人教版-七年级数学下册-第九章一元一次不等式应用题-培优练习(包含答案)
人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案) (83)

人教版七年级数学下册第九章第二节一元一次不等式考试题(含答案)不等式4-x ≤2(3-x )的正整数解有( )A .1个B .2个C .3个D .无数个【答案】B【解析】分析:首先根据解不等式的方法得出不等式的解,从而得出正整数解. 详解:4-x ≤6-2x , 移项可得:2x -x ≤6-4, 解得:x ≤2, 即正整数解有2个,故选B .点睛:本题主要考查的是解不等式的方法,属于基础题型.理解不等式的解法是解决这个问题的关键.22.已知关于x 的方程2x-a=x-1的解是非负数,则a 的取值范围为( )A .1a ≥B .1a >C .1a ≤D .1a < 【答案】A【解析】【分析】本题首先要解这个关于x 的方程,然后根据解是非负数,就可以得到一个关于a 的不等式,最后求出a 的取值范围.【详解】解:原方程可整理为:(2-1)x=a-1,解得:x=a-1,∵方程x 的方程2x-a=x-1的解是非负数,解得:a≥1.故选A.点睛:本题综合考查了一元一次方程的解与解一元一次不等式.解关于x 的不等式是本题的一个难点.23.关于x的方程2a﹣3x=6的解是非负数,那么a满足的条件是()A.a>3 B.a≤3 C.a<3 D.a≥3【答案】D【解析】【分析】此题可用a来表示x的值,然后根据x≥0,可得出a的取值范围.【详解】由2a﹣3x=6得x=(2a﹣6)÷3又∵x≥0∴2a﹣6≥0∴a≥3所以A,B,C错误,D正确.故正确选项为D.【点睛】此题考查的是一元一次方程的根的取值范围,将x用a的表示式来表示,再根据x的取值判断,由此可解出此题.24.x的2倍与5的和不大于它的三倍减去4的差,则x的取值范围是()。
A.x>9 B.x9≥C.x<9 D.x≤9【答案】B分析:首先根据题意列出关于x的不等式,然后根据不等式的性质求出x 的取值范围.详解:根据题意可得:2x+5≤3x-4,移项可得:2x-3x≤-4-5,合并同类项得:-x≤-9,将系数化为1可得:x≥9,故选B.点睛:本题主要考查的是一元一次不等式的解法,属于基础题型.在解不等式的时候,如果在不等式的两边同时乘以或除以一个负数时,不等符号需要改变.25.函数自变量x的取值范围在数轴上表示正确的是()A.B.C.D.【答案】B【解析】分析:先根据二次根式的定义列出关于x的不等式,并求出x的取值范围,然后在数轴上表示它的解集.详解:由,得到2x+4≥0,解得:x≥﹣2,表示在数轴上,如图所示:,故选:B.点睛:本题还考查了用数轴表示不等式的解集的方法,要注意“两定”:一是定界点,在数轴上标出界点,定界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:小于向左,大于向右.26.与不等式2x-4≤0的解集相同的不等式是( )A.-2x≤x-1 B.-2x≤x-10C.-4x≥x-10 D.-4x≤x-10【答案】C【解析】分析:先求出不等式2x-4≤0的解集,然后求出分别四个选项的解集,比较即可.详解:2x≤4,∴x≤2.A.-2x≤x-1的解集为:1x≥,故A不符合题意;3B.-2x≤x-10的解集为:10x≥,故B不符合题意;3x≤,故C符合题意;C.-4x≥x-10的解集为:2D.-4x≤x-10的解集为:x≥2,故D不符合题意.故选C.点睛:本题考查了解一元一次不等式:根据不等式的性质解一元一次不等式.27.不等式-4x+9>0的正整数解有()A.1个B.2个C.3个D.无数多个【答案】B【解析】分析:先解不等式-4x+9>0,求出它的解集,再从解集中找出所有的正整数即可.详解:∵-4x+9>0,∴-4x>-9,,∴x<94∴不等式-4x+9>0的正整数解有:1,2共2个.故选B.点睛:本题考查了求不等式的特殊解,解题的关键是正确求出不等式的解集.28.由于油价下调,从2015年1月22日起,北京市取消出租车燃油附加费.出租车的收费标准是:起步价13元(即行驶距离不超过3千米都需付13元车费),超过3千米以后,每增加1千米,加收2.3元(不足1千米按1千米计).上周某人从北京市的甲地到乙地,经过的路程是x千米,出租车费为36元,那么x的最大值可能是()A.11 B.12 C.13 D.14【答案】C【解析】分析:根据出租车费≥13+2.3×超出3千米的路程结合出租车费为36元,即可得出关于x的一元一次不等式,解之即可得出x的取值范围,取其整数即可得出结论..详解:设此人从甲地到乙地的路程的为x km,由题意,得13+(x-3)×2.3≤36解得:x≤13.故选C.点睛:本题考查了列一元一次不等式解实际问题的运用,分段计费的方式的运用,解答时抓住数量关系建立不等式是关键.二、填空题29.不等式19﹣5x>2的正整数解有________个.【答案】3【解析】分析:首先利用不等式的基本性质解不等式,再从不等式的解集中找出适合条件的正整数即可.详解:不等式的解集是x<3.4,故不等式19−5x>2的正整数解为1,2,3.故答案为:3.点睛:考查一元一次不等式的整数解,解题的关键是根据解一元一次不等式的步骤解不等式.30.某种商品的进价为1000元,出售时的标价为1500元,后来由于该商品积压,商店准备打折出售,但要保持利润率不低于5%,则最多可打__折.【答案】7【解析】【分析】设打x折,根据利润率不低于5%就可以列出不等式,求出x的范围.再求x的最小值.【详解】设打x折销售,根据题意可得:x≥1000(1+5%),1500×10解得:x≥7,x的最小值是7.故要保持利润率不低于5%,则至少可打7折.故答案为7【点睛】本题考核知识点:一元一次不等式的应用. 解题关键点:设好未知数,根据题意找出涉及数量关系,列出不等式,根据不等式的解集求出答案.。
2020-2021人教版七年级数学下册 第9章《一元一次不等式的应用》专题训练(附答案)

七年级数学下册第9章《一元一次不等式的应用》专题提升训练(附答案)1.现有甲、乙两种运输车将46吨物资运往A地.甲种运输车载重5吨,乙种运输车载重4吨,每种车都不能超载.已安排甲种车5辆,要一次性完成该物资的运输,则至少安排乙种车()辆.A.5B.6C.7D.82.五四青年节临近,小强在准备爱心捐助活动中发现班级同学捐赠的一个书包的成本为60元,定价为90元,为使得利润率不低于5%,在实际售卖时,该书包最多可以打()折.A.8B.8.5C.7D.7.53.三个连续正偶数的和不超过24,这样的正偶数组共有()A.1组B.2组C.3组D.4组4.疫情复课之前,某校七年级(1)班购置了一批防疫物资,其中有10支水银温度计,若干支额温枪.水银温度计每支5元,额温枪每支230元,如果总费用超过1000元,那么额温枪至少有()A.3支B.4支C.5支D.6支5.“垃圾分类做得好,明天生活会更好”,学校需要购买分类垃圾桶10个,放在校园的公共区域,市场上有A型和B型两种分类垃圾桶,A型分类垃圾桶350元/个,B型分类垃圾桶400元/个,总费用不超过3650元,则不同的购买方式有()A.2种B.3种C.4种D.5种6.运算程序如图所示,从“输入实数x”到“结果是否<18”为一次程序操作,若输入x 后程序操作仅一次就停止了,则x的取值范围是()A.x≤8B.x<8C.x≥8D.x>87.某商店为了促销一种定价为3元的商品,采取下列方式优惠销售:若一次性购买不超过5件,按原价付款;若一次性购买5件以上,超过部分按原价八折付款.如果小明有30元钱,那么他最多可以购买该商品()A.9件B.10件C.11件D.12件8.某次知识竞赛共有20道题,规定答对一道题得10分,答错或不答一道题扣5分,小明得分要超过140分,则他至少要答对()道题.A.15B.16C.17D.189.一种导火线的燃烧速度是0.7cm/s,一名爆破员点燃导火线后以5m/s的速度跑到距爆破点130m以外的安全地带,则导火线的长度至少应超过()A.18cm B.18.2cm C.18.5cm D.19cm10.某闹市区新建一个小吃城,设计一个进口和一个出口,内设n个摊位,预估进口和出口的客流量都是每分钟10人,每人消费25元,摊位的毛利润为40%,若平均每个摊位一天(按10个小时计)的毛利润不低于1000元,则n的最大值为()A.30B.40C.50D.6011.小方的数学平时成绩为84分,期中成绩为80分,学校按平时、期中、期末成绩之比为3:3:4的比例计算学期的总评成绩,他计划总评成绩要达到85分,则期末考试他至少要得到分.12.某商店的老板销售一种商品,他要以高于进价20%的价格才能出售,但为了获得更多利润,他以高出进价80%的价格标价,若你想买下标价为360元的这种商品,最多降价元商店老板才能出售.13.长方形的一边长是4,另一边长是x+3,它的面积不大于32,则x的取值范围是.14.重庆市某服装厂配套生产一批校服,有领带、衬衫、T恤三种.3月份,该厂家生产的领带、衬衫、T恤的数量比是4:5:6,马上进入4月份,春暖花开,气温骤升,该厂家立刻又生产了一批三种服装,其中衬衫增加的数量占总增加数量的,此时衬衫的总数量将达到三种服装总数量的,此时领带与T恤的数量比是6:13,已知领带、衬衫、T恤这三种服装的成本价格分别是15元,60元,50元,厂家决定领带有作为促销礼物赠送,领带剩余部分按成本价格卖出,其余产品全部售出,最后三种服装的总利润率是50%,衬衫、T恤的销售价格均为正整数且均盈利,那么衬衫的售价最高是元.15.某地区中考,将学生的初二的生物中考卷面成绩(满分100分)乘40%,加上初三的物理、化学卷面成绩(满分200分)乘80%作为该生的最后理科综合最终成绩.某学生生物成绩为90分,若该生理科综合最终成绩想不低于160分,则该生物理、化学卷面成绩至少是分.16.航空公司规定:旅客乘机时,免费携带行李箱的长、宽、高之和不超过115cm.某厂家准备生产符合规定的行李箱,已知行李箱的宽为20cm,长与高的比为8:11,则该行李箱最高不能超过cm.17.已知a+b+c=0,a>b>c,则的取值范围是.18.疫情过后,地摊经济火爆,张阿姨以每件80元的价格购进50件衬衫,在地摊上以每件100元的价格出售,她至少销售件衬衫,所得销售额才能超过进货总价.19.某次知识竞赛共有20题,答对一题得10分,答错或不答扣5分,小华得分要超过120分,他至少要答对题.20.世纪公园的门票是每人5元,一次购门票满40张,每张门票可少1元.若少于40人时,一个团队至少要有人进公园,买40张门票反而合算.21.为更好地推进太原市生活垃圾分类工作,改善城市生态环境.某小区准备购买A,B两种型号的垃圾箱,通过市场调研得知:购买3个A型垃圾箱和2个B型垃圾箱共需540元,购买2个A型垃圾箱比购买3个B型垃圾箱少用160元.(1)求每个A型垃圾箱和B型垃圾箱各多少元?(2)该小区物业计划用不多于2100元的资金购买A、B两种型号的垃圾箱共20个(两种都需要购买),则该小区最多可以购买B型垃圾箱多少个?有几种购货方案?22.天鹅湖教育集团在今年3月12日植树节来临之际,共购买甲、乙两种树苗共8000株,用于中国科技大学高新校区附近的蜀西湖绿化,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若集团购买这两种树苗共用去210000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,那么集团至多购买甲种树苗多少株?23.某运输队接到运送物资的任务,该运输队有A、B两种型号卡车,已知每辆卡车每天可运送物资的次数为A型卡车10次,B型卡车8次.且1辆A型卡车和2辆B型卡车每天可运送物资188吨,2辆A型卡车和3辆B型卡车每天可运送物资312吨.(1)A、B型卡车每次可运送物资各多少吨?(2)若该运输队派出A、B型卡车共10辆,需每天至少运送物资626吨,问A型卡车最多派出多少辆?24.为了美化校园,我校欲购进甲、乙两种工具,如果购买甲种3件,乙种2件,共需56元;如果购买甲种1件,乙种4件,共需32元.(1)甲、乙两种工具每件各多少元?(2)现要购买甲、乙两种工具共100件,总费用不超过1000元,那么甲种工具最多购买多少件?25.某校购买甲、乙两种树苗进行绿化,已知甲种树苗每棵30元,乙种树苗每棵20元,且购买乙种树苗的棵数比甲种树苗棵数的2倍多30棵.(1)若购买两种树苗的总费用不超过3400元,最多可以购买甲种树苗多少棵?(2)为保证绿化效果,学校决定再购买甲、乙两种树苗共24棵(两种树苗都要买),总费用不超过500元,问有哪几种可能的购买方案?参考答案1.解:设乙种车安排了x辆,4x+5×5≥46解得x≥.因为x是正整数,所以x最小值是6.则乙种车至少应安排6辆.故选:B.2.解:设在实际售卖时,该书包可以打x折,依题意得:90×﹣60≥60×5%,解得:x≥7.故选:C.3.解:设第一个偶数是2n,则另外两个是2n+2,2n+4,根据题意可知0<2n+2n+2+2n+4≤24,解得0<n≤3,因为n为正整数,所以n=1或2或3,所以这样的正偶数组共有3组.故选:C.4.解:设购进额温枪x支,依题意,得:5×10+230x>1000,解得:x>4.又∵x为正整数,∴x的最小值为5.故选:C.5.解:设购买A型分类垃圾桶x个,则购买B型分类垃圾桶(10﹣x)个,依题意,得:350x+400(10﹣x)≤3650,解得:x≥7.∵x,(10﹣x)均为非负整数,∴x可以为7,8,9,10,∴共有4种购买方案.故选:C.6.解:由题意可得:3x﹣6<18,∴x<8故选:B.7.解:设可以购买x(x为整数)件这样的商品.3×5+(x﹣5)×3×0.8≤30,解得x≤11.25,则最多可以购买该商品的件数是11,故选:C.8.解:设要答对x道.由题意可得:10x+(﹣5)×(20﹣x)>140,解得:x>16,根据x必须为整数,故x取最小整数17,故选:C.9.解:设导火线应有x厘米长,由题意得,>,解得:x>18.2,∴导火线的长度至少应超过18.2cm,故选:B.10.解:依题意,得:•n≤10×60×10×25,解得:n≤60.故选:D.11.解:设期末考试他要得到x分,依题意有84×+80×+x≥85,解得x≥89.5.故期末考试他至少要得到89.5分.故答案为:89.5.12.解:设这件商品的进价为x.根据题意得:(1+80%)•x=360,解得:x=200.盈利的最低价格为200×(1+20%)=240,则商店老板最多会降价360﹣240=120(元).故答案为:120.13.解:由已知可得:,解得:﹣3<x≤5.故答案为:﹣3<x≤5.14.解:设3月份该厂家生产的领带,衬衫,T恤的数量分别为4x,5x,6x;4月份三种服装增加数量为5y,则衬衫增加数量为2y,设4月份领带增加的数量为a,则T恤增加的数量为3y﹣a,此时衬衫的总数量将达到三种服装总数量的,则,解得y=3x,∵领带与T恤的数量比是6:13,则(4x+a):(6x+3y﹣a)=6:13,解得a=2x,∴4x+a=6x,5x+2y=11x,6x+3y﹣a=13x,∴4月份该厂家生产的领带,衬衫,T恤的数量分别为6x,11x,13x,∵领带、衬衫、T恤这三种服装的成本价格分别是15元,60元,50元,则总成本为:15×6x+60×11x+50×13x=90x+660x+650x=1400x,∵厂家决定领带有作为促销礼物赠送,领带剩余部分按成本价格卖出,则领带销售额为:15×5x=75x;设衬衫,T恤的销售单价分别为b,c,则衬衫销售额为11bx,T恤销售额为13cx,∴领带,衬衫,T恤的总销售额为:75x+11bx+13cx,∴(75x+11bx+13cx)﹣1400x=700x,75+116+13c=2100,即11b=2025﹣13c,∵衬衫、T恤的销售价格均为正整数且均盈利,∴b≥61,c≥51,且b,c均为正整数,∵11b=2025﹣13c,所以当c取得最小值时b取得最大值,且b,c均为正整数,当c=51时,b=不是正整数,不符合题意;当c=52时,b=不是正整数,不符合题意;当c=53时,b=不是正整数,不符合题意;当c=54时,b=不是正整数,不符合题意;当c=55时,b=不是正整数,不符合题意;当c=56时,b=不是正整数,不符合题意;当c=57时,b=不是正整数,不符合题意;当c=58时,b=不是正整数,不符合题意;当c=59时,b=不是正整数,不符合题意;当c=60时,b=不是正整数,不符合题意;当c=61时,b==112是正整数,符合题意;∴当c=61时,b取得最大值112.故答案为:112.15.解:设该生物理、化学卷面成绩为x分,依题意得:90×40%+80%x≥160,解得:x≥155.故答案为:155.16.解:设该行李箱的高为xcm,则长为xcm,依题意,得:x+20+x≤115,解得:x≤55.故答案为:55.17.解:∵a+b+c=0,∴a>0,c<0 ①∴b=﹣a﹣c,且a>0,c<0∵a>b>c∴﹣a﹣c<a,即2a>﹣c②解得>﹣2,将b=﹣a﹣c代入b>c,得﹣a﹣c>c,即a<﹣2c③解得<﹣,∴﹣2<<﹣.故答案为:﹣2<<﹣.18.解:设销售x件衬衫,依题意有100x>80×50,解得x>40,∵x为整数,∴x最小是41.答:她至少销售41件衬衫,所得销售额才能超过进货总价.故答案为:41.19.解:设要答对x题,依题意有10x+(﹣5)×(20﹣x)>120,10x﹣100+5x>120,15x>220,解得:x>,∵x必须为整数,∴x取最小整数15,即小华得分要超过120分,他至少要答对15题.故答案为:15.20.解:设x人进公园,若购满40张票则需要:40×(5﹣1)=40×4=160(元),故5x>160时,解得:x>32,则当有32人时,购买32张票和40张票的价格相同,则再多1人时买40张票较合算;32+1=33(人).则至少要有33人去世纪公园,买40张票反而合算.故答案为:33.21.解:(1)设每个A型垃圾箱x元,B型垃圾箱y元,依题意有,解得,故每个A型垃圾箱100元,B型垃圾箱120元;(2)设购买B型垃圾箱m个,则购买A型垃圾箱(20﹣m)个,依题意有120m+100(20﹣m)≤2100,解得m≤5.∵两种垃圾箱都要购买,∴0<m≤5且m为整数,∴m=1,2,3,4,5,故该小区最多可以购买B型垃圾箱5个,共有5种购货方案.22.解:(1)设购买甲种树苗x株,则购买乙种树苗(8000﹣x)株,由题意,得:24x+30(8000﹣x)=210000,解得:x=5000,故8000﹣x=3000(株).答:购买甲种树苗5000株,则购买乙种树苗3000株;(2)设购买甲种树苗x株,则购买乙种树苗(8000﹣x)株,由题意,得:85%x+90%(8000﹣x)≥8000×88%,解得:x≤3200,答:甲种树苗至多购买3200株.23.解:(1)设A型卡车每次可运送物资x吨,B型卡车每次可运送物资y吨,依题意得:,解得:.答:A型卡车每次可运送物资6吨,B型卡车每次可运送物资8吨.(2)设派出m辆A型卡车,则派出(10﹣m)辆B型卡车,依题意得:6×10m+8×8(10﹣m)≥626,解得:m≤.∵m为整数,∴m可以取的最大值为3.答:A型卡车最多派出3辆.24.解:(1)设甲种工具每件x元,乙种工具每件y元,依题意得:,解得:.答:甲种工具每件16元,乙种工具每件4元.(2)设甲种工具购买了m件,则乙种工具购买了(100﹣m)件,依题意得:16m+4(100﹣m)≤1000,解得:m≤50.答:甲种工具最多购买50件.25.解:(1)设购买甲种树苗x棵,由题意可得:30x+20(2x+30)≤3400,解得:x≤40,答:最多可以购买甲种树苗40棵;(2)设再购买甲种树苗m棵,则购买乙种树苗(24﹣m)棵,依题意得:30m+20(24﹣m)≤500,解得:m≤2.又∵m为正整数,∴m可以取1,2,∴该园林部门共有2种购买方案,方案1:购买甲种树苗1棵,乙种树苗23棵;方案2:购买甲种树苗2棵,乙种树苗22棵.。
人教版七年级数学下册第九章第二节一元一次不等式作业习题(含答案) (26)

人教版七年级数学下册第九章第二节一元一次不等式作业习题(含答案)(1)解方程:312x -=x +1 (2)解不等式:213x -﹣926x +≤1,并把解集在数轴上表示出来.【答案】(1)x =3;(2)x ≥﹣2,图详见解析【解析】【分析】(1)去分母、去括号、移项、合并同类项即可求出答案;(2)去分母、去括号、移项、合并同类项、x 的系数化为1可求出答案.【详解】(1)去分母,得:3x ﹣1=2x +2,移项,得:3x ﹣2x =2+1,合并同类项,得:x =3;(2)去分母,得:2(2x ﹣1)﹣(9x +2)≤6,去括号,得:4x ﹣2﹣9x ﹣2≤6,移项,得:4x ﹣9x ≤6+2+2,合并同类项,得:﹣5x ≤10,系数化为1,得:x ≥﹣2,将不等式解集表示在数轴上如下:【点睛】本题主要考查对解一元一次方程,解一元一次不等式,在数轴上表示不等式的解集等知识点的理解和掌握,能熟练地根据不等式的性质和等式的性质解一元一次不等式和一元一次方程是解此题的关键.52.某水果零售商店分两批次从批发市场共购进“红富士”苹果100箱,已知第一、二次进货价分别为每箱50元、40元,且第二次比第一次多付款400元.(1)求第一、二次分别购进“红富士”苹果各多少箱?(2)商店对这100箱“红富士”苹果先按每箱60元销售了75箱后出现滞销,于是决定其余的每箱靠打折销售完.要使商店销售完全部“红富士”苹果所获得的利润不低于1300元,问其余的每箱至少应打几折销售?(注:按整箱出售,利润=销售总收人﹣进货总成本)【答案】(1)第一次购进“红富士”苹果40箱,第二次购进“红富士”苹果60箱;(2)其余的每箱至少应打8折销售.【解析】【分析】(1)设第一次购进“红富士”苹果x箱,则第二次购进“红富士”苹果(100)x-箱,根据“总价=单价⨯数量”,结合第二次比第一次多付款400元,即可得出关于x的一元一次方程,解方程即可得出结论;(2)设其余的每箱应打y折销售,根据“利润=销售总收人-进货总成本”,结合所获得的利润不低于1300元,即可得出关于y的一元一次不等式,解不等式取其中的最小值即可得出结论.【详解】(1)设第一次购进“红富士”苹果x 箱,则第二次购进“红富士”苹果(100)x -箱由题意得:40(100)50 400x x --=解得:40x =则1001004060x -=-=答:第一次购进“红富士”苹果40箱,第二次购进“红富士”苹果60箱;(2)设其余的每箱应打y 折销售 由题意得:607560(10075)(50404060)130010y ⨯+⨯⨯--⨯+⨯≥ 解得:8y ≥答:其余的每箱至少应打8折销售.【点睛】本题考查了一元一次方程和一元一次不等式的实际应用,理解题意,正确建立方程和不等式是解题关键.53.在“科学与艺术”知识竞赛的预选赛中共有20道题,对于每一道题,答对得x 分,答错或不答扣y 分,下表记录了其中两个参赛者的得分情况:(1)求出x 和y 的值;(2)若参赛者C 的得分要超过80分,则他至少要答对多少道题?【答案】(1)x 的值为6,y 的值为2;(2)若参赛者C 的得分要超过80分,则他至少要答对16道题.【解析】【分析】(1)根据两位参赛者的得分情况建立一个二元一次方程组,求解即可得;(2)设参赛者C 答对z 道题,则他答错或不答题数为20z -,根据他的得分情况建立不等式,求解即可得.【详解】(1)由题意得:182********x y x y -=⎧⎨-=⎩通过代入消元法解得:62x y =⎧⎨=⎩答:x 的值为6,y 的值为2;(2)设参赛者C 答对z 道题,则他答错或不答题数为20z -结合题(1)的结果可得:62(20)80z z -->解得:15z >由于z 只能为正整数,所以z 的最小值为16答:若参赛者C 的得分要超过80分,则他至少要答对16道题.【点睛】本题考查了二元一次方程组的应用、一元一次不等式的应用,理解题意列出方程组和不等式是解题关键.54.(1)解不等式:922x x +> (2)解方程:11293331x x =+--【答案】(1)3x <;(2)43x =- 【解析】【分析】(1)按照去分母、移项、合并同类项的步骤求解即可;(2)按照去分母、系数化1的步骤求解即可.【详解】(1)去分母得94x x +>移项、合并得39x ->-解得3x <所以不等式的解集为3x <(2)去分母得1316x =-+ 解得43x =- 经检验,43x =-是分式方程的解. 【点睛】此题主要考查不等式以及分式方程的求解,熟练掌握,即可解题.55.在数轴上表示下列不等式:(1)3x >-.(2)x ≥(3) 1.5x <.【答案】(1)详见解析;(2)详见解析;(3)详见解析【解析】【分析】(1)根据不等式的解集在数轴上表示方法可画出图示;(2)根据不等式的解集在数轴上表示方法可画出图示;(3)根据不等式的解集在数轴上表示方法可画出图示.【详解】(1)如图所示.(2)如图所示.(3)如图所示.【点睛】本题考查了在数轴上表示不等式的解集,不等式的解集在数轴上表示出来的方法:“>”空心圆点向右画折线,“≥”实心圆点向右画折线,“<”空心圆点向左画折线,“≤”实心圆点向左画折线.56.希望中学为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红和小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元,且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)为了奖励更多的同学,学校决定再次购进甲、乙两种笔记本,若买甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购买这两种笔记本的总金额不超过320元,求这次购买乙种笔记本最多多少个?【答案】(1)3,5 (2)31【解析】【分析】(1)设甲笔记本的单价是x 元,乙笔记本的单价是y 元,根据题意列出方程组求解即可.(2)设乙种笔记本有x 个,根据题意列出不等式求解最大整数解即可.【详解】(1)设甲笔记本的单价是x 元,乙笔记本的单价是y 元2010110301020x y x y +=⎧⎨+=⎩解得35x y =⎧⎨=⎩故甲笔记本的单价是3元,乙笔记本的单价是5元.(2)设乙种笔记本有x 个,由题意得()32105320x x -+≤ 解得93111x ≤ ∵x 为整数∴x 的最大值为31故这次购买乙种笔记本最多31个.【点睛】本题考查了二元一次方程组以及一元一次不等式的实际应用,掌握解二元一次方程组以及一元一次不等式的方法是解题的关键.57.已知32x y =⎧⎨=-⎩与16x y =-⎧⎨=⎩都是方程0ax y b -+=的解. (1)求a 、b 的值;(2)若y 的值不小于0,求x 的取值范围;【答案】(1)2,4a b =-= ;(2)2x ≤【解析】【分析】(1)根据方程的解的概念,将32x y =⎧⎨=-⎩与16x y =-⎧⎨=⎩代入方程0ax y b -+=中即可得到关于a,b 的二元一次方程组,解方程组即可;(2)将a,b 的值代入方程0ax y b -+=中,再根据y 的值不小于0,即可求出 x 的取值范围.【详解】(1)∵32x y =⎧⎨=-⎩与16x y =-⎧⎨=⎩都是方程0ax y b -+=的解, ∴32060a b a b ++=⎧⎨--+=⎩ 解得24a b =-⎧⎨=⎩∴2,4a b =-=;(2)将2,4a b =-=代入方程0ax y b -+=中,有240x y --+= ,则24y x =-+ ,∵y 的值不小于0,∴240y x =-+≥x .解得2【点睛】本题主要考查二元一次方程的解和不等式,掌握二元一次方程的解的概念是解题的关键.58.某电子产品销售公司专门销售某种品牌的电子产品.该公司给职工的工资由两部分组成:一是基本保障工资,二是销售奖励工资(销售奖励工资=销售每件产品的奖励金额×销售的件数).下表是小张、小李两位职工今年11月份的工资情况信息:(1)该公司职工的月基本保障工资和销售每件产品的奖励金额各是多少元?(2)该公司职工小王计划今年12月份获得不少于6000元,那么小王12月份至少应销售多少件产品?【答案】(1)保障工资是2000元,销售每件产品的奖励金额是15元;(2)小王12月份至少应销售267件产品.【解析】【分析】(1)设该公司职工的月基本保障工资为x元,销售每件产品的奖励金额y 元,根据表格所提供的月销售件数和月工资可列出二元一次方程组求解即可;(2)该公司职工小王12月至少应销售z件产品,可根据题意列不等式求解.【详解】(1)设该公司职工的月基本保障工资是x元,销售每件产品的奖励金额是y元,依题意,得2005000,1804700. x yx y+=⎧⎨+=⎩解得2000,15. xy=⎧⎨=⎩故该公司职工的月基本保障工资是2000元,销售每件产品的奖励金额是15元.(2)设小王12月份至少应销售z件产品,依题意,得2000156000z+,解得22663z,故小王12月份至少应销售267件产品.【点睛】本题考查了二元一次方程组和一元一次不等式的应用,关键是从表格中提供的数据找到等量关系和根据职工小王12月份的工资不低于6000元这个不等量关系分别列出方程组和不等式求解.59.列一元一次不等式解实际问题为鼓励市民节约用水,某自来水公司规定:若每户用水不超过5m 3,收费标准为1.8元/m 3,若每用户用水量超过5m 3,则超出部分的收费标准是2元/m 3,若小颖家每月水费都不超过11元,求小颖家每月用水量最多是多少.【答案】小颖家每月用水量最多是6m 3.【解析】【分析】设小颖家每月用水量为xm 3,根据每月的水费=1.8×5+2×超出5m 3的部分结合小颖家每月水费都不超过11元,即可得出关于x 的一元一次不等式,解之取其中的最大值即可得出结论.【详解】设小颖家每月用水量为xm 3,依题意,得:1.8×5+2(x ﹣5)≤11,解得:x ≤6.答:小颖家每月用水量最多是6m 3.【点睛】本题考查了一元一次不等式的应用,根据各数量之间的关系,正确列出一元一次不等式.60.解不等式3136x x -≤-,并把它的解集在数轴上表示出来,写出它的自然数解.【答案】x ≤3,将不等式的解集表示在数轴上见解析;自然数解有0、1、2、3.【解析】【分析】根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.【详解】去分母,得:2x≤6﹣(x﹣3),去括号,得:2x≤6﹣x+3,移项,得:2x+x≤6+3,合并同类项,得:3x≤9,系数化为1,得:x≤3,将不等式的解集表示在数轴上如下:所以自然数解有0、1、2、3.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.。
完整版人教版七年级数学下册一元一次不等式应用题培优练习含答案

2018年七年级数学下册一元一次不等式应用题培优练习1.为了参加2011年西安世界园艺博览会,某公司用几辆载重为8吨的汽车运送一批参展货物.若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不空也不满.请问:共有多少辆汽车运货?2.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零价,其中西红柿与西兰花的批发价格与零售价格如表.(1)第一天该经营户批发西红柿和西兰花两种蔬菜共300kg,用去了1520元.这两种蔬菜当天全部售完后,一共能赚多少钱?(请列方程组求解)(2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?3.六一”儿童节将至,益智玩具店准备购进甲、乙两种玩具,若购进甲种玩具80个,乙种玩具40个,需要800元,若购进甲种玩具50个,乙种玩具30个,需要550元.(1)求益智玩具店购进甲、乙两种玩具每个需要多少元?(2)若益智玩具店准备1000元全部用来购进甲,乙两种玩具,计划销售每个甲种玩具可获利润4元,销售每个乙种玩具可获利润5元,且销售这两种玩具的总利润不低于600元,那么这个玩具店需要最多购进乙种玩具多少个?4.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?5.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?6.公司为了运输的方便,将生产的产品打包成件,运往同一目的地.其中A产品和B产品共320件,A产品比B产品多80件.(1)求打包成件的A产品和B产品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批产品全部运往同一目的地.已知甲种货车最多可装A产品40件和B产品10件,乙种货车最多可装A产品和B产品各20件.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.则公司安排甲、乙两种货车时有几种方案?并说明公司选择哪种方案可使运输费最少?7.某市居民用电的电价实行阶梯收费,收费标准如下表:一户居民每月用电量x(单位:度)电费价格(单位:元/度)a200 x≤0<b ≤400 200<x0.92400x>(1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?8.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表.已知购进60双甲种运动鞋与50双乙种运动鞋共用10000元运动鞋价格甲乙mm ﹣进价(元/双) 20160双) 240/售价(元(1)求m的值;(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)超过21000元,且不超过22000元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?9.某物流公司承接A.B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?10.少儿部组织学生进行“英语风采大赛”,需购买甲、乙两种奖品.购买甲奖品3个和乙奖品4个,需花64元;购买甲奖品4个和乙奖品5个,需花82元.(1)求甲、乙两种奖品的单价各是多少元?(2)由于临时有变,只买甲、乙一种奖品即可,且甲奖品按原价9折销售,乙奖品购买6个以上超出的部分按原价的6折销售,设购买x个甲奖品需要y元,购买x个乙奖品需要y元,请用x 分别表示出y和y;2211(3)在(2)的条件下,问买哪一种产品更省钱?11.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:销售方式粗加工后销售精加工后销售2000每吨获利(元) 1000已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?12.商场某柜台销售每台进价分别为160元、120元的A.B两种型号的电风扇,下表是近两周的销售情况:销售数量销售收入销售时段种型号 B种型号 A 1200元第一周 3台 4台元 6台台 1900 第二周 5 销售收入﹣进货成本)(进价、售价均保持不变,利润= .B两种型号的电风扇的销售单价;)求(1A种型号的电风扇最多能台,求)若商场准备用不多于27500元的金额再采购这两种型号的电风扇共50A (采购多少台?元的目标?若能,请给出相应1850台电风扇能否实现利润超过50)的条件下,商场销售完这2)在(3(.的采购方案;若不能,请说明理由.13.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A型设备比购买3台B型设备少6万元.A型 B型b /台)a 价格(万元180240处理污水量(吨/月)(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.14.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?15. “五?一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.参考答案1.解:设有x辆汽车,则有(4x+20)吨货物.由题意,可知当每辆汽车装满8吨时,则有(x﹣1)辆是装满的,所以有方程,解得5<x<7.由实际意义知x为整数.所以x=6.. 6答:共有辆汽车运货2.3. 元,y元,乙种玩具每个x)设甲种玩具每个1(【解答】解:根据题意,得:,解得:,答:甲种玩具每个元.5元,乙种玩具每个10 ,(个)2a﹣=200个,则甲种玩具a)设购进乙种玩具2(.根据题意,得:4+5a≥600,解得:a≤66,∵a是正整数,∴a的最大值为66,答:这个玩具店需要最多购进乙种玩具66个.4.解:(1)设单价为8.0元的课外书为x本,得:8x+12=1500﹣418,解得:x=44.5(不符合题意).∵在此题中x不能是小数,∴王老师说他肯定搞错了;(2)设单价为8.0元的课外书为y本,设笔记本的单价为b元,依题意得:0<1500﹣[8y+12+418]<10,解之得:0<4y﹣178<10,即:44.5<y<47,∴y应为45本或46本.当y=45本时,b=1500﹣[8×45+12+418]=2,当y=46本时,b=1500﹣[8×46+12+418]=6,即:笔记本的单价可能2元或6元.5.6.解:(1)设打包成件的A产品有x件,B产品有y件,根据题意得x+y=320,x-y=80,解得x=200,y=120,答:打包成件的A产品有200件,B产品有120件;(2)设租用甲种货车x辆,根据题意得40x+20(8-x)≥200,10x+20(8-x)≥120,解得2≤x≤4,而x为整数,所以x=2、3、4,所以设计方案有3种,分别为:所以方案①运费最少,最少运费是29600元.7.,解得:)根据题意得:1(解:.(2)设李叔家六月份最多可用电x度,根据题意得:200×0.61+200×0.66+0.92(x﹣400)≤300,解得:x≤450.答:李叔家六月份最多可用电450度.8.解:(1)依题意得:60m+50(m﹣20)=10000,解得m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,,根据题意得,解不等式①得,x>,解不等式②得,x≤100,所以,不等式组的解集是<x≤100,∵x是正整数,100﹣84+1=17,∴共有17种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)x+16000)a﹣60(= ),100≤x≤(.①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=100时,W有最大值,即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=84时,W有最大值,即此时应购进甲种运动鞋84双,购进乙种运动鞋116双.9.解:(1)设A种货物运输了x吨,设B种货物运输了y吨,,解之得:.依题意得:答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.10.解:(1)设甲种奖品的单价为x元/个,乙种奖品的单价为y元/个,:.:根据题意得,解得答:甲种奖品的单价为8元/个,乙种奖品的单价为10元/个.(2)根据题意得:y=8×0.9x=7.2x;1当0≤x≤6时,y=10x,当x>6时,y=10×6+10×0.6(x﹣6)=6x+24,22=.∴y2(3)当0≤x≤6时,∵7.2<10,∴此时买甲种产品省钱;当x>6时,令y<y,则7.2x<6x+24,解得:x<20;21令y=y,则7.2x=6x+24,解得:x=20;21令y>y,则7.2x>6x+24,解得:x>20.:当x<20时,选择甲种产品更省钱;21综上所述当x=20时,选择甲、乙两种产品总价相同;当x>20时,选择乙种产品更省钱.11.12.(1)设A型电风扇单价为x元,B型单价y元,则,解得:, 150型单价元;A型电风扇单价为200元,B答:(≤a:得解,7500≤)a﹣50160a+120则,台a购采扇风电型A设)2(.,则最多能采购37台;(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.13.解:(1)购买A型的价格是a万元,购买B型的设备b万元,A=b+2,2a+6=3b,解得:a=12,b=10.故a的值为12,b的值为10;(2)设购买A型号设备m台,12m+10(10﹣m)≤105,解得:m≤2.5,故所有购买方案为:当A型号为0,B型号为10台;当A型号为1台,B型号为9台;当A型号为2台,B型号为8台;有3种购买方案;(3)由题意可得出:240m+180(10﹣m)≥2040,解得:m≥4,由(1)得A型买的越少越省钱,所以买A型设备4台,B型的6台最省钱.14. 件,根据题意得:y件,乙种商品x)设商场购进甲种商品1解:(.,解得:.答:该商场购进甲种商品200件,乙种商品120件.(2)设乙种商品每件售价z元,根据题意,得120(z﹣100)+2×200×(138﹣120)≥8160,解得:z≥108.答:乙种商品最低售价为每件108元.15.。
人教版数学七年级下册第九章 9.2一元一次不等式习题练习(附答案)

人教版数学七年级下册第九章 9.2一元一次不等式习题练习(附答案)一、选择题1.若关于x 、y 的二元一次方程组{3x −y =−1−a,x −3y =3的解满足x -y >-2,则a 的取值范围是( ) A .a <4B . 0<a <4C . 0<a <10D .a <102.若不等式ax -2>0的解集为x <-2,则关于y 的方程ay +2=0的解为( )A .y =-1B .y =1C .y =-2D .y =23.小明用100元钱去购买笔记本和钢笔共30件,如果每枝钢笔5元,每个笔记本2元,那么小明最多能买多少枝钢笔.( )A . 11B . 12C . 13D . 144.某市出租车的收费标准是:起步价8元(即行驶距离不超过3千米都需付8元车费),超过3千米以后,每增加1千米,加收2.6元(不足1千米按1千米计),某人从甲地到乙地经过的路程是x 千米,出租车费为21.5元,那么x 的最大值是( )A . 11B . 8C . 7D . 55.初三的几位同学拍了一张合影作留念,已知拍一张底片需要5元,洗一张相片需要0.5元.拍一张照片,在每位同学得到一张相片的前提下,平均每人分摊的钱不足1.5元,那么参加合影的同学人数为( )A . 至多6人B . 至少6人C . 至多5人D . 至少5人6.定义运算:a *b ,当a >b 时,有a *b =a ,当a <b 时,有a *b =b ,如果(x +3)*2x =x +3,那么x 的取值范围是( )A .x <3B .x >3C .x <1D . 1<x <37.不等式|x -2|>1的解集是( )A .x >3或x <1B .x >3或x <-3C . 1<x <3D . -3<x <3二、填空题8.关于x 的方程3(x +2)=k +2的解是正数,则k 的取值范围是________.9.若-3是关于x 的方程x−a 3-2−x 4=1的解,则x−a 3-2−x 4≥1的解集是__________.10.为丰富居民业余生活,某居民区组建筹委会,该筹委会动员居民自愿集资建立一个书刊阅览室.经预算,一共需要筹资30 000元,其中一部分用于购买书桌、书架等设施,另一部分用于购买书刊.筹委会计划,购买书刊的资金不少于购买书桌、书架等设施资金的3倍,最多用____________资金购买书桌、书架等设施.11.一个工程队计划用6天完成300土方的工程,实际上第一天就完成了60方土,因进度需要,剩下的工程所用的时间不能超过3天,那么以后几天平均至少要完成的土方数是_________. 12.若关于x 的不等式(a -2)x >a -2解集为x <1,化简|a -3|=______.三、解答题13.已知方程组{x −y =2a,2x +3y =5−a的解为非负数,求整数a 的值. 14.若关于x 的方程2x -3m =2m -4x +4的解不小于78-1−m 3,求m 的最小值.15.为了对学生进行爱国主义教育,某校组织学生去看演出,有甲、乙两种票,已知甲、乙两种票的单价比为4:3,单价和为42元.(1)甲、乙两种票的单价分别是多少元?(2)学校计划拿出不超过750元的资金,让七年级一班的36名学生首先观看,问甲种票最多买多少张?16.解方程|x -1|+|x +2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x 的值.在数轴上,1和-2的距离为3,满足方程的x 对应点在1的右边或-2的左边,若x 对应点在1的右边,由图可以看出x =2;同理,若x 对应点在-2的左边,可得x =-3,故原方程的解是x =2或x =-3.参考阅读材料,解答下列问题:(1)方程|x +3|=4的解为________.(2)解不等式|x -3|+|x +4|≥9;(3)若|x -3|+|x +4|≥a 对任意的x 都成立,求a 的取值范围.17.解不等式:5x+12-x−24>5x−16+x−33.答案解析1.【答案】D【解析】在关于x 、y 的二元一次方程组{3x −y =−1−a①,x −3y =3②中, ①+②,得4x -4y =2-a ,即x -y =12-a 4,∵x -y >-2,∴12-a 4>-2,解得a <10,故选D.2.【答案】D【解析】ax -2>0,移项,得ax >2,∵解集为x <-2,则a =-1,则ay +2=0,即-y +2=0,解得y =2.故选D.3.【答案】C【解析】设买x 支钢笔,则笔记本有(30-x )本,则有5x +2(30-x )≤100,即3x ≤40,解得x ≤1313.因此最多能买13支钢笔.故答案为13.4.【答案】B【解析】根据题意得8+2.6(x -3)≤21.5,解得x ≤8.19,∵不足1千米按1千米计,∴x 的最大值是8.故选B.5.【答案】B【解析】设参加合影的同学人数为x 人,则有5+0.5x <1.5x ,解得x >5,∵x 取正整数,∴参加合影的同学人数至少为6人.故选B.6.【答案】A【解析】∵(x +3)*2x =x +3,∴x +3>2x ,x <3,故选A.7.【答案】A【解析】∵|x -2|>1,∴x -2>1或x -2<-1;所以解集为x >3或x <1;故选A.8.【答案】k >4【解析】由方程3(x +2)=k +2去括号移项,得3x =k -4,∴x =k−43, ∵关于x 的方程3(x +2)=k +2的解是正数,∴x =k−43>0,∴k >4. 9.【答案】x ≥-3【解析】把x =-3代入方程x−a 3-2−x 4=1,可得a =-394, 把a =-394代入x−a 3-2−x 4≥1,解得x ≥-3,故答案为x ≥-3.10.【答案】7 500元【解析】设用于购买书桌、书架等设施的资金为x 元,则购买书籍的有(30 000-x )元, 根据题意得30 000-x ≥3x ,解得x ≤7 500.即最多用7 500元购买书桌、书架等设施;故答案是7 500元.11.【答案】80【解析】设以后几天平均每天完成x 土方.由题意得:3x ≥300-60,解得x ≥80答:以后几天平均至少要完成的土方数是80土方.故答案为80.12.【答案】3-a【解析】∵关于x 的不等式(a -2)x >a -2解集为x <1,∴a -2<0,即a <2,∴原式=3-a .故答案为3-a .13.【答案】解:{x −y =2a①,2x +3y =5−a②,①×3+②,得5x =6a +5-a ,即x =a +1≥0,解得a ≥-1;②-①×2,得5y =5-a -4a ,即y =1-a ≥0,解得a ≤1;则-1≤a ≤1,即a 的整数值为-1,0,1.【解析】用加减消元法解方程组,求出x 和y (x 和y 均为含有a 的代数式),再根据x 、y 的取值即可列出关于a 的不等式组,即可求出a 的取值范围,进一步即可求解.14.【答案】解:关于x 的方程2x -3m =2m -4x +4的解为x =5m+46, 根据题意,得5m+46≥78-1−m 3,去分母,得4(5m +4)≥21-8(1-m ),去括号,得20m +16≥21-8+8m ,移项,合并同类项,得12m ≥-3,系数化为1,得m ≥-14.所以当m ≥-14时,方程的解不小于78-1−m 3,m 的最小值为-14. 【解析】首先求解关于x 的方程2x -3m =2m -4x +4,即可求得x 的值,根据方程的解的解不小于78-1−m 3,即可得到关于m 的不等式,即可求得m 的范围,从而求解.15.【答案】解:(1)设甲票价为4x 元,乙为3x 元,∴3x +4x =42,解得x =6,∴4x =24,3x =18, 答:甲乙两种票的单价分别是24元、18元;(2)设甲种票有y 张,则乙种票(36-y )张,根据题意得24y +18(36-y )≤750,解得y ≤17,答:甲种票最多买17张.【解析】(1)设甲票价为4x元,乙为3x元,根据单价和为42元得到关于x的一元一次方程,解方程得x的值,然后分别计算4x与3x即可;(2)设甲种票有y张,则乙种票(36-y)张,根据购买的钱不超过750元得到不等式,求出解集中的最大整数即可.16.【答案】解:(1)方程|x+3|=4的解就是在数轴上到-3这一点,距离是4个单位长度的点所表示的数,是1和-7.故解是1和-7;(2)由绝对值的几何意义知,该方程表示求在数轴上与3和-4的距离之和为大于或等于9的点对应的x的值.在数轴上,即可求得x≥4或x≤-5.(3)|x-3|+|x+4|即表示x的点到数轴上与3和-4的距离之和,当表示对应x的点在数轴上3与-4之间时,距离的和最小,是7.故a≤7.【解析】(1)根据已知条件可以得到绝对值方程,可以转化为数轴上,到某个点的距离的问题,即可求解;(2)不等式|x-3|+|x+4|≥9表示到3与-4两点距离的和,大于或等于9个单位长度的点所表示的数;(3)|x-3|+|x+4|≥a对任意的x都成立,即求到3与-4两点距离的和最小的数值.17.【答案】解:去分母得6(5x+1)-3(x-2)>2(5x-1)+4(x-3),去括号得30x+6-3x+6>10x-2+4x-12,移项得30x-3x-10x-4x>-2-12-6-6,合并同类项,得13x>-26,系数化为1,得x>-2.【解析】利用不等式的基本性质,即可求得原不等式的解集.。
人教版七年级下第九章不等式与不等式组(一元一次不等式)同步练习题含答案

人教版七年级下第九章不等式与不等式组(一元一次不等式)同步练习题含答案学校:___________姓名:___________班级:___________考号:___________一、填空题1.关于x 的不等式ax <-b 的解集x <2,则关于y 的不等式by >a 的解集为____2.已知关于x 的方程2(23)20mx m x m ---+=有两个不相等的实数根,那么实数m 的取值范围是__________.3.已知3a ≤,则负整数=a _____.4.已知关于x ,y 的二元一次方程组235423x y a x y a +=⎧⎨+=+⎩满足0x y ->,则a 的取值范围是____.5.已知函数y =(2m ﹣4)x +m 2﹣9(x 是自变量)的图象只经过二、四象限,则m =_____. 6.若方程33122x x x-+=--的解使关于x 的不等式()230-->a x 成立,则实数a 的取值范围是________.二、单选题7.在二元一次方程12x +y =8中,当y <0时,x 的取值范围是( ).A .23x <B .23x >-C .23x >D .23x <- 8.已知x a <的解中最大的整数解为3,则a 的取值范围为( )A .34x <<B .34x <≤C .34x ≤<D .34x ≤≤ 9.下列结论:①一个数和它的倒数相等,则这个数是±1和0;①若﹣1<m <0,则21m m m<<;①若a +b <0,且0b a >,则33a b a b +=--;①若m 是有理数,则|m |+m 是非负数;①若c <0<a <b ,则(a ﹣b )(b ﹣c )(c ﹣a )>0;其中正确的有( ) A .1个 B .2个 C .3个 D .4个10.下列解方程变形:①由3x +4=4x -5,得3x +4x =4-5;①由1132x x +-=,去分母得2x -3x +3=6; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;①由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个11.若关于x 的一元二次方程2210ax x -+=有实数根,则a 应满足( )A .1a ≤B .1a ≥C .1a ≥-且0a ≠D .1a ≤且0a ≠ 12.已知方程3a 1a a 44a--=--,且关于x 的不等式a x b <≤只有4个整数解,那么b 的取值范围是( )A .23b <≤B .34b <≤C .23b ≤<D .34b ≤<三、解答题13.在数轴上有A ,B 两点,其中点A 所对应的数是a ,点B 所对应的数是1.已知A ,B 两点的距离小于3,请你利用数轴.(1)写出a 所满足的不等式;(2)数﹣3,0,4所对应的点到点B 的距离小于3吗.14.解方程:-314x x +=.15.比较大小:4;12.参考答案:1.12y <- 【分析】根据不等式的性质可得b a-2=,0a >,进而可得0b <,据此即可求解. 【详解】解:①关于x 的不等式ax <-b 的解集x <2, ①b x a<-,b a -2=,0a >, 0b ∴<,∴关于y 的不等式by >a 的解集为a y b<, 2b a=-, ①1=2a b - ∴关于y 的不等式by >a 的解集为12y <-. 【点睛】本题考查了解一元一次不等式,确定a b ,的符号以及2b a=-是解题的关键. 2.m <94且m ≠0##m ≠0且m <94 【分析】根据判别式①>0时一元二次方程有两个不相等的实数根求解不等式即可.【详解】解:①关于x 的方程2(23)20mx m x m ---+=有两个不相等的实数根, ①①=(2m -3)2-4m (-2+m )=-4m +9>0,且m ≠0,解得:m <94且m ≠0, 故答案为:m <94且m ≠0. 【点睛】本题考查一元二次方程根的判别式、解一元一次不等式,熟练掌握一元二次方程根与判别式的关系是解答的关键,注意二次项系数不为0.3.1-,2-,3-.【分析】直接根据绝对值的概念可得a 的取值范围,然后列举出负整数即可.【详解】①3a ≤,①33a -≤≤.①a 为负整数,①a 为1-,2-,3-.故答案为:1-,2-,3-.【点睛】此题主要考查绝对值的概念及一元一次不等式组的整数解,正确理解绝对值的概念是解题关键.4.1a >.【分析】根据题目中方程组的的特点,将两个方程作差,即可用含a 的代数式表示出x y -,再根据0x y ->,即可求得a 的取值范围,本题得以解决.【详解】解:235423x y a x y a +=⎧⎨+=+⎩①② ①-①,得33x y a -=-①0x y ->①330a ->,解得1a >,故答案为:1a >.【点睛】本题考查解一元一次不等式,二元一次方程组的解,熟悉相关性质是解答本题的关键.5.-3【分析】根据解析式是关于x 的一次函数,只经过二、四象限可知函数为正比例函数,k <0,b =0,列方程与不等式求解即可.【详解】解:函数y =(2m ﹣4)x +m 2﹣9是关于x 的一次函数,①函数y =(2m ﹣4)x +m 2﹣9(x 是自变量)的图象只经过二、四象限,①224090m m -⎧⎨-=⎩<, 解得23m m ⎧⎨=±⎩<, ①m =3>2舍去,m =-3<2,满足条件,①m=-3,故答案为-3.【点睛】本题考查一次函数的性质,正比例函数,解不等式,直接开平方法解一元二次方程,掌握一次函数的性质,正比例函数,解不等式,直接开平方法解一元二次方程是解题关键.6.1a <-【分析】先解分式方程得1x =,再把1x =代入不等式计算即可. 【详解】33122x x x-+=-- 去分母得:323x x -+-=-解得:1x =经检验,1x =是分式方程的解把1x =代入不等式()230-->a x 得:230a -->解得1a <-故答案为:1a <-【点睛】本题综合考查分式方程的解法和一元一次不等式的解法,解题的关键是熟记相关运算法则.7.C【解析】略8.B【分析】根据x a <的解中最大的整数解为3,则3x =是不等式的解,则3a >,同时4x =不是不等式的解,则4a ≤,从而求解.【详解】解:①x a <的解中最大的整数解为3,①3x =是不等式的解,则3a >,又①同时4x =不是不等式的解,则4a ≤,①34a <≤,故选B .【点睛】本题主要考查了不等式的整数解,解题的关键在于能够熟练掌握相关知识进行求解.9.C【分析】根据绝对值的性质,倒数的性质,不等式的性质,有理数的运算法则依次判断即可.【详解】①0没有倒数,①①错误.①﹣1<m <0, ①1m<0,2m >0, ①①错误.①a +b <0,且0b a >,①a <0,b <0,①a +3b <0,①|a +3b |=﹣a ﹣3b .①①正确.①|m |≥﹣m ,①|m |+m ≥0,①①正确.①c <0<a <b ,①a ﹣b <0,b ﹣c >0,c ﹣a <0,①(a ﹣b )(b ﹣c )(c ﹣a )>0正确,①①正确.故选:C .【点睛】本题考查绝对值,倒数,不等式的性质,有理数的运算法则,正确掌握相关法则是求解本题的关键.10.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:①由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;①由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ①由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;①由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是①,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法.11.D【分析】方程为一元二次方程,故a ≠0,再结合根的判别式:当24b ac -≥0时,方程有实数根;即可求解.【详解】解:①原方程为一元二次方程,且有实数根,①a ≠0,24b ac -≥0时,方程有实数根;①2(2)40a --≥,解得:a ≤1,①1a ≤且0a ≠,故选:D【点睛】本题主要考查了一元二次方程根的判别式,熟练地掌握根的判别式与根的关系是解题的关键.当24b ac -≥0时,方程有实数根,当24b ac -<0时,方程无实数根. 12.D【分析】分式方程去分母转化为整式方程,求出整式方程的解得到a 的值,代入不等式组确定出b 的范围即可.【详解】解:分式方程去分母得:3-a -a 2+4a =-1,即a 2-3a -4=0,分解因式得:(a -4)(a +1)=0,解得:a =-1或a =4,经检验a =4是增根,分式方程的解为a =-1,当a =-1时,由a <x ≤b 只有4个整数解,得到3≤b <4.故选:D .【点睛】此题考查了解分式方程,以及一元一次不等式组的整数解,熟练掌握运算法则是解本题的关键.13.(1) −2<a<4;(2) 小于3【分析】根据数轴上两点之间的距离为这两个数差的绝对值,列出不等式并解出结果.【详解】解:(1)根据题意得:|a −1|<3,得出−2<a <4,(2)由(1)得:到点B 的距离小于3的数在−2和4之间,①在−3,0,4三个数中,只有0所对应的点到B 点的距离小于3.【点睛】本题考查了数轴上两点之间的距离为两个数差的绝对值,以及解不等式,难度适中.14.x =32 或x =﹣54【分析】利用绝对值的性质,将方程转化为314x x +﹣=或314x x +﹣=﹣,再分情况讨论:当3x +1>0时可得到|3x +1|=3x +1;当3x +1<0时可得到|3x +1|=-3x -1,分别求出对应的方程的解即可. 【详解】解:原方程式化为-314x x +=或31-4xx +﹣=, 当3x +1>0时,即x >﹣13, 由-314x x +=得-3-14x x =,①x =﹣52与x >﹣13 不相符,故舍去; 由-31-4x x +=得314x x ﹣﹣=﹣,①x =32,符合题意; 当3x +1<0时,即x <﹣13, 由-314x x +=得314x x ++=,①x =34与x <﹣13不相符,故舍去; 由-31-4x x +=得314x x ++=﹣,①x =﹣54,符合题意; 故原方程的解是x =32或x =﹣54. 【点睛】本题主要考查的是含有绝对值符号的一元一次方程的解法.分类讨论是解题的关键.15.4<12<【分析】(1)根据无理数的估算即可得;(22,由此即可得.(1)<,解:1216<<.4(2)<,解:34<2<,<-11121<,1<.2【点睛】本题考查了实数的大小比较、无理数的估算,熟练掌握无理数的估算是解题关键.。
人教版数学七年级下册 第九章 不等式与不等式组 9.3 一元一次不等式组 同步练习(含答案)

,解不等式组得 a>- ,故 a 的
取值范围为 a>- .点拨:先解方程组求 x,y,再根据 x,y 的取值范围建立不等式组从而确定 a•的取值范围.
21、解:(1)
(元)
所以一个书包的价格是 30 元.
(2)设还能为 x 名学生每人购买一个书包和一件文化衫,根据题意得:
5/7
解之得:
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
A.x<4
B.x<2
C.2<x<4
D.x>2
4、若不等式组
的解集为
,则 的取值范围为( )
A.
B.
C.
D.
5、在平面直角坐标系中,若点 P(
,
)在第三象限,则 的取值范围为
A.
B.
C.
D.
6、若不等式组
有实数解,则实数 的取值范围是(
)
()
A.
B.
C.
D.
7、不等式组
的正整数解有:( )
A、1 个 B、2 个 C、3 个 D、4 个
7/7
依题意得
解得
.
即学校每天的用电量,应控制在 21~22 度(不包括 21 度)范围内.
24、(1)设加工一般糕点 x 盒,则加工精制糕点(50-x)盒.根据题意,x 满足不等式组:
解这个不等式组,得 24≤x≤26.因为 x 为整数,所以 x=24,25,26.因此,加工方案有三种:加工一般糕点 24 盒、 精制糕点 26 盒;加工一般糕点 25 盒、精制糕点 25 盒;加工一般糕点 26 盒、精制糕点 24 盒.(2)由题意知,显然 精制糕点数越多利润越大,故当加工一般糕点 24 盒、精制糕点 26 盒时,可获得最大利润.最大利润为:24×1.5+26 ×2=88(元).
9.2一元一次不等式 培优训练-2020-2021学年人教版七年级数学下册(附答案)

第9章 不等式与不等式组第2节《一元一次不等式》同步培优训练一、选择。
1.根据下列数量关系,列出相应的不等式,其中错误的是( ) A .x 的23减去4小于1:2413x -< B .x 与5的差不大于9:59x -<C .y 与5的和的3倍是一个负数:()350y +<D .x 的2倍与2的差不小于零:220x -≥2.关于x 的不等式22x a -+≥的解集如图所示,则a 的值是( )A .0B .2C .2-D .4- 3.下列说法正确的是( ).A .x =1是不等式-2x <1的解集B .x =3是不等式-x <1的解集C .x >-2是不等式112x -<的解集 D .不等式-x <1的解集是x <-14.x 的4倍与7的差不小于-1,可列关系式为( )A .4x -7≤-1B .4x -7<-1C .4x -7=-1D .4x -7≥-1 5.下列不等式的解集,不包括-4的是( )A .x≤-4B .x≥-4C .x <-6D .x >-6 6.解不等式3211722x x -+≤的过程如下: ①去分母,得3x -2≤11x +7,②移项,得3x -11x≤7+2,③合并同类项,得-8x≤9,④系数化为1,得98x ≤-. 其中造成错误的一步是( )A .①B .②C .③D .④ 7.小明拿40元购买雪糕和矿泉水,已知每瓶矿泉水2元,每支雪糕1.5元,他买了5瓶矿泉水,x 支雪糕,则列出关于x 的不等式正确的是( )A .2 1.5540x +⨯<B .2 1.5540x +⨯≤C .25 1.540x ⨯+≥D .25 1.540x ⨯+≤ 8.某运输公司要将300吨的货物运往某地,现有A ,B 两种型号的汽车可调用,已知A 型汽车每辆可装货物20吨,B 型汽车每辆可装货物15吨.在每辆汽车不超载的情况下,要把这300吨货物一次性装运完成,并且A 型汽车确定要用7辆,至少调用B 型汽车的辆数为( )A .10B .11C .12D .139.甲、乙两人从相距24km 的A 、B 两地沿着同一条公路相向而行,如果甲的速度是乙的速度的两倍,如果要保证在2小时以内相遇,则甲的速度( ) A .小于8km/h B .大于8km/h C .小于4km/h D .大于4km/h 10.某车间工人刘伟接到一项任务,要求10天里加工完190个零件,最初2天,每天加工15个,要在规定时间内完成任务,以后每天至少加工零件个数为( )A .18B .19C .20D .21二、填空。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
人教版-七年级数学下册-第九章一元一次不等式应用题-培优练习(含答案)1.为了参加西安世界园艺博览会,某公司用几辆载重为8吨的汽车运送一批参展货物.若每辆汽车只装4吨,则剩下20吨货物;若每辆汽车装满8吨,则最后一辆汽车不空也不满.请问:共有多少辆汽车运货?2.某蔬菜经营户从蔬菜批发市场批发蔬菜进行零价,其中西红柿与西兰花的批发价格与零售价格如表.(1)一共能赚多少钱?(请列方程组求解)(2)第二天该经营户用1520元仍然批发西红柿和西兰花,要想当天全部售完后所赚钱数不少于1050元,则该经营户最多能批发多少千克的西红柿?3.六一”儿童节将至,益智玩具店准备购进甲、乙两种玩具,若购进甲种玩具80个,乙种玩具40个,需要800元,若购进甲种玩具50个,乙种玩具30个,需要550元.(1)求益智玩具店购进甲、乙两种玩具每个需要多少元?(2)若益智玩具店准备1000元全部用来购进甲,乙两种玩具,计划销售每个甲种玩具可获利润4元,销售每个乙种玩具可获利润5元,且销售这两种玩具的总利润不低于600元,那么这个玩具店需要最多购进乙种玩具多少个?4.陈老师为学校购买运动会的奖品后,回学校向后勤处王老师交账说:“我买了两种书,共105本,单价分别为8元和12元,买书前我领了1500元,现在还余418元.”王老师算了一下,说:“你肯定搞错了.”(1)王老师为什么说他搞错了?试用方程的知识给予解释;(2)陈老师连忙拿出购物发票,发现的确弄错了,因为他还买了一个笔记本.但笔记本的单价已模糊不清,只能辨认出应为小于10元的整数,笔记本的单价可能为多少元?5.某水果店以4元/千克的价格购进一批水果,由于销售状况良好,该店又再次购进同一种水果,第二次进货价格比第一次每千克便宜了0.5元,所购水果重量恰好是第一次购进水果重量的2倍,这样该水果店两次购进水果共花去了2200元.(1)该水果店两次分别购买了多少元的水果?(2)在销售中,尽管两次进货的价格不同,但水果店仍以相同的价格售出,若第一次购进的水果有3%的损耗,第二次购进的水果有5%的损耗,该水果店希望售完这些水果获利不低于1244元,则该水果每千克售价至少为多少元?6.公司为了运输的方便,将生产的产品打包成件,运往同一目的地.其中A产品和B产品共320件,A产品比B产品多80件.(1)求打包成件的A产品和B产品各多少件?(2)现计划租用甲、乙两种货车共8辆,一次性将这批产品全部运往同一目的地.已知甲种货车最多可装A产品40件和B产品10件,乙种货车最多可装A产品和B产品各20件.如果甲种货车每辆需付运输费4000元,乙种货车每辆需付运输费3600元.则公司安排甲、乙两种货车时有几种方案?并说明公司选择哪种方案可使运输费最少?7.某市居民用电的电价实行阶梯收费,收费标准如下表:(1)已知李叔家四月份用电286度,缴纳电费178.76元;五月份用电316度,缴纳电费198.56元,请你根据以上数据,求出表格中a,b的值.(2)六月份是用电高峰期,李叔计划六月份电费支出不超过300元,那么李叔家六月份最多可用电多少度?8.某运动品牌专卖店准备购进甲、乙两种运动鞋.其中甲、乙两种运动鞋的进价和售价如下表.已知购进(2)要使购进的甲、乙两种运动鞋共200双的总利润(利润=售价﹣进价)超过21000元,且不超过22000元,问该专卖店有几种进货方案?(3)在(2)的条件下,专卖店准备决定对甲种运动鞋每双优惠a(50<a<70)元出售,乙种运动鞋价格不变.那么该专卖店要获得最大利润应如何进货?9.某物流公司承接A.B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司月运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?10.少儿部组织学生进行“英语风采大赛”,需购买甲、乙两种奖品.购买甲奖品3个和乙奖品4个,需花64元;购买甲奖品4个和乙奖品5个,需花82元.(1)求甲、乙两种奖品的单价各是多少元?(2)由于临时有变,只买甲、乙一种奖品即可,且甲奖品按原价9折销售,乙奖品购买6个以上超出的部分按原价的6折销售,设购买x个甲奖品需要y1元,购买x个乙奖品需要y2元,请用x分别表示出y1和y2;(3)在(2)的条件下,问买哪一种产品更省钱?11.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.(1)如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?(2)如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多获得多少利润?此时如何分配加工时间?12.商场某柜台销售每台进价分别为160元、120元的A.B两种型号的电风扇,下表是近两周的销售情况:(1)求A.B两种型号的电风扇的销售单价;(2)若商场准备用不多于7500元的金额再采购这两种型号的电风扇共50台,求A种型号的电风扇最多能采购多少台?(3)在(2)的条件下,商场销售完这50台电风扇能否实现利润超过1850元的目标?若能,请给出相应的采购方案;若不能,请说明理由.13.为了更好改善河流的水质,治污公司决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格,月处理污水量如下表:经调查:购买一台A型设备比购买一台B型设备多2万元,购买2台A 型设备比购买3台B(1)求a,b的值;(2)治污公司经预算购买污水处理设备的资金不超过105万元,你认为该公司有哪几种购买方案;(3)在(2)的条件下,若每月要求处理污水量不低于2040吨,为了节约资金,请你为治污公司设计一种最省钱的购买方案.14.某商场用36000元购进甲、乙两种商品,销售完后共获利6000元.其中甲种商品每件进价120元,售价138元;乙种商品每件进价100元,售价120元.(1)该商场购进甲、乙两种商品各多少件?(2)商场第二次以原进价购进甲、乙两种商品,购进乙种商品的件数不变,而购进甲种商品的件数是第一次的2倍,甲种商品按原售价出售,而乙种商品打折销售.若两种商品销售完毕,要使第二次经营活动获利不少于8160元,乙种商品最低售价为每件多少元?15.“五•一”黄金周期间,某学校计划组织385名师生租车旅游,现知道出租公司有42座和60座两种客车,42座客车的租金每辆为320元,60座客车的租金每辆为460元.(1)若学校单独租用这两种车辆各需多少钱?(2)若学校同时租用这两种客车8辆(可以坐不满),而且要比单独租用一种车辆节省租金.请你帮助该学校选择一种最节省的租车方案.参考答案1.解:设有x辆汽车,则有(4x+20)吨货物.由题意,可知当每辆汽车装满8吨时,则有(x﹣1)辆是装满的,所以有方程,解得5<x<7.由实际意义知x为整数.所以x=6.答:共有6辆汽车运货.2.3.【解答】解:(1)设甲种玩具每个x元,乙种玩具每个y元,根据题意,得:,解得:,答:甲种玩具每个5元,乙种玩具每个10元.(2)设购进乙种玩具a个,则甲种玩具=200﹣2a(个),根据题意,得:4+5a≥600,解得:a≤66,∵a是正整数,∴a的最大值为66,答:这个玩具店需要最多购进乙种玩具66个.4.解:(1)设单价为8.0元的课外书为x本,得:8x+12=1500﹣418,解得:x=44.5(不符合题意).∵在此题中x不能是小数,∴王老师说他肯定搞错了;(2)设单价为8.0元的课外书为y本,设笔记本的单价为b元,依题意得:0<1500﹣[8y+12+418]<10,解之得:0<4y﹣178<10,即:44.5<y<47,∴y应为45本或46本.当y=45本时,b=1500﹣[8×45+12+418]=2,当y=46本时,b=1500﹣[8×46+12+418]=6,即:笔记本的单价可能2元或6元.5.6.解:(1)设打包成件的A产品有x件,B产品有y件,根据题意得x+y=320,x-y=80,解得x=200,y=120,答:打包成件的A产品有200件,B产品有120件;(2)设租用甲种货车x辆,根据题意得40x+20(8-x)≥200,10x+20(8-x)≥120,解得2≤x≤4,而x为整数,所以x=2、3、4,所以设计方案有3种,分别为:7.解:(1)根据题意得:,解得:.(2)设李叔家六月份最多可用电x度,根据题意得:200×0.61+200×0.66+0.92(x﹣400)≤300,解得:x≤450.答:李叔家六月份最多可用电450度.8.解:(1)依题意得:60m+50(m﹣20)=10000,解得m=100;(2)设购进甲种运动鞋x双,则乙种运动鞋(200﹣x)双,根据题意得,,解不等式①得,x>,解不等式②得,x≤100,所以,不等式组的解集是<x≤100,∵x是正整数,100﹣84+1=17,∴共有17种方案;(3)设总利润为W,则W=(240﹣100﹣a)x+80(200﹣x)=(60﹣a)x+16000(≤x≤100),①当50<a<60时,60﹣a>0,W随x的增大而增大,所以,当x=100时,W有最大值,即此时应购进甲种运动鞋100双,购进乙种运动鞋100双;②当a=60时,60﹣a=0,W=16000,(2)中所有方案获利都一样;③当60<a<70时,60﹣a<0,W随x的增大而减小,所以,当x=84时,W有最大值,即此时应购进甲种运动鞋84双,购进乙种运动鞋116双.9.解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.10.解:(1)设甲种奖品的单价为x元/个,乙种奖品的单价为y元/个,根据题意得:,解得:.答:甲种奖品的单价为8元/个,乙种奖品的单价为10元/个.(2)根据题意得:y1=8×0.9x=7.2x;当0≤x≤6时,y2=10x,当x>6时,y2=10×6+10×0.6(x﹣6)=6x+24,∴y2=.(3)当0≤x≤6时,∵7.2<10,∴此时买甲种产品省钱;当x>6时,令y1<y2,则7.2x<6x+24,解得:x<20;令y1=y2,则7.2x=6x+24,解得:x=20;令y1>y2,则7.2x>6x+24,解得:x>20.综上所述:当x<20时,选择甲种产品更省钱;当x=20时,选择甲、乙两种产品总价相同;当x>20时,选择乙种产品更省钱.11.12.(1)设A型电风扇单价为x元,B型单价y元,则,解得:,答:A型电风扇单价为200元,B型单价150元;(2)设A型电风扇采购a台,则160a+120(50﹣a)≤7500,解得:a≤,则最多能采购37台;(3)依题意,得:(200﹣160)a+(150﹣120)(50﹣a)>1850,解得:a>35,则35<a≤,∵a是正整数,∴a=36或37,方案一:采购A型36台B型14台;方案二:采购A型37台B型13台.13.解:(1)购买A型的价格是a万元,购买B型的设备b万元,A=b+2,2a+6=3b,解得:a=12,b=10.故a的值为12,b的值为10;(2)设购买A型号设备m台,12m+10(10﹣m)≤105,解得:m≤2.5,故所有购买方案为:当A型号为0,B型号为10台;当A型号为1台,B型号为9台;当A型号为2台,B型号为8台;有3种购买方案;(3)由题意可得出:240m+180(10﹣m)≥2040,解得:m≥4,由(1)得A型买的越少越省钱,所以买A型设备4台,B型的6台最省钱.14.解:(1)设商场购进甲种商品x件,乙种商品y件,根据题意得:,解得:.答:该商场购进甲种商品200件,乙种商品120件.(2)设乙种商品每件售价z元,根据题意,得120(z﹣100)+2×200×(138﹣120)≥8160,解得:z≥108.答:乙种商品最低售价为每件108元.15.。