热力学教案及PPT课件

合集下载

热力学全套课件pptx2024新版

热力学全套课件pptx2024新版
物体通过电磁波的形式向外发射能量,同时吸收 其他物体发射的电磁波的现象。
辐射传热定律
基尔霍夫定律、普朗克定律、斯特藩-玻尔兹曼定 律等,描述了辐射传热的基本规律和特性。
辐射传热的应用
在太阳能利用、红外测温、激光技术等领域广泛 应用。
综合传热问题解决方法探讨
综合传热问题
涉及热传导、对流和辐射传热的复杂问题,需要考虑多种 传热机制的相互作用和影响。
03
开放系统
与外界既有能量交换,又有物 质交换的系统。
状态参量与平衡态
01
状态参量
描述系统状态的物理量,如体 积、压强、温度等。
系统在没有外界影响的条件下, 各部分的宏观性质不随时间变化
的状态。
02
平衡态
热力学第零定律与温度概念
热力学第零定律
如果两个系统与第三个系统各自 处于热平衡,则它们之间也必定 处于热平衡。
热力学全套课件pptx
目录
• 热力学基本概念与定律 • 热力学过程与循环 • 热力学第二定律与熵增原理 • 理想气体性质与应用 • 相变与化学反应热力学 • 热传导、对流和辐射传热机制剖析
01
热力学基本概念与定律
热力学系统及其分类
01
孤立系统
与外界没有物质和能量交换的 系统。
02
封闭系统
与外界只有能量交换,没有物 质交换的系统。
范德华方程的适用范围
适用于中低压、中低温条件下的真实气体行为描述。在高压或低温条件下,需要考虑更复 杂的分子间相互作用和量子效应。
05
相变与化学反应热力学
相平衡条件及相变潜热计算
相平衡条件
在相变过程中,物质各相之间达到平衡 状态的条件。包括温度、热计算

热力学基础超经典ppt课件

热力学基础超经典ppt课件

M Qp MmoC l p(T2.T1)
三、热力学第一定律对等体、等压和等温过程
的应用
V2
依据:Q=E+ PdV
V1
1、 等体过程:
以及
PV M RT Mm o l
(1)特征: (2)计算:
dV=0 ∴ dA=0
QVEM M mol2i RT
系统从外界吸收的热量全部用来增加气体内能。
.
M QV MmoC l V(T2T1)
.
dQ pdE PdV
C Pd dP Q T d E dPTdC V VR
CPCVR
迈耶公式
说明:
在等压过程中,1mol理想气体,温度升
高1K时,要比其在等体过程中多吸收8.31
J的热量,用于对外作功。
.
CP(2i 1)Ri22R
1.33 多原子
摩尔热容比:
CP CV
i 2 i
1.40 1.67
开尔文
卡诺 .
克劳修斯
R 电源
本章对热力学系统,从能量观点出发, 分析、说明热力学系统热、功转换的关 系和条件。
.
内容
一、热力学第一定律
二、气体摩尔热容
三、绝热过程
四、循环过程 卡诺循环
五、热力学第二定律
六、热力学第二定律统计意义
七、卡诺定理 克劳修斯熵
八、小结
.
一、热力学第一定律
安徽工业大学应用物理系 .
dV0, 系统对外作正功;
dV0, 系统对外作负功; dV0, 系统不作功。
.
A V2 PdV V1
P A
功的大小等于
P~V 图上过程曲
PdV
线P=P(V)下的面 积。

《热力学三定律》课件

《热力学三定律》课件
随着科学技术的不断发展,人们将不断探索新的热力学理论和定律,以更好地解释和预测 自然现象。
热力学与其他学科的深度融合
未来热力学将与更多学科进行深度融合,形成交叉学科领域,为人类社会的发展提供更多 创新和突破。
提高能源利用效率和安全性
随着能源需求的不断增加,提高能源利用效率和安全性成为热力学的重要发展方向,有助 于实现可持续发展和环境保护的目标。
表述
克氏表述指出,不可能通过有限个绝热过程将热量从低温物体传到高温物体而 不产生其他影响;开氏表述指出,不可能从单一热源吸收热量并把它全部用来 做功,而不引起其他变化。
熵增原理
熵增原理
在封闭系统中,自发反应总是向着熵 增加的方向进行,即向着无序程度增 加的方向进行。
熵的概念
熵增原理的应用
在热力学第二定律中,熵增原理说明 了热量自发地从高温物体传向低温物 体,而不是自发地从低温物体传向高 温物体。
能源利用
热力学第二定律说明了能源利用 过程中不可避免地会产生热量损 失和废弃物,因此需要采取措施
提高能源利用效率。
04
热力学第三定律
定义与表述
热力学第三定律通常表述为: 绝对零度不可能达到。
另一种表述是:不可能通过有 限步骤将热从低温物体传至高 温物体而不产生其他影响。
还有一种表述是:不可能制造 出能完全吸收热而不产生其他 影响的机器。
热力学第三定律则解释了绝对零度无法达到的原因,即物质的熵永远不 会降为零。
三定律在工程中的应用
在能源利用方面,热力学第一定律指导 我们如何更有效地利用能源,提高能源
的利用率。
在环境保护方面,热力学第二定律指导 我们如何减少污染和废弃物的产生,降
低环境的熵增加。
在制冷技术方面,热力学第三定律指导 我们如何提高制冷效率,降低能耗和环

(精品)工程热力学(全套467页PPT课件)

(精品)工程热力学(全套467页PPT课件)
从能源结构来看,2004年一次能源消费中,煤炭占 67.7%,石油占22.7%,天然气占2.6%,水电等占 7.0%;一次能源生产总量中,煤炭占75.6%,石油 占13.5%,天然气占3.0%,水电等占7.9%。
我国能源现状
据预测,目前中国主要能源煤炭、石油和天然气的储 采比分别为约80、15和50,大致为全球平均水平的 50%、40%和70%左右,均早于全球化石能源枯竭 速度。
工程热力学
Engineering Thermodynamics
绪论
工程热力学属于应用科学(工程科学) 的范畴,是工程科学的重要领域之一。
工程热力学 是一门研究热能有效利用及 热能和其 它形式能量转换规律的科学
工程热力学所属学科

工程热力学

传热学 Heat Transfer

流体力学 Hydrodynamics
工程热力学是节能的理论基础
能量转化的一般模式

次 能
热能

电能 机械能
问题:下面哪些是热机,哪些不是?
燃气轮机、蒸气机、汽车发动机、燃料电池、制冷机、 发电机、电动机
能量转化的一般模式
风 能

水 能
化 学 能
料 电 池
风 车
水 轮 机
水 车
燃 烧
核 能
聚裂 变变

生物质
地太 热阳 能能
利 光转 用 热换
大气压(at),毫米汞柱(mmHg),毫米水柱(mmH2O)
1 kPa = 103 Pa
1bar = 105 Pa
换 1 MPa = 106 Pa
算 关
1 atm = 760 mmHg = 1.013105 Pa

热力学三大定律PPT课件

热力学三大定律PPT课件
第29页/共95页
研究可逆过程的意义: ① 可逆过程与平衡态密切相关 ② 计算某些状态函数的必需 ③ 判断实际过程的极限和效率
第30页/共95页
1-5 恒容热、恒压热与焓 一、恒容热(Qv):在恒容、非体积功 为零时,系统和环境交换的热。
封闭系统 U Q W
W’=0
U Q W体
恒容过程 V1=V2 Qv U
第26页/共95页
3.准静态过程(guasistatic process)
在过程进行的每一瞬间,系统都接近于平衡状态, 整个过程可以看成是由一系列极接近平衡的状态 所构成,这种过程称为准静态过程。
准静态过程是一种理想过程,实际上是办不到的。 上例无限缓慢地压缩和无限缓慢地膨胀过程可近似 看作为准静态过程。
1、热力学方法特点
•研究对象是大数量分子的集合体,研究 宏观性质,所得结论具有统计意义。 •只考虑变化前后的净结果,不考虑物质 的微观结构和反应机理。
•能判断变化能否发生以及进行到什么程 度,但不考虑变化所需要的时间。 2、热力学方法的局限性
不知道反应的机理、速率和微观性 质,只讲可能性,不讲现实性。
2、焓(enthalpy) 定义: H = U + p V
Qp H
(封闭系统、恒压过程 w’=0)
第33页/共95页
焓的性质:
1、焓是系统的状态函数,广度性质,具有 能量的量纲。 2、焓没有明确的物理意义(导出函数), 无法测定其绝对值。
第34页/共95页
*为什么要定义焓?
为了使用方便,因为在恒Q压p 、Qp不作非膨胀 功的条件下,焓变等于等压热效应 。容易 测定,从而可求其它热力学函数的变化值 。
2、状态函数:描述系统状态的系统的各 宏观性质(如温度、压力、体积等)称为 系统的热力学性质,又称为状态函数。

热力学第一定律ppt课件

热力学第一定律ppt课件
的两绝热活塞将汽缸分为f、g、h三部分,活塞与汽缸壁间没有摩擦。初
始时弹簧处于原长,三部分中气体的温度、体积、压强均相等。现通过电
阻丝对f中的气体缓慢加热,停止加热并达到稳定后(

A.h中的气体内能增加
B.f与g中的气体温度相等
C.f与h中的气体温度相等
D.f与h中的气体压强相等
6、如图,一竖直放置的汽缸上端开口,汽缸壁内有卡口a和b,a、b间距
1840年在英国皇家学会上宣布了电流通
过导体产生热量的定律,即焦耳定律。
焦耳测量了热与机械功之间的当量关系—
焦耳
—热功当量,为热力学第一定律和能量守
恒定律的建立奠定了实验基础。
焦耳的实验
绝热过程
系统只通过对外界做功或外界对它做功而与外界交换能量,它
不从外界吸热,也不向外界放热,这样的过程叫做绝热过程。
为h,a距缸底的高度为H;活塞只能在a、b间移动,其下方密封有一定质
量的理想气体。已知活塞质量为m,面积为S,厚度可忽略;活塞和汽缸
壁均绝热,不计它们之间的摩擦。开始时活塞处于静止状态,上、下方气
体压强均为p0,温度均为T0。现用电热丝缓慢加热汽缸中的气体,直至活
塞刚好到达b处。求此时汽缸内气体的温度以及在此过程中气体对外所做
增加,A 项正确;ab 过程发生等容变化,气体对外界不做功,
C 项错误;一定质量的理想气体内能仅由温度决定,bc 过程发
的功。(重力加速度大小为g)
7、如图所示,一定质量的理想气体由a状态变化到b状态,下列
说法正确的有(
)
A.外界对气体做功
B.气体对外界做功

C.气体向外界放热
D.气体从外界吸热

BD

大学物理热学完整ppt课件

大学物理热学完整ppt课件
大学物理热学完整ppt课件
contents
目录
• 热学基本概念与原理 • 气体动理论与统计规律 • 热传导、对流与辐射传热方式 • 相变与相平衡原理及应用 • 热力学循环与制冷技术基础 • 热学实验方法与技巧分享
01
热学基本概念与原理
温度与热量定义
温度
表示物体冷热程度的物理量,是物体 分子热运动的平均动能的标志。
气体分子运动论的假设
01
分子是不断运动的,分子间存在相互作用力,分子间碰撞是弹
性的。
气体分子的热运动
02
描述气体分子的热运动特征,如分子的平均速率、方均根速率
等。
气体分子的速率分布
03
介绍气体分子速率分布函数的物理意义,以及麦克斯韦速率分
布律的内容和应用。
气体分子碰撞与能量交换
气体分子的碰撞
分析气体分子间的碰撞过程,包括弹性碰撞和 非弹性碰撞。
数学表达式
ΔU=Q+W,其中ΔU表示系统内能的增量,Q表示系统吸收 的热量,W表示外界对系统做的功。
热力学第二定律
内容
不可能把热从低温物体传到高温物体而不产生其他影响,或不可能从单一热源 取热使之完全转换为有用的功而不产生其他影响,或不可逆热力过程中熵的微 增量总是大于零。
数学表达式
对于可逆过程,有dS=(dQ/T);对于不可逆过程,有dS>(dQ/T),其中S表示熵 ,T表示热力学温度。
利用统计规律研究气体分子的热 运动特征、速率分布、碰撞频率 等问题。
03
统计规律与热力学 第二定律的关系
探讨统计规律与热力学第二定律 之间的联系和区别,以及它们在 描述自然现象方面的互补性。
03
热传导、对流与辐射传热 方式

物理化学(pmph)1.1热力学概论PPT课件

物理化学(pmph)1.1热力学概论PPT课件

熵总是趋向于增加,即系统的无序程度会不断增加。这一原理对于理解
热力学循环和效率具有重要意义。
03
热力学性质计算与应用
理想气体状态方程及应用
理想气体状态方程
描述理想气体状态参量之间关系的方程,即pV=nRT,其中p为压强,V为体积,n 为物质的量,R为气体常数,T为热力学温度。
应用
通过测量气体的压强、体积和温度,可以计算气体的物质的量、密度、摩尔质量 等物理量。同时,理想气体状态方程也是热力学第一定律和第二定律的基础。
04
热力学在化学反应中的应用
化学反应热力学基础
热力学基本概念
介绍温度、压力、热量、功等 热力学基本概念及其在化学反 应中的意义。
热力学第一定律
阐述能量守恒原理,解释化学 反应中的热效应及其计算方法 。
热力学第二定律
引入熵的概念,讨论化学反应 的方向和限度,以及热力学第 二定律在化学反应中的应用。
材料相变热力学分析
相变现象与分类
阐述材料中常见的相变现象,如固-固 相变、固-液相变、液-气相变等,及 其分类方法。
相变热力学基础
材料相变热力学应用
举例说明相变热力学在材料制备、加 工、性能优化等方面的应用。
介绍相变过程中的热力学基础,如相 平衡条件、相变驱动力等。
材料热力学性质计算与模拟
热力学性质计算方法
微观尺度下热力学现象探索
微观尺度热力学概述
01
研究在微观尺度下,如纳米、分子等层面上的热力学现象和规
律。
微观尺度热力学理论
02
包括统计热力学、量子热力学等,用于揭示微观尺度下的热力
学本质和机制。Leabharlann 微观尺度热力学应用03
在纳米科技、生物医学、能源转换等领域有重要应用,如纳米
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
SS(T,p) dS(T S)pdT(Sp)Tdp
dHTdSVdp
T( T S)pdTT( S p)TdpVdp
S
S
T(T)pdT [T(p)TV]dp
S
V
T(T)pd T[T(T)pV]dp
15
比较,得定压热容量:
Cp
H (T)p
S T(T)p
焓态方程:
H S
V
(p)TT(p)TV T(T)pV
TdS
VdP
dF 正方向为正,反方向为
负).
SdT
PdV
dG SdT VdP
9
(2) 8个偏导数的记忆
• 规律:特性函数对 某个独立变量的 偏导数(此时另一 独立变量固定不 变,做下标)等于该 独立变量直线所 指的参数(正方向 为正,反方向为负).
T
(
h S
)
P
T
(U S
)V (u y)x(y x
)
y
(
u x
)
y
3.若系统只有体积变化功,则在等温等容过程中,系统的自由能永 不增加。可逆过程自由能不变,不可逆过程自由能减小,当自由 能减小到最小值时,等温等容系统达到平衡态。
F0
3
二.吉布斯函数 1.对于等温等压条件,由1.16.2,有
SBSAUBU TAWUBUApT (VBVA)W 1
U A T A p S A U V B T B p S B V W 1
5
三.状态函数的全微分
dUTdSpdV
UU(S,V)
由 HUpV dHdU Vdppd VTdSVdpHH(S,p)
由 FUT,S dFdU TdSSdTSdTpdVFF(T,p)
由 GFpV , (d特G 性d函F 数p,自d 然VV变量d)pSdTVdpGG(T,V) 6
四.麦克斯韦关系式
d
四.运用雅可比行列式进行导数变换
设: uu(x,y),vv(x,y)
u 定义: ((u x,,vy))(( xvx))yy
u
(y)x ( yv)x
(ux)y( yv)x(uy)x( xv)y
性质:(1)( u x
)

y
(u, (x,
y) y)
证明:
(u, (x,
y) y)
(
u x
)
y
(
y y
)
x
例一.理想气体 pV=RT,( U V)TT ( T p)VpTV Rp0
例二.对于范氏气体
an2 (pV2 )V ( nb)nRT
nRT an2
p
Vnb V2
p (T)V
nR Vnb
U nRT an2 (V)T VbpV2
14
二、焓态方程,选T,P为参量
HH(T,p) dH(H T)pdT(H p)Tdp
都有箭头或都没有箭 头时为正
一有一无时为负
11
公( 式VT )变S 换
(
P S
)V
(T P
)S
(V S
)P
(P T
)V
( S V
)T
V
S
( T
)P
( P
)T
12
§2.2 麦式关系的简单运用 一.能态方程,选T,V为参量
UU(T,V) dU ( U T)VdT ( U V)TdV
SS(T,V) dS( T S)VdT( V S)TdV
dUTdSpdV
S
S
T(T)VdT T(V)TdV pdV
T( T S)Vd T[T( V S)Tp]d V
S
p
T(T)Vd T[T(T)Vp]d V
13
比较,得定容热容量: CV(U T)VT(T S)V 能态方程: ( U V)TT ( V S)TpT ( T p)Vp
温度不变时内能随体积的变化率与物态方程的关系。
第二章 均匀物质的热力学性质
1
§2.1内能、焓、自由能、吉布斯函数及其全微分
一.自由能 1.对于等温条件,由1.16.2,有 SBSAUBU TAW U A TA S U B TB S W
引入态函数自由能
FUTS

FAFBW
2
2.最大功原理:系统自由能的减少是在等温过程中从系统 所能获得的最大功。
)T
V
(T V
)S
(p S
)V
(T p
)S
(V S
)p
( S V
)T
( p T
)V
(V T
)p
(S p
)T
V
T
F
U
G
H
S
p
7
麦克斯韦关系
H P
S U(E) V
G
F
T 8
(1) 4个基本方程的记忆
dU • 规律: 特性函数两侧是 TdS PdV
其独立变量,其前面的
dH 系数为独立变量直线
所指的参数(前面符号:
U (U S)VdS ( U V)SdV(
U S
)V
T;
dH (H S)pdS(H p)Sd,p(
H S
)p
T
;
dF ( F T)VdT ( V F)TdV , (
F T
)V
S;
dG ( G T)pdT(G p)Td,p(
G T
)p
S;
( U V
)S
p
( H p
)S
V
( F V
)T
p
( G p
V
(
h P
)
S
V
(
G P
)T
S
(F T
)V
S
(G T
)P
P
( F V
)T
P
(U V
)S
10
(3)麦氏关系记忆
• 规律:相邻3个变量为一组,按顺序(顺、逆时 针都可以)开始第一变量放在分子,中间变 量作分母,末尾量放在括号外作下标,构成一 偏导数.则此偏导数等于第4个变量按相反方 向与相邻的另两个量构成的偏导数(符号:第 4个变量与第1个相同为正,方向相反为负).
温度不变时焓随压强的变化率与物态方程的关系。
例一.理想气体 pV=nRT,
( H p)T T( V T)pVnpR V T 0
16
三.求CpCp CVCV 由 S ( T ,p ) S ( T ,V ( T ,p ) ) S ( T ,p )
而对于复z 合 z(x函 ,y),y数 y(x,v) 有: ( xz) ( xz)y ( yz)( x yx)
引入吉布斯函数
G U T S p V F pV
对于体积变化功,有
GAGBW1
4
2.最大功原理:系统吉布斯函数的减少是在等温等压过程中, 除体积功外从系统所能获得的最大功。
3 .假如只有体积功,在等温等压过程中,系统的吉布斯函数永不增 加,
GAGB0
可逆过程吉布斯函数不变,不可逆过程吉布斯函数减小,当吉布斯 函数减小到最小值时,等温等压系统达到平衡态。
( T S)p ( T S)V ( V S)( T V T)p CpC VT( T S)pT( T S)V
因C 而 p C V T ( V S )( T V T )p T ( T p )V ( V T )p V T2 T
对于理想气体,
C pC VT ( T p)V ( V T)pTn VR n p R nR 17
相关文档
最新文档