心对称图形的图形,然后根据概率公式求解即可.【题目详解】∵五张完全相同的卡片上分别画有平行四边形、矩形、菱形、正方形、等腰梯形,其中既是轴对称图形又是中心对称图形的有矩形、菱形、正方形,∴现从中任意抽取一张,卡片上所写的图形既是轴对称图形又是中心对称图形的概率为35,故答案为35.【题目点拨】本题考查平行四边形、矩形、菱形、正方形、等腰梯形的性质及概率的计算方法,熟练掌握图形的性质及概率公式是解答本题的关键. 如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.14、h=0.62n依据这些书摞在一起总厚度h (cm )与书的本数n 成正比,即可得到函数解析式.【题目详解】每本书的厚度为0.62cm ,∴这些书摞在一起总厚度h (cm )与书的本数n 的函数解析式为0.62h n =.故答案为:0.62h n =.【题目点拨】本题主要考查了根据实际问题确定一次函数的解析式,找到所求量的等量关系是解决问题的关键.15、()()x 3y x 3y +-.【解题分析】因为()2222x 9y x 3y -=-,所以直接应用平方差公式即可:()()22x 9y x 3y x 3y -=+-. 16、(0,).【解题分析】先证明EA=EC (设为x );根据勾股定理列出x 2=12+(3-x )2,求得x=,即可解决问题.【题目详解】由题意知:∠BAC=∠DAC ,AB ∥OC ,∴∠ECA=∠BAC ,∴∠ECA=∠DAC ,∴EA=EC (设为x );由题意得:OA=1,OC=AB=3;由勾股定理得:x 2=12+(3-x )2,解得:x=,∴OE=3-=,∴E 点的坐标为(0,).故答案为:(0,).【题目点拨】该题主要考查了翻折变换的性质及其应用问题;解题的关键是灵活运用有关定理来分析、判断、推理或解答;对综合的分析问题解决问题的能力提出了较高的要求.17、4a >-由方程有两个不相等的实数根,可得△>0,建立关于a 的不等式,解不等式求出a 的取值范围即可.【题目详解】∵关于x 的一元二次方程240x x a +-=有两个不相等的实数根,∴△=16+4a >0,解得,4a >-.故答案为:a>-4.【题目点拨】本题考查了一元二次方程根的情况与判别式△的关系:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.18、1【解题分析】分式方程去分母转化为整式方程,把x =2代入整式方程计算即可求出a 的值.【题目详解】去分母得:a ﹣x =ax ﹣3,把x =2代入得:a ﹣2=2a ﹣3,解得:a =1.故答案为:1.【题目点拨】本题考查了分式方程的解,始终注意分母不为0这个条件.三、解答题(共66分)19、详见解析【解题分析】根据平行四边形的性质得出四边形ADCE 是平行四边形,根据垂直推出∠ADC=90°,根据矩形的判定得出即可.【题目详解】证明:∵点O 是AC 中点,∴AO =OC ,∵OE =OD ,∴四边形ADCE 是平行四边形,∵AD 是等腰△ABC 底边BC 上的高,∴∠ADC =90°,∴四边形ADCE 是矩形.本题考查了矩形的判定和性质,等腰三角形的性质,综合运用定理进行推理和计算是解此题的关键,比较典型,难度适中.20、(1) (2)【解题分析】(1)先求出绝对值,再把各二次根式化为最简二次根式,然后合并同类二次根式;(2)先根据平方差公式和乘法法则进行计算,然后合并同类二次根式.【题目详解】解:(1==(2)(3++-=223-+=972-+=【题目点拨】本题考查了二次根式的混合运算和绝对值,先把各二次根式化为最简二次根式,根据绝对值定义求解出绝对值,在进行二次根式的乘除运算,然后合并同类二次根式,同时也考察了平方差公式.21、(1)见解析;(2)点P 坐标为()2,0【解题分析】(1)根据直角坐标系的特点证明COE COD ∠+∠=90°即可;(2)作点D 关于x 轴对称点F ,连接EF 交x 轴于点P ,即为所求,再根据待定系数法确定函数关系式求出直线EF 的解析式,再求出P 点.【题目详解】(1)∵OCE ∆是由OAD ∆旋转而来,∴COE AOD ∠=∠.又90AOD COD ∠+∠=0,∴90COE COD DOE ∠+∠==∠,即OE OD ⊥.(2)如图所示,作点D 关于x 轴对称点F ,连接EF 交x 轴于点P .∵点D 和点F 关于x 轴成轴对称,∴PD PF =.∴PD PE PF PE +=+.且P ,E ,F 三点在一条直线上的时候PF PE +最小即PD PE +取得最小值.∵1AD =,3BC =,∴()3,1F -,()1,3E -,设直线EF 的表达式为()0y kx b k =+≠.E ,F 两点坐标代入得,31,3.k b k b +=⎧⎨-+=⎩ 解得12.k b =-⎧⎨=⎩将∴2y x =-+.∵点P 为直线EF 与x 轴的交点.∴令0y =,即20x -+=得2x =故点P 坐标为()2,0此题主要考查一次函数的图像,解题的关键是熟知待定系数法确定函数关系式.22、(1)见解析;(2)四边形的面积.【解题分析】(1)根据同旁内角互补两直线平行求出BC∥AD,再根据两直线平行,内错角相等可得∠CBE=∠DFE,然后利用“角角边”证明△BEC和△FCD全等,根据全等三角形对应边相等可得BE=EF,然后利用对角线互相平分的四边形是平行四边形证明即可;(2)利用勾股定理列式求出AB,然后利用平行四边形的面积公式列式计算即可得.【题目详解】解:(1)证明:∵,∴,∴,又∵是边的中点,∴,在与中,,∴,∴∴四边形是平行四边形;(2)∵,∴,∴四边形的面积.【题目点拨】本题考查了平行四边形的判定与性质,平行线的判定、全等三角形的判定与性质等知识,解题的关键是正确寻找全等三角形解决问题.23、78.原式提取公因式,再利用完全平方公式化简,将已知等式代入计算即可求出值.【题目详解】()33222()2a b ab ab a b ab a b ab ⎡⎤+=+=+-⎣⎦把5a b +=,6ab =代入得:()3326526a b ab ∴+=⨯-⨯3378a b ab ∴+=【题目点拨】此题考查了因式分解-提公因式法,熟练掌握因式分解的方法是解本题的关键.24、小明会被聘选为班长.【解题分析】分别求出两人的加权平均数,再进行比较,即可完成解答。
2024年最新人教版初二数学(下册)期末试卷及答案(各版本)

2024年最新人教版初二数学(下册)期末试卷及答案(各版本)一、选择题(每题1分,共5分)1. 在直角坐标系中,点P(a, b)关于原点对称的点是()A. P(a, b)B. P(a, b)C. P(a, b)D. P(b, a)2. 下列函数中,是正比例函数的是()A. y = 2x + 1B. y = x^2C. y = 3/xD. y = 3x3. 在平行四边形ABCD中,若AB = 6cm,BC = 8cm,则对角线AC 的取值范围是()A. 2cm < AC < 14cmB. 4cm < AC < 14cmC. 6cm < AC < 14cmD. 2cm < AC < 6cm4. 下列各数中,是无理数的是()A. √9B. √16C. √3D. √15. 下列命题中,正确的是()A. 两条平行线上的任意两点到第三条直线的距离相等B. 两条平行线上的任意两点到第三条直线的距离不相等C. 两条平行线上的任意一点到第三条直线的距离相等D. 两条平行线上的任意一点到第三条直线的距离不相等二、判断题(每题1分,共5分)1. 互为相反数的两个数的和为0。
()2. 任何两个无理数相加都是无理数。
()3. 两条平行线的斜率相等。
()4. 一次函数的图像是一条直线。
()5. 任意两个等腰三角形的面积相等。
()三、填空题(每题1分,共5分)1. 若a = 3,b = 2,则a b = _______。
2. 在直角三角形中,若一个锐角为30°,则另一个锐角为_______°。
3. 若x^2 5x + 6 = 0,则x的值为_______或_______。
4. 一次函数y = 2x + 1的图像与y轴的交点坐标为_______。
5. 平行四边形的对边_______且_______。
四、简答题(每题2分,共10分)1. 简述勾股定理的内容。
2. 什么是正比例函数?请举例说明。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初二数学试卷一、选择题(本题共20分,每小题2分)第1-10题均有四个选项,符合题意的选项只有..一个 1. 实数a ,b ,c ,d 在数轴上的对应点位置如图所示,这四个数中,绝对值最小的是A .aB .bC .cD .d 2.下列交通标志中是中心对称图形的是A B C D3.下列图形中,内角和与外角和相等的是A B C4.在平面直角坐标系xOy 中,点P 的坐标为(1,1). 如果将x 轴向上平移2个单位长度,y 轴不变,得到新 坐标系,那么点P 在新坐标系中的坐标是 A .(1,-1) B .(-1,1) C .(3,1)D .(1,2)5.如图,平行四边形ABCD 中,AC ⊥AB ,点E 为BC 6表中a ,b ,c 分别是DA .6,12,0.30B . 6,10,0.25 C. 8,12,0.30 D. 6,12,0.247.小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得∠B =60°,接着活动学具成为图2所示正方形,并测得对角线AC =40cm ,则图1中对角线AC 的长为A. 20 cmB .30 cm C. 40 cmD. 8.对二次三项式241x x --变形正确的是A .2(2)5x +-B .2(2)+3x +C .2(2)5x --D .2(2)3x -+ 9.已知点(-2,a ),(3,b )都在直线2y x m =+上,对于a ,b 的大小关系叙述正确的是A .a b >B .a b <C .a b ≥D .a b ≤10.教师运动会中,甲,乙两组教师参加“两人背夹球” 往返跑比赛,即:每组两名教师用背部夹着球跑完规定 的路程,若途中球掉下时须捡起并回到掉球处继续赛跑, 用时少者胜.若距起点的距离用y (米)表示,时间用 x (秒)表示.下图表示两组教师比赛过程中y 与x 的 函数关系的图象.根据图象,有以下四个推断: ①乙组教师获胜②乙组教师往返用时相差2秒 ③甲组教师去时速度为0.5米/秒④返回时甲组教师与乙组教师的速度比是2:3 其中合理的是A .①②B .①③C .②④D . ①④二、填空题(本题共18分,每小题3分) 11. 因式分解:233m -= .12.如图,平行四边形ABCD 中,DE 平分∠ADC ,交BC 边于点E , 已知AD =6,BE =2,则平行四边形ABCD 的周长为 .13.已知y 是x 的一次函数,下表列出了部分y 与x 的对应值.ABCDECDB图2图1乙甲则m 的值为 .14.关于x 的一元二次方程220x x c ++=有两个不相等的实数根,写出一个满足条件的实数c 的值:c = .15.小东、小林两名射箭运动员在赛前的某次测试中各射箭10次,成绩及各统计量如下图、表所示:若让你选择其中一名参加比赛则你选择的运动员是: , 理由是: .16.如图,点E 为正方形ABCD 外一点,且ED =CD ,连接AE ,交BD 于点F .若∠CDE =40°,则∠DFC的度数为 .三、解答题(本题共62分,第17-19题,每小题4分,第20-29题,每小题5分)解答应写出文字说明、演算步骤或证明过程.17.解不等式组:106,2314 3.x x x x -⎧->⎪⎨⎪+>-⎩18.用适当的方法解方程:2230x x --=.19.如图,四边形ABCD 是平行四边形,对角线AC ,BD交于点O ,且△OAB 为等边三角形. 求证:四边形ABCD 为矩形.ABCDEFOABCD20.关于x 的一元二次方程()2211n x x n +++=的一个根是0,求n 的值.21.已知△ABC ,请按要求完成画图、说明画图过程及画图依据.(1)以A ,B ,C 为顶点画一个平行四边形;(2)简要说明画图过程;(3)所画四边形为平行四边形的依据是 .22.某地天空的最高点时为此地的“地方时间”12 因此,不同经线上具有不同的“地方时间”地区“地方时间”之间的差称为这两个地区的时差. 右图表示同一时刻的韩国首尔时间和北京时间,两地时差为整数.(1)下表是同一时刻的北京和首尔的时间,请填写完整.(2)设北京时间为x (时),首尔时间为y (时),0≤x ≤12时,求y 关于x 的函数表达式.23.已知关于x 的一元二次方程()22220ax a x a ++++=()0a ≠.(1)求证:此方程总有两个不相等的实数根; (2)若此方程的两个根都为整数,求整数a 的值.24.如图,四边形ABCD 是平行四边形,E ,F 分别为BC ,AD 的中点,(1)求证:AE=CF ;(2)延长CF 交BA 的延长线于点M ,求证:AM=AB .ABME F BD A25.绿色出行是对环境影响最小的出行方式,“共享单车” 已成为北京的一道靓丽的风景线.已知某地区从2017年 1月到5月的共享单车投放量如右图所示.(1)求1月至2月共享单车投放量的增长率; (2)求2月至4月共享单车投放量的月平均增长率.26.如图,在平面直角坐标系xOy 中,过点A (4,0)的直线1l与直线2:2l y x =-相交于点B (-4,m ).(1)求直线1l 的表达式;(2)若直线1l 与y 轴交于点C ,过动点P (0,n )且平行于2l 的直线与线段AC 有交点,求n 的取值范围.27. 有这样一个问题:探究函数11y x =-+的图象与性质.小东根据学习一次函数的经验,对函数11y x =-+的图象与性质进行了探究. 下面是小东的探究过程,请补充完整:(1)在函数11y x =-+中,自变量x 可以是任意实数;下表是y 与x 的几组对应值.① 求m 的值;② 在平面直角坐标系xOy 中,描出上表中各对对应值为坐标的点.并根据描出的点,画出该函数的图象;/月投放量/万量(3)结合函数图象,写出该函数的一条性质: .28.已知将一矩形纸片ABCD 折叠,使顶点A 与C 重合,折痕为EF . (1)求证:CE =CF ;(2)若AB =8 cm ,BC =16 cm ,连接AF ,写出求四边形AFCE 面积的思路.29. 在平面直角坐标系xOy 中,点P 的坐标为11(,)x y ,点Q 的坐标为22(,)x y ,且12x x ≠,12y y ≠,若P ,Q 为某正方形的两个顶点,且该正方形的边均与某条坐标轴平行(含重合),则称P ,Q 互为“正方形点”(即点P 是点Q 的“正方形点”,点Q 也是点P 的“正方形点”).下图是点P ,Q 互为“正方形点”的示意图.(1) 已知点A 的坐标是(2,3),下列坐标中,与点A 互为“正方形点”的坐标是 .(填序号)①(1,2);②(-1,5);③(3,2).(2)若点B (1,2)的“正方形点”C 在y 轴上,求直线BC 的表达式;(3)点D 的坐标为(-1,0),点M 的坐标为(2,m ),点N 是线段OD 上一动点(含端点),若点M ,N 互为“正方形点”,求m 的取值范围.GEFABCD数学答案二、填空题(本题共18分,每小题3分)11.()()311m m -+ 12.20; 13.-1; 14.0(答案不唯一); 15.小东,在水平相当的基础上小东的方差小说明波动小,发挥较小林稳定; 16.110︒. 三、解答题(本题共72分,第17-26题,每小题5分,第27题7分,第28题7分,第29题8分) 17.解:解不等式①得2x >,...............................................................................2分 解不等式②得4x <,. (3)分∴原不等式组的解为24x <<. ………………………………………………………….4分18.解:2230x x --=221130x x -+--= (3)分()2140x --=……………………………………………………………………………....2分 ()214x -=12x -=±…………………………………………………………………………………….3分 12x -=或12x -=-3x =或1x =-………………………………………………………………………...…….4分19.证明:∵四边形ABCD 是平行四边形,∴ AC =2OA ,BD =2OB ,………………………………………………..…….1分∵△OAB 为等边三角形,∴ OA=OB , ……………………………………………………………..….2分 ∴ AC=BD .…………………………………………………………………...3分∴四边形ABCD 为矩形.………………………………………………….….4分20.解:∵关于x 的一元二次方程()2211n x x n +++=的一个根是0,求n 的值.∴2001n ++=, ………………………………..…………………………………….2分∴1n =±, ………………………………..…………………………………………….4分 ∵10n +≠,∴1n =.…………………………………………………………………………...…….5分 21.解:各种画法酌情给分 (1)………………………………...…….3分(2)画图过程: 1.取AC 中点D ,2.连接BD 并延长,使DE =BD ,3.连接AE ,CE .四边形ABCD 是所求平行四边形.………………………...……………………………...4分 (3)依据:对角线相等的四边形是平行四边形.………………………....………..5分 22.(1)8:30,11:15………………………...………………………………………...…..2分 (2)1y x =+,(012)x ≤≤.………………………...…………………..…...…..4分 23.(1)()2224(2)a a a ∆=+-+………………..……………………………………..1分 2248448a a a a =++-- 4= ∵40∆=>,∴方程有两个不相等的实数根.………………..…………………………...…..2分EDABC(2)2222a x a--±=,……………………...………………………………………...3分 11x =-, 2242212a a x a a a----===--.……………………...…………....4分 ∵ 方程的根均为整数,∴ 1,2a =±±. …………………………………………………………...…....5分 24.证明:(1)∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ..................................…..1分又∵E ,F 分别为BC ,AD 的中点, ∴AF=12AD ,CE=12BC , ∴AF=CE ,∴四边形AECF 是平行四边形,.................…..2分∴AE=CF .……………......................................3分(2)∵四边形AECF 是平行四边形,∴AE ∥CF , …………………………………………………………….……….4分 又∵E 为BC 的中点, ∴A 为BM 的中点.即AM=AB .……………...………………………………………………..…..5分 25.(1)()3.2 2.5 2.528%-÷=. …………………………………...……..…..2分 (3)()23.217.2x +=……………………………………………………….…..4分()21 2.25x +=1 1.5x +=±120.5, 2.5()x x ==-舍………………………………………..…………...5分26.解:(1)∵点B (-4,m )在直线2:2l y x =-上,∴8m =.………………………..………………………………………...1分 ∵点A (4,0)和B (-4,8)在直线1l 上,设1:l y kx b =+,MEFCBDA∴40,48.k b k b +=⎧⎨-+=⎩ 解得1,4.k b =-⎧⎨=⎩………………………..……..2分∴直线1l 的表达式为4y x =-+.………………………..…………...3分 (2)点C 坐标为(0,4),………………..………………………………..…...4分平行于2l 的直线过点C 时表达式为24y x =-+, 平行于2l 的直线过点D 时表达式为28y x =-+,∴n 的取值范围是 48n ≤≤.………………..…………………………..5分27.(1)①4x =时,114114y x =-+=-+=………..…………………………...1分②……………………..4分(2)1x <时y 随x 的变大而变小,1x >时y 随x 的变大而变大.……….…..5分 28.(1)证明:∵矩形纸片ABCD 折叠,顶点A 与C 重合,折痕为EF ,∴∠1=∠2,AD ∥BC ,……………………………………………………………..1分 ∴∠1=∠3, ∴∠2=∠3,∴CE =CF .………………………………………………………………….…..…...2分(2)思路:连接AF① 由矩形纸片ABCD 折叠,易证四边形AFCE 为平行四边形;② Rt △CED 中,设DE 为x ,则CE 为16-x ,CD =8,根据勾股定理列方程可求得DE ,CE 的长;③ 由CF =CE ,可得CF 的长;④ 运用平行四边形面积公式计算CF ×CD 可得四边形AFCE 的面积.……………………………….…..…...5分29.(1)①③………………….…………………………………………………………...2分(2)∵点B (1,2)的“正方形点”C 在y 轴上,∴点C 的坐标为(0,1),(0,3),∴直线BC 的表达式为1y x =+,3y x =-+.…………………….………………………….…...4分(3)过点OD 分别作与x 轴夹角为45︒的直线,∵点M 的坐标为(2,m ),点N 是线段OD点M ,N 互为“正方形点”,∴点D 的正方形点坐标是(2,3),(2,-3),点O 的正方形点坐标是(2,2),(2,-2),∴23m ≤≤或32m -≤≤-.…………………….………………………….…...6分。