量子力学 6-1 电子自旋的实验证据
电子自旋共振实验

扫场法: BB 0B m si n t ()
B
B h g B
B0
t I
t
电子自旋共振实验
5. 标准样品DPPH的分子结构
本 实 验 使 用 的 样 品 为 DPPH(Di-Phehcryl-PicrylHydrazal),化学名称是二苯基苦酸基联氨,其分子 式为:(C6H5)2N-NC6H2•(NO2)3,如图1.3-2所示。其
电子自旋共振实验
相邻样两品驻谐立振半腔波的空调间谐交与界微面波处磁,场微分波布横:向磁场同
调向节,强短度路最活大塞,,而使微腔波长电等场于最半弱个,波满导足波样长品的共整振数 倍吸(收强l 、n非g 共2 振)的时介,质腔损谐耗振小。的谐要振求时,,是电安磁置场被沿 腔测长样度品方最向理出想现的地n 个方长。度为 g 2 的驻立半波,此
B
电子自旋共振研究 的同一电子状态(基态) 的不同塞曼能级本身之 间的跃迁,这种跃迁只 发生在相邻的塞曼能级 之间。而塞曼效应则研 究的是不同电子状态的
图1.3-3电子自旋共振与塞曼效应 能级间的跃迁。。
电子自旋共振实验
魔四T、:是实一验种仪互器易介无绍 频 率 计 : 通 过 螺 旋 丝 杆
损 单耗螺四调端配口器固网:体络改变,微隔探与波离源可器:变:调在衰只3节减允cm器其许固:谐微态垂振波微直腔单波波向与电导通微宽过波壁,频 低 针频深桥入式到线波圈源导相作内用对的用下应深于,,中防可线止由率沿回其达纵波魔体向到T信振插匹号荡入损配产吸坏时生收微,波片波可以源产。吸生 故 度又和称水桥 平式 位长接 置约头 时为, ,有可3cm收的部微较分波强传信输的号功谐。率振调,吸节调收其节。其后插续 “ 分 调 以 振幅配改双 ”和器变的臂相一 此特隔位侧 臂性离。上 率与 反, 。进的样 射旁 当行螺品 波臂单微旋腔的平螺调丝入可。杆改深可微测时变度对微波到,或微波离通这可波输宽道个根信出壁上谐据号功中的 振螺的率线检 吸旋频大距波 收丝小离器 信杆。,检 号读 一侧状态匹配时,输 数查表确定微波的实际 出到检波器的信号幅 频率。 度图最1小.3。-4 微波电子自旋共振实验系统原理方框图
电子自旋实验报告

感谢您的观看
结论:电子自旋是电子的基本性质之一,对电子的物理性质和化学性质有重要影响
实验结果:观察到电子自旋共振信号,证实了电子自旋的存在
实验方法:使用电子自旋共振仪进行测量
实验目的:验证电子自旋的存在和性质
对实验方法的改进建议
实验过程中遇到的问题和解决方法
实验结果的准确性和可靠性分析
对未来研究方向的建议和展望
添加标题
电子自旋共振仪:用于测量电子自旋共振信号
添加标题
磁场:提供稳定的磁场环境
添加标题
射频源:产生射频信号
添加标题
接收器:接收射频信号并转换为电信号
添加标题
数据处理系统:处理采集到的数据并显示结果
准备实验材料:电子自旋仪、样品、磁铁等
放置样品:将样品放置在电子自旋仪的样品台上
数据采集:记录仪器显示的电子自旋数据
讨论与结论:对实验结果的解释和总结,以及对未来研究方向的建议
讨论与结论:对实验结果进行讨论,提出可能的解释和结论,以及对未来研究的建议和展望
结果解释:根据实验数据和处理结果,解释实验现象和结果
数据处理:对数据进行处理和分析,如平均值、标准差等
实验数据:详细列出实验得到的数据
实验结果与理论预测的一致性
实验结果与理论预测的差异性
对差异性的解释和讨论
对实验结果的进一步分析和解释
实验结果:电子自旋的测量值
添加标题
理论分析:电子自旋的理论背景和原理
添加标题
实验误差分析:可能的误差来源和影响
添加标题
结论:对实验结果的总结和评价
添加标题
结论与展望
展望:未来将继续研究电子自旋在材料科学、量子计算等领域的应用。
量子力学(第八章自旋)

乌仑贝克(Uhlenbeck)和哥德斯密脱
(Goudsmit)为了解释这些现象,于1925年 左右提出了电子自旋的假设:
(1)每个电子都具有一个自旋角动量 sr ,它
在空间任何方向上的投影只能取两个数值:
r (2S)z 每个h2 (电若子将具空有间自任旋意磁方矩向r 取s 它为与z方自向旋)角动 量 s 的关系是
因而
ˆ x
0
b*
b
0
(31)
而
ˆ
2 x
0
b*
b 0
0
b*
b
0
b2 0
0 1 (32)
b 2
所以 b 2 1,因而可以令 b ei ( 为实)
于是
ˆ x
0
ei
ei
0
(33)
再利用 y i z x ,可得
ˆ y
0
i
ei
ei 0
0
e i (
2)
ei( 2)
系,即
^^
^ ^^
^ ^^
^
[S x , S y ] ih S z ,[S y , S z ] ih S x ,[S z , S x ] ih S y
(11)
或
^r ^r
^r
S S ih S
由于Srˆ 在任意空间方向上投影只能取 h 2这
两 的个 本函征数值值都,是故hSˆ2x ,Sˆy而Sˆz分量这平三方个算分符量的算本符征
1
ir
[(
pr
e
r A)
(
pr
e
r A)]
2 c
2
c
c
其中利用了公式
(r
Ar )(r
电子自旋

电子具有自旋角动量这一特性不能用经典量子 力学来解释。
自旋角动量与其他力学量的根本的区别:
一般力学量(比如说,轨道角动量)都可以表 示成为坐标和动量的函数,自旋角动量则与电子的 坐标和动量无关,所以不能在坐标空间中表示,它 是电子内部状态的表征,是描述电子状态的第四个 变量。
电子自旋存在的实验证据与理论依据:
(一)Stern-Gerlach 实验 (二)光谱线精细结构
(一)Stern-Gerlach 实验
现有的Stern-Gerlach 实验装置及其仪表
(一)Stern-Gerlach 实验
(1)实验描述
S态的氢原子束流,经非均 匀磁场发生偏转,在感光板 上呈现两条分立线。
58
D1
3p1/2 D2
93
58 58
成的现象,称之为光谱线的精3sÅ96 源自0细结构。该现象只有考虑了电
ÅÅ
子的自旋才能得到解释
3s1/2
电子自旋假
U设hlenbeck 和 Goudsmit 1925年根据上述现象
提出了电子自旋假设
(1)每个电子都具有自旋角动量,它在空间任何方向 上的投影只能取两个数值:
(二)光谱线精细结构
通常在一些较轻元素中,原子的能级分裂是精细的。 原子中自旋与轨道相互作用,不同的自旋方向引起
能量的改变。 单电子情形:电子自旋,有两个取向,能级分裂为
两个。能级的精细结构是双重的。 两个价电子情形:总自旋s=0和s=1,对应的能级精
细结构是单态和三重态。
三个价电子情形:能级精细结构是双重态和四重 态。
cos
(4)分析
若原子磁矩可任意取向,则 cos 可在 (-1,1) 之间连续变化,感光板将呈现连续带。
量子力学思考题

ˆ ,B ˆB ˆ ) ψ = (A ˆ )ψ = (A B − B A )ψ = 0 ˆ ]ψ = (A ˆ −B ˆA ˆ −B ˆA [A ∑ n ∑ ˆB ∑ n n n n n n
n n n
8. 以能量算符为例简要说明能量算符和能量之间的关系(华科大 02 考研) 在量子力学中,能量算符用表示 Hˆ ,当体系处于某个能量的本征态时,算符 Hˆ 对本征 态 φn 的作用是得到这一本征值,即 Hˆφn = E nφn ,若体系处于任意态ψ 时, Hˆ 作用于ψ
5. 如果算符 F 表示力学量 F,那么当体系处于算符 F 的本征态是,力学量 F 是否有确 定值?(华科大 03 考研)
ˆ 在本征态 ψ 的本征值 是,其确定值就是 F
6.如果一组算符有共同的本征函数,且这些函数组成完全系,问这组算符中的一个是 否与其余的算符对易(华科大 03 考研)
ˆ ˆ ˆ ˆ ˆ 是 , 设 这 组 算 符 为 A, B, C , 完 全 系 为 {ψ n } , 依 题 意 Aψ n = A n ψ n , Bψ n = Bn ψ n , ˆψ = C ψ C n n n ,………。则对任意波函数 ψ ,
i Jˆ 任何满足此式的算符所代表的力学 量子力学中,角动量是按下式定义 Jˆ × Jˆ =
ˆ r = ˆ× p ˆ 更具普遍性。 量,都可以认为是角动量。此定义较之角动量的仿佛经典定义 L
后者只能适用于轨道角动量而不能适用于自旋。 3.试比较经典角动量的相加与量子角动量的耦合,二者有什么区别? 经典力学中,两角动量可按矢量相加法则简单地相加。它们相加的角度可以是任何的 (取决于体系的性质) ,因此得到的合动量其数值与取向也是连续变化的。 量子力学中,角动量总是一个量子化的量。不仅两个任意角动量的大小与取向是量子 化的,如果它们相互耦合。则合角动量的大小和与取向也是量子化的,因此两角动量 的耦合方式要受到限制,不能是任意的。例如,在量子力学中,两角动量的耦合满足 三角形关系,而按照经典方式描述,这种耦合的限制就相当于两角动量的夹角不能是 任意的,而是量子化的。 4.斯特恩-盖拉赫实验中,只有使用处于 s 态的中性原子,而不能使用电子,为什么?
量子力学 6-1 电子自旋的实验证据

6-1 电子自旋的实验证据
第六章 电子自旋 全888—1969),
1888年2月17日出生于德国。1906年开 始学习物理化学,1912年在布雷斯劳大 学获博士学位。同年他到布拉格当爱因 斯坦的助手,以后又随爱因斯坦转到苏 黎世,1913年成为物理化学私人讲师。 1943年诺贝尔物理学奖授予斯特恩,表 彰他发展分子束方法和发现了质子的磁矩。
M sz e Sz
7
S
自旋回旋磁比率:
6-1 电子自旋的实验证据
第六章 电子自旋 全同粒子 能级排列
注意
此节重点
(1)理解电子自旋是一种纯粹的量子力学效应,没有经 典图象与之对应。(不是电子自转之类的空间运动)
(2)验证电子自旋存在的实验是斯特恩—盖拉赫实验 (3)每个电子具有自旋角动量 向的取值只能有两个 S z 。 2
1922年,他和合作,成功地做了斯特恩-盖 拉赫实验,通过这个著名实验,他们用分 子束方法证明了空间量子化的真实性,并 为进一步测定质子之类的亚原子粒子的磁 矩奠定了基础。
2
6-1 电子自旋的实验证据
第六章 电子自旋 全同粒子 能级排列
格拉赫(Walther Gerlach)
1889出生于德国. 1912年于图宾根大学获得物理学博士学位。 他的研究对象是黑体辐射和光电效应。一战期间, 盖拉赫和 维恩一起发展无线电报技术。在工业界呆了一段时间后, 盖 拉赫于1920年在法兰克福的实验物理研究所谋到了一个助手 的位置, 该所紧捱着玻恩的理论物理所。后来和斯特恩合作 完成了斯特恩-盖拉赫实验. 3
6-1 电子自旋的实验证据
第六章 电子自旋 全同粒子 能级排列
从薛定谔方程出发可以解释许多微观现象,例如计 算谐振子和氢原子的能级从而得出它们的谱线频率 等。计算结果在相当精确的范围内与实验符合。
电子自旋及轨道运动相互作用

电子自旋及轨道运动相互作用摘要:通过对实验事实的简单介绍,引入电子自旋的概念,并逐渐深入,对其进行进一步阐述。
说明电子自旋的特点,以及它和轨道运动之间的相互作用和能量的计算。
此外,还简要说明电子自旋与能级的分裂之间的关系,以及塞曼效应。
关键词:电子自旋轨道运动角动量能级0 引言许多实验事实证明电子具有自旋,下面叙述的斯特恩—革拉赫实验(Stern-Gerlach)实验是其中一个。
图1 斯特恩-革拉赫实验图2一个角动量为、磁矩为的陀螺在磁场中进动频率的矢量图图1中由O射出的处于s态的氢原子束通过狭缝和不均匀磁场,最后射到照相片P上,实验结果是相片上出现两条分立的线。
这说明氢原子具有磁矩,所以原子束通过非均匀磁场时受到力的作用而发生偏转;而且由分立线只有两条这一事实可知,原子的磁矩在磁场中只有两种去向,即它们是空间量子化的。
这可有下面的讨论看出。
假设原子的磁矩为M ,它在沿竖直方向z轴的外磁场B中的势能为:■式中■是原子磁矩M和外磁场之间的夹角。
原子在z方向所收到的力是:■如果原子磁矩在空间可以取任何方向的话,cos■应当可以从+1连续变化到-1,这样在照相片上应该得到一个连续的带,但实验结果只有两条分立的线,对应于cos■=+1和cos■=-1。
1 电子自旋为了说明见金属原子能级的双层结构,G.Uhlenbeck和S.A.Goudsmit在1925年首先提出,可以设想电子具有某种方式的自旋,其角动量等于(1/2)(h/2π)。
这个自旋角动量是不变的,是电子的属性之一,所以也称电子的固有矩。
电子既有某种方式的转动而电子是带负电的,因而它也具有磁矩,这磁矩的方向同上述角动量的方向相反。
每个电子具有自旋磁矩■,它和自旋角动量■的关系是:■ (1.1)式中-e是电子的电荷,μ是电子的质量。
■在空间任意方向上的投影只能取两个数值:■ (1.2)■是玻尔磁子。
由(1.1)式,电子自旋磁矩和自旋角动量之比是:■(1.3)这个比值称为电子自旋的回旋磁比率。
量子力学 08自旋

其中a,b,c,d为复数
可得 1 0
a c 0 a 1 c
即
0 1
ˆ ˆ ˆ ˆ z x x z
b a d c b d
b 1 d 0
b a d c
所以,
ˆ ˆ x
y
ˆ ˆ y
x
ˆ i z
三、泡利算符在 z 表象中的具体形式 上面我们引入了自旋算符,并讨论了它的代数,在适当表象中,可以
ˆ ˆ ˆ 将它们表示成矩阵。 现在来找特定表象下, x , y , z 算符的矩阵形式。
z 表象:指在 的本征矢作为基矢构成的空间中态矢量和力学量 ˆ
凡满足上式(5)的算符都是角动量。自旋既然是角动量,那
么它自然满足作为角动量定义的对易关系:
ˆ s is ˆ ˆ s
其分量形式:
(9)
ˆ ˆ ˆ [ s x , s y ] isz
ˆ ˆ ˆ [s y , sz ] is x
ˆ ˆ ˆ [sz , s x ] is y
第8章
自旋
一、提出电子自旋的实验根据:
1.钠黄线的精细结构
3p
D1
58 93 Å 58 96 Å
3p3/2 3p1/2
D2
58 90 Å
钠原子光谱中的一条亮黄线 = 5893Å,用高分辨率的光谱仪观 测,可以看到该谱线其实是由靠 的很近的两条谱线组成。
3s 2.反常塞曼效应
3s1/2
在弱磁场中,一条原子光谱线分裂成偶数条谱线的现象。 1912年反常塞曼效应,特别是氢原子的偶数重磁场谱线分裂 , 无法用轨道磁矩与外磁场相互作用来解释 ,因为这只能分裂谱 线为 (2n+1)重,即奇数重。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
7
S
自旋回旋磁比率:
6-1 电子自旋的实验证据
第六章 电子自旋 全同粒子 能级排列
注意
此节重点
(1)理解电子自旋是一种纯粹的量子力学效应,没有经 典图象与之对应。(不是电子自转之类的空间运动)
(2)验证电子自旋存在的实验是斯特恩—盖拉赫实验 (3)每个电子具有自旋角动量 向的取值只能有两个 S z 。 2
乌仑贝克. 哥德斯米脱假设(1925年)
(1)每个电子具有自旋角动量
S ,它在空间任意方
向的取值只能有两个 S z 。 2 (2)每个电子具有自旋磁矩 M S ,它与自旋角动量的 关系是 e
MS
M sz
在任意方面 上的投影
e e Sz 2
6-1 电子自旋的实验证据
斯特恩—盖拉赫
第六章 电子自旋 全同粒子 能级排列
(Stern-Gerlach) 实验(1922年)
基态银原子(钾原子,钠 原子)束通过不均匀磁场 后,分离成朝相反方向的 两束。如图:
4
6-1 电子自旋的实验证据
第六章 电子自旋 全同粒子 能级排列
实验分析
斯特恩-盖拉赫实验使用的是银原子Ag处于5s态 (n=5,l=0),银原子的电子结构是:2, 8, 18, 18, 1,最外层是一个5s电子.除去最外层电子外,其他为 满壳层。实验证明,惰性气体的原子的磁矩为零,即 不可能是Ag+的。除最外层5s电子外,其他电子磁矩 完全抵消,整个原子的磁矩主要由5s电子产生. 又 s (l=0) 电子轨道角动量为零,这个电子的轨道 磁矩为零。因此银原子磁矩是由5s电子的除轨道角动 量以外的磁矩导致。
5
6-1 电子自旋的实验证据
第六章 电子自旋 全同粒子 能级排列
由此,实验中发现的磁矩只能是电子自身固有的磁矩。
实验结论
除具有轨道角动量外,电子还应具有自旋角动量。自 旋是一种纯粹量子效应,无经典对应
注意:电子自旋绝不是电子自转之类的空间运动
6
6-1 电子自旋的实验证据
第六章 电子自旋 全同粒子 能级排列
1922年,他和合作,成功地做了斯特恩-盖 拉赫实验,通过这个著名实验,他们用分 子束方法证明了空间量子化的真实性,并 为进一步测定质子之类的亚原子粒子的磁 矩奠定了基础。
2
6-1 电子自旋的实验证据
第六章 电子自旋 全同粒子 能级排列
格拉赫(Walther Gerlach)
1889出生于德国. 1912年于图宾根大学获得物理学博士学位。 他的研究对象是黑体辐射和光电效应。一战期间, 盖拉赫和 维恩一起发展无线电报技术。在工业界呆了一段时间后, 盖 拉赫于1920年在法兰克福的实验物理研究所谋到了一个助手 的位置, 该所紧捱着玻恩的理论物理所。后来和斯特恩合作 完成了斯特恩-盖拉赫实验. 3
S实验证据
第六章 电子自旋 全同粒子 能级排列
斯特恩(Otto Stern,1888—1969),
1888年2月17日出生于德国。1906年开 始学习物理化学,1912年在布雷斯劳大 学获博士学位。同年他到布拉格当爱因 斯坦的助手,以后又随爱因斯坦转到苏 黎世,1913年成为物理化学私人讲师。 1943年诺贝尔物理学奖授予斯特恩,表 彰他发展分子束方法和发现了质子的磁矩。
6-1 电子自旋的实验证据
第六章 电子自旋 全同粒子 能级排列
从薛定谔方程出发可以解释许多微观现象,例如计 算谐振子和氢原子的能级从而得出它们的谱线频率 等。计算结果在相当精确的范围内与实验符合。
前面的理论尚有两方面的局限: 1.未考虑粒子的自旋特征,微观粒子都有自旋 特征。 2.仅考虑了单粒子体系,实际粒子体系一般是 多粒子体系。