初中数学函数知识点总结

合集下载

初中函数知识点总结(全面)

初中函数知识点总结(全面)

初中函数知识点总结(全面)1. 函数的概念函数是一种特殊的关系,它将一个自变量的值映射到唯一的因变量的值。

函数通常用来描述两个变量之间的依赖关系。

2. 函数的表示方式函数可以通过方程、表格和图像等方式来表示。

方程表示函数时,可以使用变量和常数来描述自变量和因变量之间的关系。

表格则将自变量和因变量的值以表格形式列出。

图像则以直线、曲线或者其他形状来表示函数的变化规律。

3. 函数的定义域和值域函数的定义域是自变量可能取值的集合,而值域是因变量可能取值的集合。

定义域和值域的确定需要根据函数的实际情况来分析和判断。

4. 常见的函数类型初中阶段研究的函数类型包括线性函数、二次函数、反比例函数和指数函数等。

线性函数是一种最简单的函数类型,它的方程形式为y = kx + b,其中k和b分别代表斜率和截距。

二次函数的方程形式为y = ax^2 + bx + c,其中a、b和c分别代表二次项、一次项和常数项的系数。

5. 函数的图像特征函数的图像可以通过斜率和截距、顶点坐标、对称轴和开口方向等特征来描述。

对于线性函数,斜率代表图像的倾斜程度,截距代表图像与y轴的交点;对于二次函数,顶点坐标代表图像的最高点或者最低点的位置,对称轴代表图像的对称线。

6. 函数的应用函数在数学和实际生活中都有广泛的应用。

在数学中,函数可以用来解决各种关系和变化的问题,例如求解方程、确定最大值和最小值等。

在实际生活中,函数可以用来描述各种现象和规律,例如汽车的加速度、温度的变化等。

总结:初中函数知识点包括函数的概念、表示方式、定义域和值域、常见的函数类型、图像特征和应用。

掌握这些知识点可以帮助学生更好地理解和应用函数,提高数学能力。

以上是初中函数知识点的全面总结,希望对你的学习有所帮助!。

初中数学函数知识点汇总

初中数学函数知识点汇总

初中数学函数知识点汇总(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如演讲稿、总结报告、合同协议、方案大全、工作计划、学习计划、条据书信、致辞讲话、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, this shop provides you with various types of classic sample essays, such as speech drafts, summary reports, contract agreements, project plans, work plans, study plans, letter letters, speeches, teaching materials, essays, other sample essays, etc. Want to know the format and writing of different sample essays, so stay tuned!初中数学函数知识点汇总函数作为数学基础知识点之一,学习好并且掌握函数是我们学习好数学的基础,下面是本店铺给大家带来的初中数学函数知识点汇总,希望能够帮助到大家!初中数学函数知识点汇总1、正比例函数及性质一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.注:正比例函数一般形式 y=kx (k不为零) ① k不为零② x 指数为1 ③ b取零当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x 的增大y也增大;当k (1) 解析式:y=kx(k是常数,k≠0)(2) 必过点:(0,0)、(1,k)(3) 走向:k>0时,图像经过一、三象限;k (4) 增减性:k>0,y随x的增大而增大;k (5) 倾斜度:|k|越大,越接近y轴;|k|越小,越接近x轴2、一次函数及性质一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.注:一次函数一般形式 y=kx b (k不为零) ① k不为零②x指数为1 ③ b取任意实数一次函数y=kx b的图象是经过(0,b)和(-k/b,0)两点的一条直线,我们称它为直线y=kx b,它可以看作由直线y=kx平移|b|个单位长度得到.(当b>0时,向上平移;当b (1)解析式:y=kx b(k、b 是常数,k0)(2)必过点:(0,b)和(-k/b,0)(3)走向:k>0,图象经过第一、三象限;k b>0,图象经过第一、二象限;b (4)增减性:k>0,y随x的增大而增大;k (5)倾斜度:|k|越大,图象越接近于y轴;|k|越小,图象越接近于x轴.(6)图像的平移:当b>0时,将直线y=kx的图象向上平移b个单位;当b 初中数学一次函数知识点汇总3、一次函数y=kx+b的图象的画法.根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),(-k/b,0).即横坐标或纵坐标为0的点。

初中数学函数知识点汇总

初中数学函数知识点汇总

初中数学函数知识点汇总函数是数学中的一个概念,它描述了一个数集和另一个数集之间的对应关系。

在初中数学中,函数是一个重要的知识点,它包含了很多基本概念和性质。

下面是初中数学函数知识点的汇总。

1.函数的定义与表示函数定义为:设有两个非空数集A,B,如果按照其中一种确定的方法,对于A中的每个元素a,都能找到B中唯一确定的一个元素b和它对应,则称这种对应关系为函数,记作y=f(x)。

其中,x是自变量,y是因变量。

2.函数的图像函数的图像是用平面直角坐标系表示函数的形状和特点。

横坐标表示自变量x,纵坐标表示因变量y,函数的图像是由平面上的一些点构成的。

3.定义域和值域函数的定义域是指自变量取值的范围,值域是指因变量取值的范围。

4.一次函数(线性函数)一次函数的定义为:f(x)=kx+b,其中,k为斜率,b为截距。

一次函数的图像是一条直线,斜率越大,直线越陡峭;斜率为0时,直线平行于x轴,斜率不存在时,直线垂直于x轴。

5.二次函数(抛物线函数)二次函数的定义为:f(x)=ax²+bx+c,其中,a不等于0。

二次函数的图像是一个抛物线,开口方向取决于a的正负,抛物线的顶点坐标为(-b/2a,f(-b/2a))。

6.幂函数幂函数的定义为:f(x)=x^a,其中,a为常数。

幂函数的图像取决于幂指数a的值:当a>1时,图像上升得很快;当0<a<1时,图像上升得很慢;当a<0时,图像在y轴下方,但是a为负偶数时,图像在y轴上方。

7.反比例函数反比例函数的定义为:f(x)=a/x,其中,a为常数,且a不等于0。

反比例函数的图像是一个通过原点的开口向右上或右下的双曲线。

8.复合函数复合函数是指一个函数的自变量是另一个函数的因变量。

9.奇偶函数奇函数的定义为:f(-x)=-f(x),即函数关于原点对称。

偶函数的定义为:f(-x)=f(x),即函数关于y轴对称。

10.函数的单调性和极值函数的单调性是指函数在一些区间上的变化趋势,可以分为增函数和减函数。

函数初中知识点总结

函数初中知识点总结

函数初中知识点总结一、函数的基本概念1. 函数的定义函数是一个或多个自变量和一个因变量之间的对应关系。

通常用f(x)或者y来表示函数,其中x是自变量,y是因变量。

函数的定义可以用一个简单的公式表示,例如f(x) = x^2,也可以用一个表格来表示。

2. 自变量和因变量自变量是函数中的输入变量,因变量是函数中的输出变量。

自变量通常用x表示,因变量通常用y表示。

3. 定义域和值域函数的定义域是自变量的取值范围,值域是因变量的取值范围。

函数的定义域和值域可以通过函数的公式或者图像来确定。

4. 初等函数的分类在初中数学中,我们学习了常见的初等函数,包括一次函数、二次函数、绝对值函数、指数函数、对数函数、幂函数、三角函数等。

这些函数在实际问题中都有着重要的应用。

5. 函数的符号表示除了用f(x)或者y来表示函数外,我们还可以用其他字母或者符号来表示函数,例如g(x)、h(x)、p(x)等。

二、函数的性质1. 奇偶性函数的奇偶性是指函数图像关于原点对称还是关于y轴对称。

具体来说,如果对于任意的x,有f(-x) = -f(x),则称函数是奇函数;如果对于任意的x,有f(-x) = f(x),则称函数是偶函数。

2. 增减性函数的增减性是指函数图像在定义域上的变化趋势。

如果对于任意的x1和x2,当x1<x2时有f(x1)<f(x2),则称函数是增函数;如果当x1<x2时有f(x1)>f(x2),则称函数是减函数。

3. 单调性函数的单调性是指函数在定义域上的增减性。

如果一个函数在定义域上是增函数或者减函数,则称函数在该定义域上是单调的。

4. 周期性如果对于任意的x,有f(x+T) = f(x),其中T是一个常数,则称函数是周期函数,T称为函数的周期。

5. 有界性如果存在一个常数M,对于函数的定义域上的任意x,有|f(x)|≤M,则称函数是有界的。

三、函数的图像1. 直角坐标系中的函数在直角坐标系中,函数的图像是一个曲线或曲线段。

初中数学函数知识点

初中数学函数知识点

初中数学函数知识点一、函数的概念。

1. 定义。

- 在一个变化过程中,有两个变量x、y,如果给定一个x值,相应的就确定唯一的一个y值,那么就称y是x的函数,其中x是自变量,y是因变量。

例如:y = 2x+1,对于每一个x的取值,都能通过这个式子计算出唯一的y值。

2. 函数的表示方法。

- 解析法:用数学式子表示两个变量之间的对应关系,如y = 3x - 2。

- 列表法:列出表格来表示两个变量之间的对应关系。

例如,在研究正方形的周长C与边长a的关系时,可以列出如下表格:边长a1 2 3 4.周长C = 4a4 8 12 16.- 图象法:用图象表示两个变量之间的对应关系。

比如一次函数y = x+1的图象是一条直线。

二、一次函数。

1. 定义。

- 形如y = kx + b(k,b是常数,k≠0)的函数叫做一次函数。

当b = 0时,y=kx(k≠0)叫做正比例函数,正比例函数是特殊的一次函数。

2. 一次函数的图象与性质。

- 图象:一次函数y = kx + b的图象是一条直线。

当b = 0时,y = kx的图象是经过原点(0,0)的直线。

- 性质。

- 当k>0时,y随x的增大而增大。

例如y = 2x+1,随着x的值增大,y的值也增大。

- 当k < 0时,y随x的增大而减小。

如y=-3x + 2,x增大时,y减小。

- 求一次函数的解析式。

- 一般需要知道两个点的坐标,将其代入y = kx + b中,得到关于k、b的方程组,解方程组求出k和b的值。

例如,已知一次函数图象过点(1,3)和(2,5),将(1,3)代入y = kx + b得3=k + b,将(2,5)代入得5 = 2k + b,解方程组3=k + b 5 = 2k + b,用第二个方程减去第一个方程得5-3=(2k + b)-(k + b),即2 = k,把k = 2代入3=k + b得b = 1,所以函数解析式为y = 2x+1。

三、反比例函数。

初中函数知识点总结非常全

初中函数知识点总结非常全

初中函数知识点总结非常全初中函数知识点总结一、函数的概念:函数是一种特殊的关系,它将自变量的取值与因变量的取值进行对应关系,用数学符号表示为y=f(x)。

二、函数的定义域和值域:1.定义域是指函数中自变量的取值范围,表示为{x,x满足其中一种条件}。

2.值域是指函数中因变量的取值范围,表示为{y,y满足其中一种条件}。

三、函数的图像表示:函数的图像是由函数的所有点(x,f(x))在坐标系中所组成的图形。

四、函数的分类:1. 一次函数:f(x) = kx + b,k和b是常数,k称为斜率,b称为截距。

-斜率k表示函数图像在x轴方向的倾斜程度,正数表示上升,负数表示下降。

-截距b表示函数图像与y轴的交点在y轴上的坐标。

2. 二次函数:f(x) = ax² + bx + c,a、b、c是常数,且a≠0。

-a决定了二次函数的开口方向,正数表示开口向上,负数表示开口向下。

-函数的顶点坐标为(-b/2a,f(-b/2a))。

3.反比例函数:f(x)=k/x,k是常数,且k≠0。

-函数图像的特点是经过原点(0,0)并且没有定义域为0的取值。

4.幂函数:f(x)=xⁿ,n是常数,且n≠0。

-当n>0时,函数的图像自左下方向右上方增长。

-当n<0时,函数的图像自左上方向右下方增长。

五、函数的特性:1.奇偶性:-函数f(x)为奇函数,当且仅当f(-x)=-f(x)。

-函数f(x)为偶函数,当且仅当f(-x)=f(x)。

-一次函数和绝对值函数是奇函数,二次函数和指数函数是偶函数。

2.单调性:-函数f(x)在区间I上单调增加,当且仅当对于任意的x₁和x₂,若x₁<x₂,则f(x₁)<f(x₂)。

-函数f(x)在区间I上单调减少,当且仅当对于任意的x₁和x₂,若x₁<x₂,则f(x₁)>f(x₂)。

3.极值和最值:-极大值:若f(x)在特定点x₀处取得最大值f(x₀),则称f(x₀)为函数f(x)在区间I上的极大值。

初中函数总结数学知识点

初中函数总结数学知识点

初中函数总结数学知识点初中数学中的函数知识是数学学习的重要组成部分,它涉及到变量、表达式、方程以及图形等多个概念。

函数是初中数学向高中数学过渡的关键桥梁,因此对函数的理解和掌握至关重要。

以下是初中数学中函数知识点的总结。

# 1. 变量与常数- 变量:在变化过程中可以取不同数值的量。

在初中数学中,通常用字母如x、y来表示。

- 常数:其值在变化过程中保持不变的数。

常数可以是任何实数。

# 2. 函数的概念- 函数:是一种特殊的关系,其中一个变量的值依赖于另一个变量的值。

这种依赖关系通常用函数表达式来表示。

- 函数表达式:表示函数关系的数学式子,如y = f(x)。

- 自变量:函数中可以自由变化的变量,通常在x的位置。

- 因变量:函数中随着自变量变化而变化的变量,通常在y的位置。

# 3. 函数的表示方法- 解析法:用数学表达式表示函数,如y = 2x + 3。

- 列表法:列出自变量和因变量的对应值,如\((x, y)\):\((1, 5)\),\((2, 7)\),\((3, 9)\)。

- 图形法:在坐标平面上画出函数的图形,通常为一条直线或曲线。

# 4. 函数的性质- 定义域:函数中自变量的取值范围。

- 值域:函数中因变量的取值范围。

- 单调性:函数在某个区间内值的增减趋势。

分为单调递增和单调递减。

- 奇偶性:函数的对称性质。

偶函数关于y轴对称,奇函数关于原点对称。

# 5. 基本函数类型- 线性函数:形如y = kx + b的函数,其中k和b是常数,k为斜率,b为截距。

- 二次函数:形如y = ax^2 + bx + c的函数,其中a、b、c是常数,a决定开口方向和宽度。

- 一次函数:是线性函数的特例,形如y = kx,斜率为k。

- 反比例函数:形如y = \frac{k}{x}的函数,k为常数,表示x和y的乘积为常数。

# 6. 函数的运算- 加法:两个函数相加,得到新的函数,如f(x) + g(x)。

初中数学函数知识点归纳

初中数学函数知识点归纳

初中数学函数知识点归纳一、函数的定义和性质函数是一个数到数的映射关系,通常用f(x)表示。

函数的定义域是指所有能够使函数有意义的x的取值范围,值域是函数所有可能输出的值的集合。

函数可分为一对一函数、多对一函数和一对多函数。

二、常见函数1. 线性函数线性函数的函数图像为一条直线,表达式为f(x) = ax + b,其中a和b为常数。

a决定了直线的斜率,b决定了直线与y轴的交点。

2. 平方函数平方函数的函数图像为一条抛物线,表达式为f(x) = ax² + bx + c,其中a、b和c为常数。

a的正负决定了抛物线的开口方向,c决定了抛物线与y轴的交点。

3. 根号函数根号函数的函数图像为一条开口向上的抛物线,表达式为f(x) = √x。

函数图像只有非负数的x值对应有效。

4. 反比例函数反比例函数的函数图像为一条非零常数的双曲线,表达式为f(x) = k/x,其中k 为常数。

函数图像不包括x = 0这一点。

三、函数的变换1. 平移变换平移变换可以将函数的图像沿着x轴或y轴上下左右移动。

平移的规律如下:- 向左平移a个单位:f(x) → f(x + a)- 向右平移a个单位:f(x) → f(x - a)- 向上平移b个单位:f(x) → f(x) + b- 向下平移b个单位:f(x) → f(x) - b2. 压缩与拉伸变换压缩与拉伸变换可以改变函数图像在x或y方向的大小。

压缩与拉伸的规律如下:- x方向压缩:f(x) → f(kx),其中k > 1- x方向拉伸:f(x) → f(kx),其中0 < k < 1- y方向压缩:f(x) → kf(x),其中k > 1- y方向拉伸:f(x) → kf(x),其中0 < k < 1四、函数的性质和运算1. 函数的奇偶性- 奇函数:f(-x) = -f(x),即关于原点对称- 偶函数:f(-x) = f(x),即关于y轴对称2. 函数的复合函数的复合是指将一个函数作为另一个函数的输入,即f(g(x))。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初中函数知识点总结知识点一、平面直角坐标系1、平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x 轴或横轴,取向右为正方向;铅直的数轴叫做y 轴或纵轴,取向上为正方向;两轴的交点O (即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x 轴和y 轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x 轴和y 轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用(a ,b )表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当b a ≠时,(a ,b )和(b ,a )是两个不同点的坐标。

知识点二、不同位置的点的坐标的特征 1、各象限内点的坐标的特征点P(x,y)在第一象限0,0>>⇔y x点P(x,y)在第二象限0,0><⇔y x 点P(x,y)在第三象限0,0<<⇔y x 点P(x,y)在第四象限0,0<>⇔y x 2、坐标轴上的点的特征点P(x,y)在x 轴上0=⇔y ,x 为任意实数 点P(x,y)在y 轴上0=⇔x ,y 为任意实数点P(x,y)既在x 轴上,又在y 轴上⇔x ,y 同时为零,即点P 坐标为(0,0) 3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x 与y 相等 点P(x,y)在第二、四象限夹角平分线上⇔x 与y 互为相反数 4、和坐标轴平行的直线上点的坐标的特征位于平行于x 轴的直线上的各点的纵坐标相同。

位于平行于y 轴的直线上的各点的横坐标相同。

5、关于x 轴、y 轴或远点对称的点的坐标的特征点P 与点p ’关于x 轴对称⇔横坐标相等,纵坐标互为相反数 点P 与点p ’关于y 轴对称⇔纵坐标相等,横坐标互为相反数点P 与点p ’关于原点对称⇔横、纵坐标均互为相反数 6、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x 轴的距离等于y (2)点P(x,y)到y 轴的距离等于x(3)点P(x,y)到原点的距离等于22y x +知识点三、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一确定的值与它对应,那么就说x 是自变量,y 是x 的函数。

2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法把自变量x 的一系列值和函数y 的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

知识点四、正比例函数和一次函数 1、正比例函数和一次函数的概念一般地,如果b kx y +=(k ,b 是常数,k ≠0),那么y 叫做x 的一次函数。

特别地,当一次函数b kx y +=中的b 为0时,kx y =(k 为常数,k ≠0)。

这时,y 叫做x 的正比例函数。

2、一次函数的图像 所有一次函数的图像都是一条直线3、一次函数、正比例函数图像的主要特征:一次函数b kx y +=的图像是经过点(0,b )的直线;正比例函数kx y =的图像是经过原点(0,0)的直线。

4y 有下列性质:一般地,正比例函数kx(1)当k>0时,图像经过第一、三象限,y随x的增大而增大,图像从左之右上升;(2)当k<0时,图像经过第二、四象限,y随x的增大而减小,图像从左之右下降。

5、一次函数的性质一般地,一次函数b kx y +=有下列性质: (1)当k>0时,y 随x 的增大而增大 (2)当k<0时,y 随x 的增大而减小(3)当b>0时,直线与y 轴交点在y 轴正半轴上 (4)当b<0时,直线与y 轴交点在y 轴负半轴上 6、正比例函数和一次函数解析式的确定确定一个正比例函数,就是要确定正比例函数定义式kx y =(k ≠0)中的常数k 。

确定一个一次函数,需要确定一次函数定义式b kx y +=(k ≠0)中的常数k 和b 。

解这类问题的一般方法是待定系数法 知识点五、反比例函数 1、反比例函数的概念一般地,函数xky =(k 是常数,k ≠0)叫做反比例函数。

反比例函数的解析式也可以写成1-=kx y 或xy=k 的形式。

自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。

2、反比例函数的图像反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

3、 反比例函数的性质确定解析式的方法仍是待定系数法。

由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。

5、反比例函数中反比例系数的几何意义若过反比例函数)0(≠=k xky 图像上任一点P 作x 轴、y 轴的垂线PM ,PN ,则所得的矩形PMON 的面积S=PM •PN=xy x y =•。

k S k xy xky ==∴=,, 。

知识点六、二次函数的概念和图像 1、二次函数的概念一般地,如果)0,,(2≠++=a c b a c bx ax y 是常数,,特别注意a 不为零,那么y 叫做x 的二次函数。

)0,,(2≠++=a c b a c bx ax y 是常数,叫做二次函数的一般式。

2、二次函数的图像二次函数的图像是一条关于abx 2-=对称的曲线,这条曲线叫抛物线。

抛物线的主要特征(也叫抛物线的三要素): ①有开口方向;②有对称轴;③有顶点。

3、二次函数图像的画法五点法:(1)先根据函数解析式,求出顶点坐标,在平面直角坐标系中描出顶点M ,并用虚线画出对称轴(2)求抛物线c bx ax y ++=2与坐标轴的交点:当抛物线与x 轴有两个交点时,描出这两个交点A,B 及抛物线与y 轴的交点C ,再找到点C 的对称点D 。

将这五个点按从左到右的顺序连接起来,并向上或向下延伸,就得到二次函数的图像。

当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D 。

由C 、M 、D 三点可粗略地画出二次函数的草图。

如果需要画出比较精确的图像,可再描出一对对称点A 、B ,然后顺次连接五点,画出二次函数的图像。

知识点七、二次函数的基本形式 1. 二次函数基本形式:2y ax =的性质:2. 2y ax c =+的性质:二次函数2y ax c =+的图像可由2y ax =的图像上下平移得到(平移规律:上加 下减)。

3. ()2y a x h =-的性质:二次函数()2y a x h =-的图像可由2y ax =的图像左右平移得到(平移规律:左加 右减)。

4. ()2y a x h k =-+的性质:知识点八、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两点式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成两点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用两点式表示.二次函数解析式的这三种形式可以互化. a 的绝对值越大,抛物线的开口越小。

知识点九、二次函数解析式的确定根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两点式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 知识点十、二次函数的最值如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当abx 2-=时,a b ac y 442-=最值。

如果自变量的取值范围是21x x x ≤≤,那么,首先要看ab2-是否在自变量取值范围21x x x ≤≤内,若在此范围内,则当x=ab2-时,a b ac y 442-=最值;若不在此范围内,则需要考虑函数在21x x x ≤≤范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当2x x =时,c bx ax y ++=222最大,当1x x =时,c bx ax y ++=121最小;如果在此范围内,y 随x 的增大而减小,则当1x x =时,c bx ax y ++=121最大,当2x x =时,c bx ax y ++=222最小。

知识点十一、二次函数的性质 1、二次函数的性质x一元二次方程20ax bx c++=是二次函数2y ax bx c=++当函数值0y=时的特殊情况.图象与x轴的交点个数:① 当240b ac∆=->时,图象与x轴交于两点()()1200A xB x,,,12()x x≠,其中的12x x,是一元二次方程()200ax bx c a++=≠的两根.这两点间的距离21AB x x=-=推导过程:若抛物线cbxaxy++=2与x轴两交点为()()021,,,xBxA,由于1x、2x是方程02=++cbxax的两个根,故acxxabxx=⋅-=+2121,()()aaacbacabxxxxxxxxAB∆=-=-⎪⎭⎫⎝⎛-=-+=-=-=444222122122121② 当0∆=时,图象与x轴只有一个交点;③ 当0∆<时,图象与x轴没有交点.1'当0a>时,图象落在x轴的上方,无论x为任何实数,都有0y>;2'当0a<时,图象落在x轴的下方,无论x为任何实数,都有0y<.记忆规律:一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标。

相关文档
最新文档