发电厂励磁系统原理
发电机励磁系统原理

发电机励磁系统原理发电机励磁系统是指为了使发电机在运行中能够产生稳定的电压和电流,采取的一系列控制和调整励磁电流的措施。
励磁系统的原理是通过调节励磁电流来改变磁场强度,进而控制发电机的输出电压和频率。
一、电磁感应原理根据法拉第电磁感应定律,当导体在磁场中运动或磁场变化时,会在导体中产生感应电动势。
由此,发电机中的转子在转动时,通过导线产生的感应电动势可以用来驱动电流,从而实现电能的转换。
二、励磁机构发电机励磁系统的核心是励磁机构,它由励磁电源和励磁回路组成。
励磁电源提供直流电源,用于激励发电机的磁场。
而励磁回路则通过一组电阻、电感和励磁开关等元件,将励磁电流导入到发电机的励磁线圈中。
三、调整励磁电流励磁电流的大小决定了发电机的磁场强度,从而影响了输出电压和频率。
一般情况下,发电机励磁系统会根据负荷的需求,通过调节励磁电流的大小来实现稳定的电压输出。
4、励磁系统的调整机制发电机励磁系统通常采用自动调压和手动调压两种方式来保持输出电压的稳定。
在自动调压模式下,根据电压传感器的反馈信号,控制励磁电流的大小。
一旦输出电压下降,励磁系统会自动增加励磁电流,以提高输出电压。
手动调压模式下,操作人员可以根据需要手动调整励磁电流,以实现电压的稳定输出。
五、励磁系统的稳定性好的励磁系统应具有良好的稳定性,能够在负荷变化时迅速调整励磁电流,并且使输出电压变化最小。
稳定性的提高可以通过增加励磁回路中的电感和电容元件,以及制定合理的励磁调节策略来实现。
六、励磁系统的应用发电机励磁系统广泛应用于各种发电场景中,包括电力站、风力发电、水力发电、汽车发电机等。
它不仅能够保证电力供应的稳定性和可靠性,还能够提高发电效率和节能减排。
总结:发电机励磁系统是使发电机能够稳定输出电压和频率的重要控制系统。
通过调节励磁电流来改变发电机的磁场强度,励磁系统能够实现电能的转换和稳定输出。
良好的励磁系统应具有稳定性和高效性,能够适应负荷变化并实现可靠的电力供应。
交流发电机励磁系统的原理

交流发电机励磁系统的原理一、引言交流发电机励磁系统是发电机中一个重要的组成部分,其作用是提供励磁电流,使发电机能够产生稳定的交流电能。
本文将深入探讨交流发电机励磁系统的原理。
二、交流发电机励磁系统概述交流发电机励磁系统由励磁电源、励磁电路和励磁控制系统组成。
励磁电源主要提供励磁电流,励磁电路将励磁电流传递给发电机励磁线圈,励磁控制系统用于控制励磁电流的大小和稳定性。
2.1 励磁电源励磁电源一般采用直流电源供电,如直流发电机、蓄电池或整流装置。
直流发电机是一种常用的励磁电源,它通过独立运行的小型发电机产生直流电流。
蓄电池作为备用励磁电源,当主要励磁电源故障时起到过渡和保护的作用。
整流装置是将交流电转换为直流电的装置,用于辅助励磁电源。
2.2 励磁电路励磁电路包括励磁线圈、励磁开关和励磁绕组等组成部分。
励磁线圈是由导体绕成的线圈,通过其产生的磁场来激励发电机产生电能。
励磁开关用于控制励磁电流的开闭,以实现对发电机励磁的控制。
励磁绕组是将励磁电流传递给发电机定子绕组的装置。
2.3 励磁控制系统励磁控制系统是通过控制励磁电路中的参数来调节励磁电流的大小和稳定性。
常见的励磁控制系统有自动励磁控制系统和手动励磁控制系统。
自动励磁控制系统根据发电机的输出电压和电流等参数自动调节励磁电流,使之保持在合适的范围内。
手动励磁控制系统需要人工干预来调节励磁电流。
三、交流发电机励磁系统原理交流发电机励磁系统的原理包括励磁电流的产生、流动和调节等方面。
3.1 励磁电流的产生励磁电流的产生是通过励磁电源产生的,一般是直流电流。
在直流发电机中,励磁电流由独立运行的小型发电机产生,其输出电流经过整流装置转换为直流电流。
在蓄电池作为励磁电源时,其直接提供直流电流。
励磁电流的大小取决于励磁电源的输出电压和电流。
3.2 励磁电流的流动励磁电流通过励磁线圈和励磁绕组流动,形成磁场激发发电机产生电能。
励磁线圈是发电机中的一个线圈,当励磁电流通过时,会产生磁场。
发电厂励磁系统原理

发电机励磁系统的基本配置
发电机电压静差率 指在自动电压调节器投入,调差单元退出,电压给定值不变,发电机在额
定功率因数下,负载从额定视在功率值减少到零时,发电机机端电压的 变化率。
式中:UGO——视在功率值为零时的发电机机端 电压 UGN——额定视在功率值时的发电机机端电压
发电机励磁系统的作用2
高
步,自动恢复到起始运行状态的能力。
电
• 判据:发电机输出电磁功率对功角的微分dPe/dδ是否大于0 。
力
系
• 由于采用自动励磁调节,可使发
统
电机运行于δ大于90°的区域
的
(人工稳定区),静态稳也就是提高了电力系统
性
静态稳定能力。
静稳定破坏举例:
某电厂#2机(额定有功200MW)通过220kV送电。因励磁调节器自动 通道有问题,发电机处于手动调节励磁的状态下运行。发电机于 130MW状态下已稳定运行很长时间,发电机励磁电流(转子电流) 约为1000A。当电厂运行人员根据调度要求把发电机有功出力增加到 170MW后,发电机与系统失去同步,发电机失步保护动作后,由于 种种原因,造成机组超速,汽轮机严重损坏而报废。事故调查得知 ,运行人员在增加发电机的有功时(直到失步)没有同时增加发电 机的励磁电流,事故后的仿真研究证明,(1)发电机为1000A时的 静稳定极限就是170MW,(2)如果发电机是在自动励磁调节的状态 下运行,其静稳定极限大于200MW,(3)即使发电机处于手动调节 励磁的状态下运行,如果在增加有功出力的同时,运行人员能适当 增加发电机的励磁,也可以避免发电机与系统失步的事故发生。
发电机励磁系统的作用2
调差的设置: ➢ 发变组单元高压侧并联:
变压器电抗调差(正调差)+ 发电机调 差(负调差)
交流发电机励磁系统的原理

交流发电机励磁系统的原理交流发电机励磁系统的原理概述交流发电机是一种将机械能转化为电能的设备,它通过励磁系统来产生磁场,从而在转子上产生感应电动势,实现电能的转换。
本文将详细介绍交流发电机励磁系统的原理。
励磁系统的作用励磁系统是交流发电机中非常关键的一个部分,它的作用是提供足够强度和稳定性的磁场,使得转子上产生足够大的感应电动势。
励磁方式目前常见的两种交流发电机励磁方式为恒压调节和自励式调节。
1.恒压调节恒压调节是一种基于稳定输出电压进行调节的方法。
在这种方法中,通过对稳态输出端口进行监测和控制,使得输出端口所接受到的负载变化不会影响到输出端口上的电压。
具体而言,在恒压调节中,通过对外部直流源施加控制信号来控制整个系统中所需要维持在固定水平下运行所需求解出来的变量。
2.自励式调节自励式调节是一种基于自身产生磁场的方法。
在这种方法中,通过将发电机的输出电压分压后加以反馈,从而控制励磁电流的大小和方向。
具体而言,在自励式调节中,通过对发电机输出端口进行监测和控制,使得输出端口所接受到的负载变化不会影响到输出端口上的电压。
励磁系统的组成交流发电机励磁系统由励磁源、稳压器、励磁开关、测量仪表等组成。
1.励磁源励磁源是交流发电机中提供直流电源的设备。
常见的直流电源有蓄电池、整流器等。
2.稳压器稳压器是用来控制直流电源输出电压稳定在设定值附近的设备。
常见的稳压器有晶闸管稳压器、气体放电管稳压器等。
3.励磁开关励磁开关是用来控制励磁回路通断的设备。
常见的励磁开关有晶闸管开关、继电器等。
4.测量仪表测量仪表是用来对各种电量进行测量和监控的设备。
常见的测量仪表有电压表、电流表、功率计等。
励磁系统的工作原理交流发电机励磁系统的工作原理可以分为两个阶段:启动阶段和稳态阶段。
1.启动阶段在启动阶段,交流发电机需要通过外部直流源或蓄电池提供足够的励磁电流,使得转子上产生足够大的磁场,从而产生感应电动势。
在这个过程中,励磁开关处于闭合状态,直流源输出一定大小的直流电源给稳压器进行稳压处理,并将输出信号传递给励磁开关。
发电机励磁系统原理

维持发电机端电压恒定
01
通过自动调节励磁电流,使发电机在负载变化时保持端电压稳
定。
实现并列运行发电机间的无功功率分配
02
根据各发电机的无功功率需求,合理分配励磁电流,实现无功
功率的均衡分配。
提高电力系统的稳定性
03
通过快速、准确的励磁调节,提高电力系统的静态稳定性和暂
态稳定性。
控制策略选择与优化方法
维护保养
为每台发电机励磁系统建立档案 ,记录其运行和维护情况,为故 障分析和预防性维护提供依据。
05
励磁系统性能评估与测试 方法
性能评估指标体系构建
稳定性指标
衡量励磁系统在扰动下的稳定性,包括静态稳定 性和动态稳定性。
响应性指标
评价励磁系统对发电机运行状态变化的响应速度 和准确性。
经济性指标
考虑励磁系统运行过程中的能耗、维护成本等经 济因素。
面临的挑战和解决方案探讨
挑战
数字化励磁技术的发展面临着电磁干扰、硬件可靠性、软件安全性等方面的挑战。
解决方案
通过优化电磁兼容设计、提高硬件制造工艺、加强软件安全防护等措施,解决数字化励磁技术发展中的难题。
未来发展趋势预测
高效化
随着电力电子技术的发展,未来励磁系统将更加高效,能 够降低能耗,提高发电效率。
过励限制
通过调整励磁电流的大小,限制发电机的过励程度,防止因过励而损坏发电机 。具体实现方式包括设置过励保护定值、采用自动励磁调节器等。
欠励限制
当发电机励磁电流不足时,采取相应措施增加励磁电流,以保证发电机的正常 运行。具体实现方式包括设置欠励保护定值、采用备用励磁系统等。
故障诊断技术原理及应用案例
组成部分
图解发电机励磁原理共4文档

可根据发电机负载的变化自动调节励磁电流,保持发电机输出电 压的稳定。
直流发电机励磁特点分析
励磁方式多样
直流发电机可采用他励、并励、 串励和复励等多种励磁方式,可
根据实际需求选择。
磁场可控性强
通过调节励磁电流的大小和方向, 可以灵活控制发电机的磁场强度 和方向。
输出特性稳定
在负载变化时,通过自动调节励 磁电流可以保持发电机输出电压 和电流的稳定。
作用
励磁系统的主要作用是维持发电机端电压在给定水平,同时控制并列运行各发 电机间无功功率的合理分配,以满足电力系统正常运行和发电机安全运行的要 求。
励磁系统组成部分
励磁功率单元
向同步发电机转子提供直流励磁电流,主要包括交流励磁机、整流器 等部分。
励磁调节器
根据发电机端电压、无功功率等信号,自动调节励磁功率单元输出的 励磁电流,以维持发电机端电压稳定并控制无功功率分配。
经验总结
总结故障排除过程中的经验教训,完 善维护流程,提高设备维护水平。
THANKS
感谢您的观看
对比法
将故障设备与正常设备进行对比, 分析差异,找出故障原因。
03
02
测量法
使用万用表、示波器等工具测量电 路参数,判断故障点。
替换法
用正常元件替换疑似故障元件,观 察设备是否恢复正常。
04
预防性维护策略制定
定期检查
制定详细的检查计划,对发电机励磁系统进行定期检查。
清洁保养
保持设备清洁,定期清理灰尘和杂物,确保散热良好。
紧固接线
检查所有接线端子是否松动,及时紧固。
预防性试验
定期进行预防性试验,检测设备的绝缘性能、电气性能等。
故障排除后性能恢复验证
2024版图解发电机励磁原理

高可靠性设计
提高发电机励磁系统的可靠性是未 来的重要发展方向,通过采用冗余 设计、故障预测与健康管理等技术
手段降低系统故障率。
绿色环保
随着环保意识的提高,未来发电机 励磁系统将更加注重绿色环保,采 用低能耗、低污染的材料和技术,
降低系统对环境的影响。
对未来学习和工作的建议
深入学习专业知识
继续深入学习电力电子、控制理 论等相关专业知识,为从事发电 机励磁相关领域的工作打下坚实
案例分析:某大型水电站励磁调节器设计
• 设计背景:某大型水电站采用水轮发电机组,装机容量大、运行工况复杂,对励磁调节器性能要求高。 • 设计目标:设计一款高性能、高可靠性的励磁调节器,满足水电站运行要求。 • 设计方案:采用基于DSP的数字式励磁调节器设计方案,实现快速、精确的电压调节和功率分配功能;同时采
基础。
关注前沿技术动态
关注发电机励磁技术的最新发展 动态,了解新技术、新方法的应 用情况,不断提升自己的专业素 养。
加强实践动手能力
通过参与实验、项目等方式加强 实践动手能力,培养解决实际问 题的能力。
拓展跨学科知识
学习与发电机励磁相关的跨学科 知识,如电力系统分析、电机学 等,提升综合分析和解决问题的
如失磁、励磁不稳、励磁过流等故障,通过 案例分析学习相应的处理方法和预防措施。
发电机励磁技术发展趋势预测
数字化与智能化
随着电力电子技术和控制理论的发 展,未来发电机励磁系统将更加数 字化和智能化,实现更精确的控制 和优化。
多功能集成化
为满足不同应用场景的需求,发电 机励磁系统将向多功能集成化方向 发展,如集成无功补偿、谐波治理 等功能。
提高发电机并列运行的稳定性。
功能
发电机励磁系统工作原理

发电机励磁系统工作原理
发电机励磁系统的工作原理如下:
1. 励磁电源:发电机励磁系统通常由励磁电源提供直流电能。
励磁电源可以是直流电源、电池或者其他的电源装置。
2. 励磁线圈:发电机中有一个称为励磁线圈的线圈,它通常由铜导线绕成,固定在发电机的定子上。
励磁线圈连接到励磁电源。
3. 励磁电流:当励磁电源接通时,电流将开始流经励磁线圈。
这会在发电机中产生一个磁场。
4. 磁场:励磁线圈产生的磁场通过铁芯传导到转子和定子之间的空间。
转子是发电机中旋转的部分,定子是固定的部分。
5. 感应电压:当发电机的转子旋转时,磁场也随之旋转。
由于电磁感应的原理,转子中的导线将产生感应电压。
这个感应电压会驱动绕在定子上的线圈产生电流。
6. 电流输出:通过定子上的线圈产生的电流输出到外部负载上,为外部负载提供电能供应。
总结起来,发电机励磁系统的工作原理就是通过励磁电源提供直流电能,产生磁场,使得转子中的线圈通过电磁感应产生电流,从而输出电能供应外部负载。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
汽轮发电机调节原理
Turbine It n, P
G 3~
Pe PSS
Vt
Peref
h
Vf Voltage Regulator
Vtref
Turbine Governor
发电机空载特性
?2:发变组伏安特性
发电机升压试验:额定转速、Ug=f(If)
脉冲变压器作用
隔离
功率匹配
脉冲发展形式
宽脉冲
双脉冲
宽高频脉冲 双高频脉冲
?8:脉冲列的优势
励磁调节器功能简介
无功补偿(调差) 强励电流限制(快速
限制、倍数限制) 过励限制(励磁电流 慢速、反时限) 欠励限制(P-Q) 定子电流限制(过无 功限制)(差别?) 伏赫限制(V/HZ、 U/F)(过激磁) 软起励功能 ?10: PSS功能 怎样进 电制动功能 行PT断 PT断线保护 线保护
同轴
组成:交流主励磁机(ACL)和交流副励磁机(ACFL)都与发电机同
轴。副励磁机是自励式的,其磁场绕组由副励磁机机端电压经整流后供电。 也有用永磁发电机作副励磁机的,亦称三机它励励磁系统。
优点:它励,励磁电源不受系统电源的影响 缺点:调节速度慢,轴系长度长,易引发轴系振荡
交流励磁机系统(二机它励)
功角稳定比喻
腕中放置一个球,且受到外部的一个小外力,它就偏离原来的位置。如果 这个腕的高度很矮,像一个盘子,该球就有可能从碗中掉下来。此时,我 们就说这个系统静稳不足。提高腕的高度最经济的办法就是采用自动电压 调节器。。 当碗中的球受到一个大的外力,怎样保证该球不飞出,最主要措施就是快 速的继电保护。继保的作用就相当于减少这个外部力量的作用时间,继保 越快,外力的作用时间就越短,这个球就不会一下子掉下来。自动电压调 节器此时作用相当于自动改变这个腕的坡度,当这个球上升时增加坡度, 当这个球下降时就减少这个坡度,使这个球在碗中滚动幅度迅速减小。 如果这个腕和球之间的摩擦很小,这个球受到扰动后在碗中来回滚动时间 就很长,特别是,如果这个扰动的外力不断的来回施加,就比如我们不断 的荡秋千,这个球就永远不停的来回滚动甚至掉下来,我们就说这个系统 的动态稳定性差。这里的摩擦阻力相当于电力系统的阻尼,这个来回不断 施加的外部力量就相当于自动电压调节器产生的负阻尼。一般来说,自动 电压调节器在电力系统的动态稳定中起坏作用,产生负阻尼,使整个系统 阻尼减少。当我们在自动电压调节器中增添PSS装置,PSS就把自动电压调 节器原来所产生的负阻尼变为正阻尼,相当于增加腕和球的摩擦系数,使 球的滚动幅度快速减小,于是这个系统的动态稳定性就满足要求。
无刷励磁系统
组成:主励磁机(ACL)
电枢是旋转的,它发出的三 相交流电经旋转的二极管整 流桥整流后直接送发电机转 子回路。 无刷励磁系统中的副励磁机
旋转
(PMG)是一个永磁式中频发电机,它与发电机同轴旋转。主励磁机的 磁场绕组是静止的,即它是一个磁极静止、电枢旋转的交流发电机。 无刷励磁系统彻底革除了滑环、电刷等转动接触元件,提高了运行可靠 性和减少了机组维护工作量。但旋转半导体无刷励磁方式对硅元件的可 靠性要求高,不能采用传统的灭磁装置进行灭磁,转子电流、电压及温 度不便直接测量等。这些都是需要研究解决的问题
励磁对动态稳定的影响
单机无穷大系统线性化小偏差理论数学模型
当发电机与系统的外接电 抗较小,并且发电机的输出功 率较低时,系数K5为正,这时 AVR的作用是引入了一个负的 同步转矩和一个正的阻尼转矩, 有利于动态稳定; 当发电机与系统的外接电抗 较大,并且发电机的输出功率 较高时,系数K5为负,这时 AVR的作用是引入了一个正的 同步转矩和一个负的阻尼转矩 不利于动态稳定; 快速励磁系统以及特定参数 条件下造成动态稳定性恶化的 原因是由于励磁系统和发电机 励磁绕组的滞后特性所致。
发电机励磁系统原理
三峡电厂陈小明 Chen_xiaoming@
励磁的基本概念
什么是励磁?
导体切割磁力线感生电动势e 励磁就是提供一个磁场B
E=4.44fNΦ
对于发电机来说,励磁就是产生磁通Φ
励磁的基本任务
?1:小机组P、Q同时动; 大机组并网时Q突变。
Active Power(P) Frequency(f)
Main Exciter
For ExampleAC 400 V
110 V DC
Voltage Regulator
自并励磁系统
励磁装置就是提 供发电机磁场电流 的装置,包括所有 调节与控制元件, 还有磁场放电或灭 磁装置及保护装置
励磁控制系统是 包括控制对象的反 馈控制系统
励磁控制系统对 电力系统的安全、 稳定、经济运行都 有重要的影响
励磁作用重要体现之一
发电机短路特性
?3:n下降的短路特性
发电机升流试验:额定转速、Ig=f(If)
励磁作用重要体现之二
励磁重要概念
Synchronous Machine Regulator
Exciter
Synchronous Machine
Power System
励磁系统
Excitation System Excitation Control System
可控硅组件与整流柜
?4:可控硅及其组件内部结构
三相全控桥电路要点
1234561234561234……
SCR导通顺序: 整流状态
•交流变直流,能量供给 •00<a<900 •Ud>0
逆变状态
•直流变交流,能量反送
•900<a<1500 (1800-0) •Ud<0
?5: 逆变 能量 去向
Ud=1.35U2cosa I2=0.816Id
励磁系统的组成与分类
自动电压调节器AVR、ECR/FCR(励磁调节器) 励磁电源(励磁机、励磁变压器) 整流器(AC/DC变换,SCR、二极管) 灭磁与转子过电压保护 按励磁电源分类:
直流励磁机励磁系统 交流励磁机励磁系统 自并励励磁系统
按响应速度分类:
慢速励磁系统 快速励磁系统 高起始励磁系统
交流励磁机系统(三机它励)
AC变DC
DC变AC
开关励磁原理示意
可控硅励磁原理
三相全控桥电路 α=00:强励状态,AC变DC α=α0:整流状态,AC变DC α=1500:逆变状态,DC变AC
全控桥与半控桥
全控桥:
整流与逆变 整流特征相同 能够逆变也能续流 Uf反相恒定 If线性衰减 灭磁快
半控桥:
整流与续流 整流特征相同 不能逆变只能续流 Uf=0 If非线性衰减 灭磁慢 续流二极管
励磁对静态稳定的影响
(a)Eq恒定(励磁电流恒定),内 功率特性曲线(Eq=常数) (b)当Eq恒定,Eq’及U的变化 (c) Eq’恒定(发电机暂态电势 恒定) (d)当Eq’恒定,Eq及U的变化 (e) Ug恒定(发电机机端电压恒 定) (AVR) (f)当Ug恒定,Eq及Eq’的变化 (c) 和(e)分别维持Eq’和Ug为恒 定时,发电机的功角特性曲线 ?7:Eq和Eq‘励磁调节器? 维持Eq‘和Ug不变的外功率特性曲线 静态稳定功率达到极限,功角大于900
电力系统稳定简介
电力系统稳定分为三个电量的稳定:电压稳定、频率 稳定、功角稳定。 励磁系统提高电力系统的稳定主要是提高电压的稳定, 其次是提高功角稳定。频率稳定由调速器负责。 功角稳定又分为三种:静态稳定、暂态稳定和动态稳 定。 静态稳定是系统受到小扰动后系统的稳定性; 暂态稳定是大扰动后系统在随后的1-2个周波的稳定 性; 动态稳定是小扰动后或者是大扰动1-2周波后的,并 且采取技术措施后的稳定性,也就是PSS研究的稳定 性。
现代励磁基础
同轴直流发电机(体积大、效率低、容量小) 电力电子器件:二极管、晶闸管(可控硅)、IGBT等 PN结、单相导通特性、可控硅伏安特性 可控硅导通条件:正向电压、正向脉冲 可控硅关断条件:反向电压 同步电压、触发脉冲、脉宽调制
开关励磁
开关励磁原理
非相控电路 不需要同步 小功率 小励磁
Reactive Power(Q) Terminal Voltage(Ug)
Governor调速
Static or Brushless Excitation励磁
G
同步发电机的两个基本控制:励磁&调速 电能质量:电压&频率
水轮发电厂原理
大坝、水电厂、水轮 机、发电机定子、转 子、励磁系统
水电厂其他控制设备:继电保护、调速、计算机监控、仪表 励磁与其他控制设备的最大区别:连续反馈控制 vs 离散控
同轴
组成:交流主励磁机经过可控硅整流装置向发电机转子回路提供励磁电
流;AVR控制可控硅的触发角,调整其输出电流,亦称为两机它励励磁系 统。励磁系统没有副励磁机,交流励磁机的励磁电源由发电机出口电压经 励磁变压器后获得,自动励磁调节器控制可控硅砖触发角,以调节交流励 磁机励磁电流,交流励磁机输出电压经硅二极管整流后接至发电机转子, 亦称为两机一变励磁系统。
移相原理
数字移相原理之一 1、首先计算α角; 2、将α角转换为计数器的 计数时间T; 3、由同步点启动计数器, 计数时间就是α角; 4、计数时间到,触发相应 的可控硅; 5、每隔600再触发下一个可 控硅,共6个可控硅; 6、每发一个脉冲,启动脉 宽中断,控制脉冲宽度。
模拟电路移相原理
励磁调节器输出脉冲
励磁对暂态稳定的影响
(a)单机无限大母线系统 (b)短路故障下,功率特性曲线的变化:初 始工作曲线1;短路后3;故障切除2 暂态稳定性决定于加速面积abedabcd是否 小于或等于减速面积dfed。 提高暂态稳定性有两种方法 1、减小加速面积:加快故障切除时间 2、增大减速面积:提高励磁电压响应比; 提高强励电压倍数,使故障切除后的发电机 内电势Eq迅速上升,增加功率输出,以达到 增加减速面积的目的。 正常工作曲线1;短路曲线3;强励使功率特 性曲线增加到bc‘段(减少了加速面积); δ 2时故障切除;强励使曲线2的dehg增加到 de’h’g (增大减速面积);转子功角最大值 由δ m’降到δ m。 励磁顶值电压越高,电压响应比越快,励磁 调节对改善暂态稳定的效果越明显。