北师大版数学七年级下册第五章综合测试卷含答案
北师大版七年级数学下册第五章测试题(附答案)

北师大版七年级数学下册第五章测试题(附答案)学校:___________姓名:___________班级:___________考号:___________评卷人得分一、选择题1.下列图形中不.是.轴对称图形的是()2.下列平面图形中,不是轴对称图形的是()3.如图,在锐角△ABC中,AB=6,∠BAC=60°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是()A.3 B.33 C.43 D.64.下列标志中,可以看作是轴对称图形的是()5.下列图案中既是中心对称图形,又是轴对称图形的是()A. B. C. D.6.下面汽车标志中,属于轴对称图形的是()A. B. C. D.7.以下图形中对称轴的数量小于3的是()8.下列图案中,是轴对称图形.....的是()9.下列图形:①三角形,②线段,③正方形,④直角.其中是轴对称图形的个数是(). A.4个 B.3个 C.2个 D.1个10.如图,Rt△ABC中,∠ACB=90°,∠A=50°,将其折叠,使点A落在边CB上A′处,折痕为CD,则∠A′DB=().A.40° B.30° C.20° D.10°11.下列四个图案是我国几家银行的标志,其中是轴对称图形的有()A.1个 B.2个 C.3个 D.4个评卷人得分二、填空题12.小明照镜子时,发现衣服上的英文单词在镜子呈现为“”,则这串英文字母是________;13.如图,在Rt△ABC中,∠ACB=90°,AC=3,BC=4,将边AC沿CE翻折,使点A落在AB 上的点D处;再将边BC沿CF翻折,使点B落在CD的延长线上的点B′处,两条折痕与斜边AB分别交于点E、F,则DF的长为.,将纸片折叠,点A、D分别落在A′、D′处,且14.如图,在菱形纸片ABCD中,y=−16yA′D′经过B,EF为折痕,当D′F CD时,yy的值为__________.yy15.如图将□ABCD沿对角线AC折叠,使点B落在点B’处.若∠1=∠2=44°,则∠B 为____°.16.如图,将一张矩形纸片经过折叠得到一个三角形,则矩形的长与宽的比是________17.如图,正方形ABCD 的面积是2,E ,F ,P 分别是AB ,BC ,AC 上的动点,PE+PF 的最小值等于_______.评卷人 得分三、计算题18.如图,在长度为1个单位长度的小正方形组成的正方形网格中,点A 、B 、C 在小正方形的顶点上.(1)在图中画出与△ABC 关于直线l 成轴对称的△A //C B ;(2) 线段/CC 被直线l ;上找一点P ,使PB+PC 的长最短,并算出这个最短长度.评卷人 得分四、解答题(1)求出格点△ABC (顶点均在格点上)的面积; (2)画出格点△ABC 关于直线DE 对称的△A 1B 1C 1; (3)在DE 上画出点Q ,使△QAB 的周长最小.20.如图,在平面直角坐标系中,每个小正方形的边长为1,点A 的坐标为(-3,2) 请按要求分别完成下列各小题:(1)画出△ABC 关于y 轴对称的△111C B A ,则点1A 的坐标是; (2)△ABC 的面积是 .21.如图,在平面直角坐标系中,△ABC 的顶点A (0,1),B (3,2),C (1,4)均在正方形网格的格点上.(1)画出△ABC 关于x 轴的对称图形△A 1B 1C 1;(2)将△A 1B 1C 1沿x 轴方向向左平移3个单位后得到△A 2B2C 2,写出顶点A 2,B 2,C 2的坐标.22.如图,△ABC三个顶点的坐标分别为A (﹣1,1),B (﹣4,2),C (﹣3,4).(1)请画出△ABC 向右平移5个单位长度后得到△A 1B 1C 1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)在x轴上求作一点P,使△PAB的周长最小,并直接写出点P的坐标.23.如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出△ABC向左平移5个单位长度后得到的△A1B1C1;(2)请画出△ABC关于原点对称的△A2B2C2;(3)在x轴上求作一点P,使△PAB的周长最小,请画出△PAB,并直接写出P的坐标.答案1.A .2.A3.B .4.D .5.C6.C7.D .8.D9.B .10.D .11.C .12.APPLE13.5314.√3−1215.11416.23:17.218.(1)答案见解析;(2)垂直平分;(3)5. 19.(1)72;(2)作图见解析;(3)作图见解析. 20.(1)图形见解析;(3,2);(2)2.521.(1)画图见解析;(2)画图见解析,A 2(-3,-1),B 2(0,-2),C 2(-2,-4). 22.解:(1)如图所示:△A 1B 1C 1,即为所求; (2)如图所示:△A 2B 2C 2,即为所求;(3)如图所示,此时△PAB 的周长最小,P 点坐标为:(﹣2,0).23.(1)△A 1B 1C 1如图所示; (2)△A 2B 2C 2如图所示;(3)△PAB 如图所示,P (2,0).。
(北师大版)初中数学七年级下册 第五章综合测试 (含答案)

第五章综合测试一、选择题(共10小题,满分30分)1.下列防疫的图标中是轴对称图形的是( )A .B .C .D .2.如图是一个经过改造的规则为47⨯的台球桌面示意图,图中四个角上的阴影部分分别表示四个入球孔,如果一个球按图中所示的方向被击出(球可以经过台球边缘多次反弹),那么球最后将落入的球袋是( )A .1号袋B .2号袋C .3号袋D .4号袋3.如图,30A ︒∠=,60C ︒∠'=,ABC △与A B C '''△关于直线l 对称,则B ∠度数为( )A .30︒B .60︒C .90︒D .120︒4.如图,在33⨯的网格中,与ABC △成轴对称,顶点在格点上,且位置不同的三角形有( )A .5个B .6个C .7个D .8个5.某平原有一条很直的小河和两个村庄,要在此小河边的某处修建一个水泵站向这两个村庄供水.某同学用直线(虛线)l 表示小河,P ,Q 两点表示村庄,线段(实线)表示铺设的管道,画出了如下四个示意图,则所需管道最短的是( )A .B .C .D .6.如图,将ABC △沿直线DE 折叠,使点C 与点A 重合,已知7AB =,6BC =,则BCD △的周长为( )A .12B .13C .19D .207.如图,在ABC △中,90C ︒∠=,DE AB ⊥于点E ,CD DE =,26CBD ︒∠=,则A ∠的度数为( )A .40︒B .34︒C .36︒D .38︒8.如图,ABC △中,BO 平分ABC ∠,CO 平分ACB ∠,M ,N 经过点O ,且MN BC ∥,若5AB =,AMN △的周长等于12,则AC 的长为( )A .7B .6C .5D .49.如图,在ABC △中,AB AC =,分别以点A 、点B 为圆心,以大于12AB 长为半径画弧,两弧交点的连线交AC 于点D ,交AB 于点E ,连接BD ,若40A ︒∠=,则DBC ∠=( )A .40︒B .30︒C .20︒D .10︒10.如图,ABC △是等边三角形,P 是三角形内任意一点,D E F 、、分别是AC 、AB 、BC 边上的三点,且PF AB ∥,PD BC ∥,PE AC ∥.若PF PD PE a ++=,则ABC △的边长为( )ABC .2D .a二、填空题(共8小题,满分24分)11.在线段、直角、等腰三角形、直角三角形中,成轴对称图形的是________.12.如图,点P 是AOB ∠平分线OC 上一点,PD OB ⊥,垂足为D ,若2PD =,则点P 到边OA 的距离是________.13.如图,在ABC △中,AB AC =,=10BC ,AD 是BAC ∠平分线,则BD =________.14.如图,在ABC △中,AB AC =,28DBC ︒∠=,且BD AC ⊥,则A ∠=________︒.15.如图,在网格图中选择一个格子涂阴影,使得整个图形是以虚线为对称轴的轴对称图形,则把阴影涂在图中标有数字________的格子内.16.已知等腰三角形有一边长为5,一边长为2,则周长为________.17.如图,已知ABC △中,132BAC ︒∠=,现将ABC △进行折叠,使顶点B C 、均与顶点A 重合,则DAE ∠的度数为________.18.如图,CD 是ABC △的角平分线,AE CD ⊥于E ,6BC =,4AC =,ABC △的面积是9,则AEC △的面积是________.三、解答题(共7小题,满分66分)19.如图,ABC △中,90A ︒∠=,D 为AC 上一点,E 为BC 上一点,点A 和点E 关于BD 对称,点B 和点C 关于DE 对称.求ABC ∠和C ∠的度数.20.如图,长方形台球桌ABCD 上有两个球P Q ,.(1)请画出一条路径,使得球P 撞击台球桌边AB 反弹后,正好撞到球Q ;(2)请画出一条路径,使得球P 撞击台球桌边,经过两次反弹后,正好撞到球Q ;21.如图,在ABC △中,边AB 的垂直平分线OM 与边AC 的垂直平分线ON 交于点O ,分别交BC 于点D E 、,已知ADE △的周长5 cm .(1)求BC 的长;(2)分别连接OA OB OC 、、,若OBC △的周长为13 cm ,求OA 的长.22.如图,在ABC △中,=AB AC ,BD 平分ABC ∠交AC 于点D ,BE BD DE BC ⊥,∥,BE 与DE 交于点E ,DE 交AB 于点F .(1)若=56A ︒∠,求E ∠的度数;(2)求证:=BF EF .23.在ABC △中,AB AC =,点D 是BC 的中点,点E 是AD 上任意一点.(1)如图1,连接BE CE 、,则BE CE =吗?说明理由;(2)若45BAC ︒∠=,BE 的延长线与AC 垂直相交于点F 时,如图2,12BD AE =吗?说明理由.24.在等边ABC △中,(1)如图1,P Q ,是BC 边上两点,==20AP AQ BAP ︒∠,,求AQB ∠的度数;(2)点P Q ,是BC 边上的两个动点(不与B C ,重合),点P 在点Q 的左侧,且AP AQ =,点Q 关于直线AC 的对称点为M ,连接AM PM ,. ①依题意将图2补全;②求证:=PA PM .25.如图,已知D 是ABC △的边BC 上的一点,CD AB BDA BAD =∠=∠,,AE 是ABD △的中线. (1)若60B ︒∠=,求C ∠的值;(2)求证:AD 是EAC ∠的平分线.第五章综合测试答案解析一、 1.【答案】C【解析】解:A 、不是轴对称图形,不合题意;B 、不是轴对称图形,不合题意;C 、是轴对称图形,符合题意;D 、不是轴对称图形,不合题意.故选:C. 2.【答案】D【解析】解:根据轴对称的性质可知,台球走过的路径为:所以球最后将落入的球袋是4号袋,故选:D. 3.【答案】C【解析】解:ABC △与A B C '''△关于直线l 对称,ABC A B C ∴'''△≌△, 60C C ︒∴∠=∠'=, 30A ︒∠=,18090B A C ︒︒∴∠=-∠-∠=,故选:C. 4.【答案】D【解析】解:如图所示:与ABC △成轴对称,顶点在格点上,且位置不同的三角形有8个, 故选:D.5.【答案】C【解析】解:作点P 关于直线l 的对称点C ,连接QC 交直线l 于M . 根据两点之间,线段最短,可知选项C 铺设的管道最短. 故选:C. 6.【答案】B【解析】解:由折叠可知,AD CD =,76AB BC ==,,BCD ∴△的周长7613BC BD CD BC BD AD BC AB =++=++=+=+=.故选:B. 7.【答案】D 【解析】解:DE AB DC BC DE DC ⊥⊥=,,,BD ∴平分ABC ∠,26EBD CBD ︒∴∠=∠=,909022638A ABC ︒︒︒︒∴∠=-∠=-⨯=.故选:D. 8.【答案】A 【解析】解:BO 平分CBA ∠,CO 平分ACB ∠,MBO OBC OCN OCB ∴∠=∠∠=∠,, MN BC ∥,MOB OBC NOC OCB ∴∠=∠∠=∠,, MBO MOB NOC NCO ∴∠=∠∠=∠,, MO MB NO NC ∴==,, =5AB AMN ,△的周长等于12,AMN ∴△的周长512AM MN AN AB AC AC =++=+=+=,7AC ∴=,故选:A. 9.【答案】B 【解析】解:40AB AC A ︒=∠=,,1804070ABC C ︒︒︒∴∠=∠=-()=,AD BD =,40ABD A ︒∴∠=∠=,30DBC ABC ABD ︒∴∠=∠-∠=,故选:B. 10.【答案】D【解析】解:延长EP 交BC 于点G ,延长FP 交AC 于点H ,如图所示:PF AB ∥,PD BC ∥,PE AC ∥,∴四边形AEPH 、四边形PDCG 均为平行四边形,PE AH PG CD ∴==,.又ABC △为等边三角形,FGP ∴△和HPD △也是等边三角形,PF PG CD PD DH ∴===,,PE PD PF AH DH CD AC ∴++=++=, AC a ∴=;故选:D. 二、11.【答案】线段、直角、等腰三角形【解析】解:线段的垂直平分线所在的直线是对称轴,是轴对称图形,符合题意; 直角的角平分线所在的直线就是对称轴,是轴对称图形,符合题意; 等腰三角形底边中线所在的直线是对称轴,是轴对称图形,符合题意; 直角三角形不一定是轴对称图形,不符合题意. 故成轴对称图形的是:线段、直角、等腰三角形. 故答案为:线段、直角、等腰三角形. 12.【答案】2【解析】解:过P 作PE OA ⊥于点E , 点P 是AOB ∠平分线OC 上一点,PD OB ⊥,PE PD ∴=, 2PD =, 2PE ∴=,∴点P 到边OA 的距离是2.故答案为2. 13.【答案】5 【解析】解:AB AC BAC =∠,的平分线交BC 边于点10D BC =,,5BD CD BC ∴===,故答案为:5. 14.【答案】56 【解析】解:BD 是AC 边上的高,902862180218012456DBC C DBC C AB AC A C ︒︒︒︒︒︒︒∴∠+∠=∠=∴∠==∴∠=-∠=-=,,,故答案为:56.15.【答案】3【解析】解:如图所示,把阴影涂在图中标有数字3的格子内所组成的图形是轴对称图形,故答案为:3.16.【答案】12【解析】解:①若5为腰长,2为底边长,5,5,2能组成三角形,∴此时周长为:55212++=;②若2为腰长,5为底边长,2245+=<,∴不能组成三角形,故舍去;∴周长为12.故答案为:12.17.【答案】84︒【解析】解:如图,132BAC ︒∠=,18013248B C ︒︒︒∴∠+∠==-;由题意得:B DAB ∠=∠(设为a ),C EAC ∠=∠(设为β),2218021809684ADE AED DAE αβαβ︒︒︒︒∴∠=∠=∴∠=+-=,-()=, 故答案为:84︒.18.【答案】3【解析】解:延长AE 交BC 于F , CD 是ABC △的角平分线,ACE FCE ∴∠=∠AE CD ⊥于E9046=2AEC CEF CE CE ACE FCE ASA CF AC BC BF ︒∴∠=∠==∴∴===∴,△≌△(),,,ABC ∵△的面积是9,2963ACF S =∴⨯=△ AEC ∴△的面积132ACF S ==△, 故答案为:3.三、19.【答案】解:A 点和E 点关于BD 对称, ABD EBD ∴∠=∠,即22ABC ABD EBD ∠=∠=∠, 又B 点、C 点关于DE 对称,290239030260DBE C ABC C A ABC C C C C C ABC C ︒︒︒︒∴∠=∠∠=∠∠=∴∠+∠=∠+∠=∠=∴∠=∴∠=∠=,,,,.20.【答案】解:(1)如图,点M 即为所求.(2)如图,点E ,点F 即为所求.21.【答案】解:(1)DM 是线段AB 的垂直平分线, DA DB ∴=,同理,EA EC =,ADE △的周长5,5AD DE EA ∴++=,5cm BC DB DE EC AD DE EA ∴=++=++=(); (2)OBC △的周长为13,13OB OC BC ∴++=,5BC =,8OB OC ∴+=, OM 垂直平分AB ,OA OB ∴=,同理,OA OC =,4cm OA OB OC ∴===(). 22.【答案】解:(1)56AB AC A ︒=∠=,, 1805662ABC ︒︒︒∴∠=(-)=, BD 平分ABC ∠, 1312DBF DBC ABC ︒∴∠=∠==∠, DE BC ∥,31EDB DBC ︒∴∠=∠=,BE BD ⊥,90DBE ︒∴∠=,903159E ︒︒︒∴∠=-=;(2)31EDB DBF ︒∠=∠=,59E EBF ︒∴∠=∠=,BF EF ∴=.23.【答案】解:(1)成立.理由:AB AC =,D 是BC 的中点,BAE CAE ∴∠=∠.在ABE △和ACE △中,AB AC BAE CAE AE AE =⎧⎪=⎨⎪=⎩∠∠,ABE ACE SAS ∴△≌△(), BE CE ∴=;(2)成立.理由:45BAC BF AF ︒∠=⊥,.ABF ∴△为等腰直角三角形由(1)知AD ⊥BC ,EAF CBF ∴∠=∠在AEF △和BCF △中,EAF CBF AF BF AFE BFC =⎧⎪=⎨⎪=⎩∠∠∠∠, 12.AEF BCF ASA AE BC BD BC BD AE ∴∴==∴=△≌△(),, 24.【答案】解:(1)ABC △为等边三角形 608080B APC BAP B AP AQ AQB APC ︒︒︒∴∠=∴∠=∠+∠==∴∠=∠=,(2)①补全图形如图所示,②证明:过点A 作AH BC ⊥C 于点H ,如图. 由ABC △为等边三角形,AP AQ =,可得PAB QAC ∠=∠,点Q M ,关于直线AC 对称,QAC MAC AQ AM ∴∠=∠=,60MAC PAC PAB PAC ︒∴∠+∠=∠+∠=, APM ∴△为等边三角形PA PM ∴=.25.【答案】(1)解:60B BDA BAD ︒∠=∠=∠,, 60BAD BDA︒∴∠=∠=,AB AD ∴=,CD AB =,DAC C ∴∠=∠,2BDA DAC C C ∴∠=∠+∠=∠,60BAD ︒∠=,30C ︒∴∠=;(2)证明:延长AE 到M ,使EM AE =,连接DM , 在ABE △和MDE △中,BM AE AEB MED BE DE =⎧⎪=⎨⎪=⎩∠∠,ABE MDE ∴△≌△,B MDE AB DM ∴∠=∠=,,ADC B BAD MDE BDA ADM ∠=∠+∠=∠+∠=∠,在MAD △与CAD △,DM CD ADM ADC AD AD =⎧⎪=⎨⎪=⎩∠∠,MAD CAD ∴△≌△,MAD CAD ∴∠=∠,AD ∴是EAC ∠的平分线.。
最新北师大版七年级数学下册第五章单元测试题及答案2套

最新北师大版七年级数学下册第五章单元测试题及答案2套第五章生活中的轴对称单元检测A卷姓名:__________班级:__________考号:__________一.选择题(本大题共12小题,每小题4分,共48分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.在下列“禁毒”、“和平”、“志愿者”、“节水”这四个标志中,属于轴对称图形的是()2.如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论:①AB∥CD;②AB=BC;③AB⊥BC;④AO=OC.其中正确的结论有()A.1个 B.2个 C.3个 D.4个3.如图,牧童在A处放牛,其家在B处,A、B到河岸的距离分别为AC和BD,且AC=BD,若点A到河岸CD的中点的距离为500米,则牧童从A处把牛牵到河边饮水再回家,最短距离是()A.750米 B.1000米 C.1500米 D.2000米4.如图,直角三角形纸片的两直角边长分别为6、8,按如图那样折叠,使点A与点B重合,折痕为DE,则S△BCE:S△BDE等于()A.2:5 B.14:25 C.16:25 D.4:215.如图,在CD上求一点P,使它到OA,OB的距离相等,则P点是()A.线段CD的中点 B.OA与OB的中垂线的交点C.OA与CD的中垂线的交点 D.CD与∠AOB的平分线的交点6.和三角形三个顶点的距离相等的点是()A.三条角平分线的交点 B.三边中线的交点C.三边上高所在直线的交点 D.三边的垂直平分线的交点7.如图,直线l1∥l2,以直线l1上的点A为圆心、适当长为半径画弧,分别交直线l1、l2于点B、C,连接AC、BC.若∠ABC=67°,则∠1=()A.23°B.46° C.67° D.78°8.在△ABC中,其两个内角如下,则能判定△ABC为等腰三角形的是()A.∠A=40°,∠B=50° B.∠A=40°,∠B=60°C.∠A=20°,∠B=80° D.∠A=40°,∠B=80°9.如图,AD⊥BC,D为BC的中点,以下结论正确的有几个?()①△ABD≌△ACD;②AB=AC;③∠B=∠C;④AD是△ABC的角平分线.A.1 B.2 C.3 D.410.等边三角形的边长为2,则该三角形的面积为()A.4 B. C.2 D.311.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则△ADE的形状是()A.等腰三角形 B.等边三角形C.不等边三角形 D.不能确定形状12.如图,△ABC中,∠B=60°,AB=AC,BC=3,则△ABC的周长为()A.9 B.8 C.6 D.12二.填空题(共6小题,共24分)13.如图,在正方形方格中,阴影部分是涂黑7个小正方形所形成的图案,再将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.14.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ范围是.15.如图,△ABC的边BC的垂直平分线MN交AC于D,若△ADB的周长是10cm,AB=4cm,则AC= cm.16.等腰三角形的两边长分别是3和5,则这个等腰三角形的周长为.17.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.18.已知射线OM.以O为圆心,任意长为半径画弧,与射线OM交于点A,再以点A为圆心,AO长为半径画弧,两弧交于点B,画射线OB,如图所示,则∠AOB= (度)三.解答题(共8小题)19.如图,在△ABC中,AD为∠BAC的平分线,DE⊥AB于E,DF⊥AC于F,△ABC的面积是28cm2,AB=16cm,AC=12cm,求DE的长.20.如图.AB=AC,MB=MC.求证:直线AM是线段BC的垂直平分线.21.如图,在△ABC中,AB=AC,点D是BC边上的中点,DE、DF分别垂直AB、AC于点E和F.求证:DE=DF.22.如图:△ABC的边AB的延长线上有一个点D,过点D作DF⊥AC于F,交BC于E,且BD=BE,求证:△ABC为等腰三角形.23.如图,BO平分∠CBA,CO平分∠ACB,且MN∥BC,若AB=12,△AMN的周长为29,求AC的长.24.如图,一个牧童在小河的南4km的A处牧马,而他正位于他的小屋B的西8km北7km处,他想把他的马牵到小河边去饮水,然后回家,他要完成这件事情所走的最短路程是多少?25.如图,把矩形纸片ABCD沿EF折叠后,使得点D与点B重合,点C落在点C′的位置上.(1)折叠后,DC的对应线段是,CF的对应线段是;(2)若∠1=50°,求∠2、∠3的度数;(3)若AB=8,DE=10,求CF的长度.26.如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.(1)求证:△ABQ≌△CAP;(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,则求出它的度数.参考答案与试题解析一.选择题(共12小题)1.分析:根据轴对称图形的概念进行判断即可.解:A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.故选:B.2.分析:根据轴对称图形的性质,四边形ABCD沿直线l对折能够完全重合,再根据两直线平行,内错角相等可得∠CAD=∠ACB=∠BAC=∠ACD,然后根据内错角相等,两直线平行即可判定AB∥CD,根据等角对等边可得AB=BC,然后判定出四边形ABCD是菱形,根据菱形的对角线互相垂直平分即可判定AO=OC;只有四边形ABCD是正方形时,AB⊥BC才成立.解:∵l是四边形ABCD的对称轴,∴∠CAD=∠BAC,∠ACD=∠ACB,∵AD∥BC,∴∠CAD=∠ACB,∴∠CAD=∠ACB=∠BAC=∠ACD,∴AB∥CD,AB=BC,故①②正确;又∵l是四边形ABCD的对称轴,∴AB=AD,BC=CD,∴AB=BC=CD=AD,∴四边形ABCD是菱形,∴AO=OC,故④正确,∵菱形ABCD不一定是正方形,∴AB⊥BC不成立,故③错误,综上所述,正确的结论有①②④共3个.故选C.3.分析:如图,连接B和A关于CD对称的对称点,交CD于M,因此从A到M再到B点为最短距离.解:作A关于CD的对称点A′,连接A′B,交CD于M,∴CA′=AC,∵AC=DB,∴CA′=BD,由分析可知,点M为饮水处,∵AC⊥CD,BD⊥CD,∴∠ACD=∠A′CD=∠BDC=90°,又∵∠A′MC=∠BMD,在△CA′M和△DBM中,,∴△CA′M≌△DBM(AAS),∴A′M=BM,CM=DM,即M为CD中点,∴AM=BM=A′M=500,所以最短距离为2AM=2×500=1000米,故选B.4.分析:在Rt△BEC中利用勾股定理计算出AB=10,根据折叠的性质得到AD=BD=5,EA=EB,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中根据勾股定理计算出x=,则EC=8﹣=,利用三角形面积公式计算出S△BCE=BC•CE=×6×=,在Rt△BED中利用勾股定理计算出ED==,利用三角形面积公式计算出S△BDE=BD•DE=×5×=,然后求出两面积的比.解:在Rt△BAC中,BC=6,AC=8,∴AB==10,∵把△ABC沿DE使A与B重合,∴AD=BD,EA=EB,∴BD=AB=5,设AE=x,则BE=x,EC=8﹣x,在Rt△BEC中,∵BE2=EC2+BC2,即x2=(8﹣x)2+62,∴x=,∴EC=8﹣x=8﹣=,∴S△BCE=BC•CE=×6×=,在Rt△BED中,∵BE2=ED2+BD2,∴ED==,∴S△BDE=BD•DE=×5×=,∴S△BCE:S△BDE=: =14:25.故选B.5.分析:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交点.解:利用角的平分线上的点到角的两边的距离相等可知CD与∠AOB的平分线的交于点P.故选D.6.分析:三角形三条边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等.解:根据线段垂直平分线的性质可得:三角形三个顶点的距离相等的点是三边的垂直平分线的交点.故选D.7.分析:首先由题意可得:AB=AC,根据等边对等角的性质,即可求得∠ACB的度数,又由直线l1∥l2,根据两直线平行,内错角相等,即可求得∠2的度数,然后根据平角的定义,即可求得∠1的度数.解:根据题意得:AB=AC,∴∠ACB=∠ABC=67°,∵直线l1∥l2,∴∠2=∠ABC=67°,∵∠1+∠ACB+∠2=180°,∴∠1=180°﹣∠2﹣∠ACB=180°﹣67°﹣67°=46°.故选B.8.分析:根据等腰三角形性质,利用三角形内角定理对4个选项逐一进行分析即可得到答案.解;当顶角为∠A=40°时,∠C=70°≠50°,当顶角为∠B=50°时,∠C=65°≠40°所以A选项错误.当顶角为∠B=60°时,∠A=60°≠40°,当∠A=40°时,∠B=70°≠60°,所以B选项错误.当顶角为∠A=40°时,∠C=70°=∠B,所以C选项正确.当顶角为∠A=40°时,∠B=70°≠80°,当顶角为∠B=80°时,∠A=50°≠40°所以D选项错误.故选C.9.分析:由AD⊥BC,D为BC的中点,利用SAS可证明△ABD≌△ACD,然后利用全等三角形的性质即可求证出②③④.解:∵AD⊥BC,D为BC的中点,∴∠ADB=∠ADC=90°,BD=BC,AD为公共边,∴△ABD≌△ACD,∴AB=AC,∠B=∠C,∠BAD=∠CAD,即AD是△ABC的角平分线.故选D.10.分析:根据等边三角形三线合一的性质可得D为BC的中点,即BD=CD,在直角三角形ABD中,已知AB、BD,根据勾股定理即可求得AD的长,即可求三角形ABC的面积,即可解题.解:∵等边三角形高线即中点,AB=2,∴BD=CD=1,在Rt△ABD中,AB=2,BD=1,∴AD=,∴S△ABC=BC•AD=×2×=,故选B.11.分析:先证得△ABE≌△ACD,可得AE=AD,∠BAE=∠CAD=60°,即可证明△ADE是等边三角形.解:∵△ABC为等边三角形∴AB=AC∵∠1=∠2,BE=CD∴△ABE≌△ACD∴AE=AD,∠BAE=∠CAD=60°∴△ADE是等边三角形.故选B.12.分析:根据∠B=60°,AB=AC,即可判定△ABC为等边三角形,由BC=3,即可求出△ABC的周长.解:在△ABC中,∵∠B=60°,AB=AC,∴∠B=∠C=60°,∴∠A=180°﹣60°﹣60°=60°,∴△ABC为等边三角形,∵BC=3,∴△ABC的周长为:3BC=9,故选A.二.填空题(共6小题)13.分析:根据轴对称图形的概念:把一个图形沿着某条直线折叠,直线两旁的部分能够完全重合及正方形的对称轴是两条对角线所在的直线和两组对边的垂直平分线,得出结果.解:在1,2,3处分别涂黑都可得一个轴对称图形,故涂法有3种,故答案为:3.14.分析:由OP平分∠MON,PA⊥ON于点A,PA=2,根据角平分线的性质得到点P到OM的距离等于2,再根据直线外一点与直线上所有点的连线段中垂线段最短即可得到PQ≥2.解:∵OP平分∠MON,PA⊥ON于点A,PA=2,∴点P到OM的距离等于2,而点Q是射线OM上的一个动点,∴PQ≥2.故答案为PQ≥2.15.分析:根据线段的垂直平分线性质得出CD=BD,求出△ADB的周长AD+DB+AB=AC+AB=10cm,求出即可.解:∵MN是线段BC的垂直平分线,∴CD=BD,∵△ADB的周长是10cm,∴AD+BD+AB=10cm,∴AD+CD+AB=10cm,∴AC+AB=10cm,∵AB=4cm,∴AC=6cm,故答案为:6.16.分析:分3是腰长与底边两种情况讨论求解.解:①3是腰长时,三角形的三边分别为3、3、5,能组成三角形,周长=3+3+5=11,②3是底边长时,三角形的三边分别为3、5、5,能组成三角形,周长=3+5+5=13,综上所述,这个等腰三角形的周长是11或13.故答案为:11或13.17.分析:设运动的时间为x,则AP=20﹣3x,当APQ是等腰三角形时,AP=AQ,则20﹣3x=2x,解得x即可.解:设运动的时间为x,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm的速度向点A运动,点Q从点A同时出发以每秒2cm的速度向点C运动,当△APQ是等腰三角形时,AP=AQ,AP=20﹣3x,AQ=2x即20﹣3x=2x,解得x=4.故答案为:4.18.分析:首先连接AB,由题意易证得△AOB是等边三角形,根据等边三角形的性质,可求得∠AOB的度数.解:连接AB,根据题意得:OB=OA=AB,∴△AOB是等边三角形,∴∠AOB=60°.故答案为:60.三.解答题(共8小题)19.分析:利用角平分线的性质,得出DE=DF,再利用△ABC面积是28cm2可求DE.∵AD为∠BAC的平分线,DE⊥AB,DF⊥AC,∴DE=DF,∵S△ABC=S△ABD+S△ACD=AB×DE+AC×DF∴S△ABC=(AB+AC)×DE即×(16+12)×DE=28,故DE=2(cm).20.分析:由AB=AC,MB=MC,根据线段垂直平分线的判定定理,可得点A在BC的垂直平分线上,点M在BC的垂直平分线上,又由两点确定一条直线,可得直线AM是线段BC的垂直平分线.证明:∵AB=AC,∴点A在BC的垂直平分线上,∵BM=CM,∴点M在BC的垂直平分线上,∴直线AM是BC的垂直平分线.21.分析: D是BC的中点,那么AD就是等腰三角形ABC底边上的中线,根据等腰三角形三线合一的特性,可知道AD也是∠BAC的角平分线,根据角平分线的点到角两边的距离相等,那么DE=DF.证明:证法一:连接AD.∵AB=AC,点D是BC边上的中点∴AD平分∠BAC(三线合一性质),∵DE、DF分别垂直AB、AC于点E和F.∴DE=DF(角平分线上的点到角两边的距离相等).证法二:在△ABC中,∵AB=AC∴∠B=∠C(等边对等角)…∵点D是BC边上的中点∴BD=DC …∵DE、DF分别垂直AB、AC于点E和F∴∠BED=∠CFD=90°…在△BED和△CFD中∵,∴△BED≌△CFD(AAS),∴DE=DF(全等三角形的对应边相等).22.分析:要证△ABC为等腰三角形,须证∠A=∠C,而由题中已知条件,DF⊥AC,BD=BE,因此,可以通过角的加减求得∠A与∠C相等,从而判断△ABC为等腰三角形.证明:∵DF⊥AC,∴∠DFA=∠EFC=90°.∴∠A=∠DFA﹣∠D,∠C=∠EFC﹣∠CEF,∵BD=BE,∴∠BED=∠D.∵∠BED=∠CEF,∴∠D=∠CEF.∴∠A=∠C.∴△ABC为等腰三角形.23.分析:根据BO平分∠CBA,CO平分∠ACB,BM=MO,NC=NO,从而知道,△AMN的周长是AB+AC的长,从而得解.解:∵BO平分∠CBA,CO平分∠ACB,MN∥BC,∴BM=MO,CN=NO,∴AM+MB+AN+NC=AM+MO+AN+NO=29.∴AB+AC=29,∵AB=12,∴AC=17.24.分析:先作A关于MN的对称点,连接A′B,构建直角三角形,利用勾股定理即可得出答案.解:如图,作出A点关于MN的对称点A′,连接A′B交MN于点P,则A′B就是最短路线,在Rt△A′DB中,由勾股定理求得A′B=DA==17km,答:他要完成这件事情所走的最短路程是17km.25.分析:(1)根据折叠的性质即可得出;(2)∠2=∠BEF.由AD∥BC得∠1=∠2,所以∠2=∠BEF=50°,从而得∠3=80°;(3)根据勾股定理先求得AE的长度,也可求出AD,BC的长度,然后根据∠1=∠BEF=50°,可得BF=BE=10,继而可求得CF=BC﹣BF.解:(1)由折叠的性质可得:折叠后,DC的对应线段是BC′,CF的对应线段是C′F;(2)由折叠的性质可得:∠2=∠BEF,∵AD∥BC,∴∠1=∠2=50°.∴∠2=∠BEF=50°,∴∠3=180°﹣50°﹣50°=80°;(3)∵AB=8,DE=10,∴BE=10,∴AE==6,∴AD=BC=6+10=16,∵∠1=∠BEF=50°,∴BF=BE=10,∴CF=BC﹣BF=16﹣10=6.故答案为:BC′,C′F.26.分析:(1)根据等边三角形的性质,利用SAS证明△ABQ≌△CAP;(2)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=60°;(3)由△ABQ≌△CAP根据全等三角形的性质可得∠BAQ=∠ACP,从而得到∠QMC=120°.(1)证明:∵△ABC是等边三角形∴∠ABQ=∠CAP,AB=CA,又∵点P、Q运动速度相同,∴AP=BQ,在△ABQ与△CAP中,∵,∴△ABQ≌△CAP(SAS);(2)解:点P、Q在运动的过程中,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠ACP+∠MAC,∴∠QMC=∠BAQ+∠MAC=∠BAC=60°…(3)解:点P、Q在运动到终点后继续在射线AB、BC上运动时,∠QMC不变.理由:∵△ABQ≌△CAP,∴∠BAQ=∠ACP,∵∠QMC=∠BAQ+∠APM,∴∠QMC=∠ACP+∠APM=180°﹣∠PAC=180°﹣60°=120°.第五章生活中的轴对称单元检测B卷姓名:__________班级:__________考号:__________一.选择题(本大题共12小题,每小题4分,共48分。
七年级数学下册《第五章生活中的轴对称》单元测试卷附答案-北师大版

七年级数学下册《第五章生活中的轴对称》单元测试卷附答案-北师大版一、单选题1.下列图形中是中心对称图形但不是轴对称图形的是()A.B.C.D.∠=︒,则∠2为()2.如图,将一个长方形纸条折成如图的形状,若已知1116A.125°B.124°C.122°D.116°3.一个等腰三角形的两边长分别为6和12,则这个等腰三角形的周长为()A.30B.24C.18D.24或304.面对新冠疫情,我国毫不动摇坚持动态清零总方针,外防输入,内防反弹.下面是支付宝“国家政务服务平台”上与疫情防控相关的四个小程序图标,其中是轴对称图形的是()A.B.C.D.5.下列汉字中,可以看成轴对称图形的是()A.B.C.D.6.如图,把长方形ABCD沿EF折叠后使两部分重合,若∠1=40°,则∠AEF= ()A.110°B.100°C.120°D.140°7.如图,把一张长方形纸片ABCD折叠后,点C、点D的对应点分别为点C′和点D′,若∠1=48°,则∠2的度数为()A.138°B.132°C.121°D.111°8.如图,将∠ABC绕点A顺时针旋转角100°,得到∠ADE,若点E恰好在CB的延长线上,则∠BED的度数为()A.80°B.70°C.60°D.50°9.如图,在∠ABC中,∠ACB=90°,BE平分∠ABC,DE∠AB于D.如果AC=10cm,那么AE+DE 等于()A.6cm B.8cm C.10cm D.12cm10.下面是四位同学作∠ABC关于直线MN的轴对称图形,其中正确的是()A.B.C .D .二、填空题11.如图,APT 与CPT 关于直线PT 对称,A APT ∠=∠,延长AT 交PC 于点F 当A ∠= °时FTC C ∠=∠.12.如图,∠ABC 中,∠B=40°,点D 为边BC 上一点,将∠ADC 沿直线AD 折叠后,点C 落到点E 处,若DE∠AB ,则∠ADE 的度数为 °.13.如图,ABC 中,DE 垂直平分BC ,若ABD 的周长为104AB =,,则AC = .14.如图是由三个小正方形组成的图形请你在图中补画一个小正方形使补画后的图形为轴对称图形,共有 种补法.三、作图题15.如图,在正方形网格中,ABC 的三个顶点均在格点上.(1)画出111A B C ,使得111A B C 和ABC 关于直线l 对称;(2)过点C 作线段CD ,使得CD AB ,且CD AB .四、解答题16.如图,在∠ABC 中,高线CD 将∠ACB 分成20°和50°的两个小角.请你判断一下∠ABC 是轴对称图形吗?并说明你的理由.17.如图,长方形纸片ABCD ,点E 为BC 边的中点,将纸片沿AE 折叠,点B 的对应点为'B ,连接'.B C 求证:AE ∠'B C .18.如图,在∠ABC 中,AF 平分∠BAC 交BC 于点F ,AC 的垂直平分线交BC 于点E ,交AC 于点D ,∠B =60°,∠C =26°,求∠FAE 的度数.19.如图,在平面直角坐标系xOy 中,A (1,2),B (3,1),C (﹣2,﹣1).(1)在图中作出∠ABC关于y轴的对称图形∠A1B1C1(2)写出点A1,B1,C1的坐标(直接写答案).A1B1C1五、综合题20.如图,点P在∠AOB的内部,点C和点P关于OA对称,点P关于OB对称点是D,连接CD交OA于M,交OB于N.(1)①若∠AOB=60°,则∠COD= ▲ °;②若∠AOB=α,求∠COD的度数.(2)若CD=4,则∠PMN的周长为.21.已知:如图,∠ABD和∠BDC的平分线交于点E,BE交CD于点F,∠1+∠2=90°.(1)试说明:AB CD;(2)试探究DF与DB的数量关系,并说明理由.22.如图,在长度为1个单位长度的小正方形组成的正方形中,点A、B、C在小正方形的顶点上.(1)在图中画出与∠ABC关于直线l成轴对称的∠AB′C′;(2)求∠ABC的面积为;(3)在直线l上找一点P,使PB+PC的长最短,则这个最短长度为.参考答案与解析1.【答案】A【解析】【解答】解:A、是中心对称图形,但不是轴对称图形,故符合题意;B、不是中心对称图形,但是轴对称图形,故不符合题意;C、是中心对称图形,也是轴对称图形,故不符合题意;D、不是中心对称图形,但是轴对称图形,故不符合题意.故答案为:A.【分析】中心对称图形的定义:一个图形绕对称中心旋转180°后能够与原图形完全重合,这个图形叫做中心对称图形;轴对称图形的定义:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此一一判断得出答案.2.【答案】C【解析】【解答】解:如图∵纸条的两边互相平行∴∠1+∠3=180°∵∠1=116°∴∠3=180°-∠1=180°-116°=64°根据翻折的性质得,2∠4+∠3=180°∴∠4= 12(180°-∠3)=12(180°-64°)=58°∵纸条的两边互相平行∴∠2+∠4=180°∴∠2=122°故答案为:C.【分析】由两直线平行同旁内角互补得∠1+∠3=180°,∠2+∠4=180°,结合已知可求得∠3的度数,由翻折性质得2∠4+∠3=180°可求得∠4的度数,把∠4的度数代入∠2+∠4=180°计算可求解.3.【答案】A【解析】【解答】当三边6,6,12时,6+6=12,不符合三角形的三边关系,应舍去;当三边是6,12,12时,符合三角形的三边关系,此时周长是30.故答案为:A.【分析】利用三角形三边的关系及等腰三角形的性质求解即可。
(北师大版)初中数学七年级下册 第五章综合测试试卷02及答案

第五章综合测试一、选择题(每小题3分,共30分)1.下列四个图形中,不是轴对称图形的是( )AB C D2.下列说法正确的是( )A .如果图形甲和图形乙关于直线MN 对称,则图形甲是轴对称图形B .任何一个图形都有对称轴,有的图形不止一条对称轴C .平面上两个大小、形状完全一样的图形一定关于某直线对称D .如果ABC △和EFG △成轴对称,那么它们的面积一定相等3.如图,等腰三角形ABC 中,AB AC =,BD 是AC 边上的高,若°36A Ð=,则DBC Ð的大小是( )A .°18B .°36C .°54D .°724.将一正方形纸片按如图(1)(2)所示的方式依次对折后,再沿图(3)中的虚线裁剪,最后将图(4)中的纸片打开铺平,所得图案应该是下面图案中的()A B C D5.如图,把一张长方形纸片对折,折痕为AB ,再以AB 的中点O 为顶点把平角AOB Ð三等分,沿平角的三等分线折叠,将折叠后的图形剪出一个以O 为顶点的等腰三角形,那么剪出的等腰三角形全部展开铺平后得到的平面图形一定是( )A .正三角形B .正方形C .正五边形D .正六边形6.如图,AB CD ∥,BP 和CP 分别平分ABC Ð和DCB Ð,AD 过点P ,且与AB 垂直.若8AD =,则点P到BC 的距离是( ) A .8B .6C .4D .27.如图,在ABC △中,4cm AC =,线段AB 的垂直平分线交AC 于点N ,BCN △的周长是7cm ,则BC的长为( )A .1cmB .2cmC .3cmD .4cm8.如图,在△ABC △中,AB AC =,D 为BC 的中点,°35BAD Ð=,则C Ð的度数为()A .°35B .°45C .°55D .°609.如图,在ABC △中,AB AC =,AD ,CE 是ABC △的两条中线,P 是AD 上的一个动点,则下列线段的长等于BP EP +最小值的是( )A .BCB CEC .AD D .AC 10.如图,ABC △中,36A °Ð=,AB AC =,BD 是ABC △的角平分线,点E 在AB 上,且BE BC =,则图中等腰三角形共有( )A .2个B .3个C .4个D .5个二、填空题(每小题4分,共24分)11.如图,等腰ABC △的底角为72°,腰AB 的垂直平分线交另一腰AC 于点E ,垂足为D ,连接BE ,则EBC Ð的度数为________.12.如图,ABC △中,6AB AC ==, 4.5BC =,分别以A B ,为圆心,4为半径画弧交于两点,过这两点的直线交AC 于点D ,连接BD ,则BCD △的周长是________.13.将图(1)中的等边三角形ABC 沿对称轴对折,得到图(2),再按图(3)所示方式沿虚线剪掉一个°45的角,展开铺平后得到如图(4)所示的形状(AD 为折痕),则ADB Ð=________.14.等腰三角形一腰上的高与另一边的夹角为°50,则顶角的度数是________.15.如图,ABC △是等边三角形,AD 为中线,点E 在AC 上,且AE AD =,则EDC Ð的度数为________.16.如图,在ABC △中,AF 平分BAC Ð,AC 的垂直平分线交BC 于点E ,70B °Ð=,19FAE °Ð=,则C Ð=________.三、解答题(共46分)17.(10分)如图,等边三角形ABC 中,D 为AC 边的中点,过点C 作CE AB ∥,且AE CE ^,那么CAE ABD Ð=Ð吗?请说明理由.18.(10分)如图所示,在公园草地上准备修建一个凉亭,要求凉亭与花坛M N,之间的距离相等,并且与两条小径AB CD ,的距离也相等,请你来确定凉亭的位置.19.(12分)如图,在ABC △中,90C °Ð=,AD 是BAC Ð的平分线,DE AB ^于点E ,点F 在AC 上,FDC BDE Ð=Ð.求证:(1)CF EB =;(2)2AB AF EB =+.20.(12分)如图,ABC △,△ADE △是等边三角形,B C D ,,在同一条直线上.求证:(1)CE AC CD =+;(2)60ECD °Ð=.第五章综合测试答案解析一、1.【答案】D2.【答案】D【解析】如果图形甲和图形乙关于直线MN 对称,则图形甲与图形乙成轴对称,但图形甲不一定是轴对称图形,故选项A 错误;有些图形没有对称轴,故选项B 错误;平面上两个大小、形状完全一样的图形是全等形,但它们不一定成轴对称,故选项C 错误;如果ABC △和EFG △成轴对称,那么它们全等,故它们的面积一定相等,故选项D 正确.故选D.3.【答案】A【解析】因为AB AC =,36A °Ð=,所以72ABC C °Ð=Ð=.因为BD 是AC 边上的高,所以90BDC °Ð=,所以907218DBC °°°Ð=-=.4.【答案】B【解析】在两次对折后,不难发现是折成了正方形,接着裁剪了两处,一处是在两次对折的交点处,剪去一小正方形,所以选项C 、D 肯定错误,另一处是在折成的正方形的上面的一边,而该正方形有一边不变,所以选项A 肯定错误,故选B.5.【答案】D6.【答案】C【解析】过点P 作PE BC ^于E ,AB CD PA BA ^∵∥,,PD CD ^∴,BP ∵和CP 分别平分ABC Ð和DCB Ð,PA PE PD PE ==∴,,PE PA PD ==∴,8PA PD AD +==∵,4PA PD ==∴,4PE =∴.故选C.7.【答案】C【解析】MN ∵是线段AB 的垂直平分线,AN BN =∴,BCN ∵△的周长是7 cm ,7 cm BN NC BC ++=∴,7 cm AN NC BC ++=∴,又AN NC AC +=∵,7 cm AC BC +=∴,又4 cm AC =∵,74 3 cm BC =-=∴.故选C.8.【答案】C【解析】AB AC =∵,D 为BC 的中点,35CAD BAD °Ð=Ð=∴,AD DC ^,∴在ADC △中,9055C DAC °°Ð=-Ð=,故选C.9.【答案】B【解析】连接PC ,AB AC BD CD ==∵,,AD BC ^∴,PB PC =∴,PB PE PC PE +=+∴,PE PC CE +∵≥,∴当P C E ,,三点共线时,PB PE +的值最小,最小值为CE ,故选B.10.【答案】D【解析】AB AC =∵,ABC ∴△是等腰三角形.36AB AC A °=Ð=∵,,72ABC C °Ð=Ð=∴,BD ∵是ABC △的角平分线,36ABD DBC ABC °Ð=Ð=Ð=∴,36A ABD °Ð=Ð=∴,BD AD =∴,ABD ∴△是等腰三角形.在BCD △中,180180367272BDC DBC C °°°°°Ð=-Ð-Ð=--=∵,72C BDC °Ð=Ð=∴,BD BC =∴,BCD ∴△是等腰三角形.BE BC =∵,BD BE =∴,BDE ∴△是等腰三角形.18036272BED °°°Ð=-¸=∴(),723636ADE BED A °°°Ð=Ð-Ð=-=∴,A ADE Ð=Ð∴,DE AE =∴,ADE ∴△是等腰三角形.∴题图中的等腰三角形有5个.故选D.二、11.【答案】36°【解析】∵等腰ABC △的底角为72°,72ABC C °Ð=Ð=∴,18072236A °°°Ð=-´=∴.DE ∵为AB 的垂直平分线,AE BE =∴,36ABE A °Ð=Ð=∴,723636EBC ABC ABE °°°Ð=Ð-Ð=-=∴.12.【答案】10.5【解析】由作图可知BD AD =,则BCD △的周长10.5BD DC BC AD DC BC AC BC =++=++=+=.13.【答案】135°【解析】对折前,等边三角形ABC 是轴对称图形,且60B C A °Ð=Ð=Ð=,剪去一个45°角后,剩余的仍是轴对称图形,15ABD ACD °Ð=Ð=,因为30BAD °Ð=,所以1803015135ADB °°°°Ð=--=.14.【答案】100°或140°或40°【解析】ABC △是等腰三角形,且BAC Ð为顶角,CD 是腰AB 上的高.(1)当等腰三角形是锐角三角形时,如图①,图①图②图③当50ACD °Ð=时,9040BAC ACD °°Ð=-Ð=(当50BCD °Ð=时,40B °Ð=,则4050ACB °°Ð=<,不符合).(2)当等腰三角形是钝角三角形时,(i )如图②,当50BCD °Ð=时,40B °Ð=,1802100BAC B °Ð=°-Ð=∴.(ii )如图③,当50ACD °Ð=时,40CAD °Ð=,180140BAC CAD °Ð=°-Ð=∴.故这个等腰三角形顶角的度数为100°或140°或40°.15.【答案】15°【解析】ABC ∵△是等边三角形,60AB AC BAC °=Ð=∴,,AD ∵是ABC △的中线,∴1302DAC BAC AD BC °Ð=Ð=^,∴,90ADC °Ð=∴,AE AD =∵,1802DAC ADE AED °-ÐÐ=Ð=∴18032075°°°-=-=,907515EDC ADC ADE °°°Ð=Ð-Ð=-=∴.16.【答案】24°【解析】DE ∵是AC 的垂直平分线,EA EC =∴,EAC C Ð=Ð∴,AF ∵平分BAC Ð,∴FAB FAC Ð=Ð=1919EAC C °°Ð+=Ð+,180B BAC C °Ð+Ð+Ð=∵,70219()180C C °°°+Ð++Ð=∴,解得24C °Ð=.三、17.【答案】解:CAE ABD Ð=Ð,理由如下:因为ABC △为等边三角形,D 为AC 边的中点,所以BD AC ^,所以90BDA °Ð=,因为AE CE ^,所以90AEC °Ð=,因为CE AB ∥,所以ACE BAD Ð=Ð,所以9090ACE BAD °°-Ð=-Ð,即CAE ABD Ð=Ð.18.【答案】解:如图,延长BA DC ,交于点O ,作BOD Ð的平分线OQ .连接MN ,作MN 的垂直平分线交OQ 于点P .点P 的位置即为所求的凉亭的位置.19.【答案】证明:(1)因为AD 是BAC Ð的平分线,DE AB ^,90C °Ð=,所以DE DC =.在CDF △和EDB △中,因为90C DEB DC DE FDC BDE °Ð=Ð==Ð=Ðìïíïî,,,所以CDF EDB AAS ≌(△△),所以CF EB =.(2)因为AD 是BAC Ð的平分线,DE AB ^,90C °Ð=,所以90CAD EAD ACD AED °Ð=ÐÐ=Ð=,.在ADC △和ADE △中,因为CAD EAD ACD AED AD AD Ð=ÐÐ=Ðìïïî=í,,,所以ADC ADE AAS ≌(△△),所以AC AE =,所以2AB AE EB AC EB AF CF EB AF EB =+=+=++=+.20.【答案】证明(1)ABC ∵△,ADE △是等边三角形,60AE AD BC AC AB BAC DAE °===Ð=Ð=,,∴,BAC CAD DAE CAD Ð+Ð=Ð+Ð∴,即BAD CAE Ð=Ð,BAD CAE ≌∴△△,BD EC =∴,BD BC CD AC CD =+=+∵,BD BC CD =+∴.(2)由(1)知BAD CAE ≌△△,60ABD ACE °Ð=Ð=∴,18060ECD ACB ACE °°Ð=-Ð-Ð=∴.。
北师大版七年级数学下册第五章生活中的轴对称综合测评试卷(含答案详细解析)

七年级数学下册第五章生活中的轴对称综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列冰雪运动项目的图标中,是轴对称图形的是( )A .B .C .D .2、如图,在Rt ACB ∆中,90ACB ︒∠=,25A ︒∠=,D 是AB 上一点,将Rt ABC ∆沿CD 折叠,使B 点落在AC 边上的E 处,则ADE ∠等于( )A.25︒B.30︒C.35︒D.40︒3、下列图案中,不是轴对称图形的为()A.B.C.D.4、下列图形中,是轴对称图形的是()A.B.C.D.5、如图,AD,BE,CF依次是ABC的高、中线和角平分线,下列表达式中错误的是()A.AE=CE B.∠ADC=90°C.∠CAD=∠CBE D.∠ACB=2∠ACF6、下列学习类APP的图表中,可看作是轴对称图形的是()A.B.C.D.7、下列四个图案中是轴对称图形的是()A.B.C.D.8、如图1,有一张长、宽分别为12和8的长方形纸片,将它对折后再对折,得到图2,然后沿图2中的虚线剪开,得到两部分,其中一部分展开后的平面图形(图3)可以是()A.①②③B.①②④C.①③④D.②③④9、如图,下列图形中,轴对称图形的个数是()A.1个B.2个C.3个D.4个10、下列交通标志图案是轴对称图形的是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、请你发现图中的规律,在空格_____上画出简易图案2、如图所示,其中与甲成轴对称的图形是___________.3、如图,腰长为2的等腰ABC中,顶角∠A=45°,D为腰AB上的一个动点,将ACD沿CD折叠,点A落在点E处,当CE与ABC的某一条腰垂直时,BD的长为_______.4、如图,ABC与A B C'''关于直线对称,则C∠的度数为_____.5、如图,一束水平光线照在有一定倾斜角度的平面镜上,若入射光线与反射光线的夹角为50°,则平面镜与水平地面的夹角α的度数是______.三、解答题(5小题,每小题10分,共计50分)1、如图1,在44⨯正方形网格中,有5个黑色的小正方形,现要求:移动其中的一个(只能移动一个)小正方形,使5个黑色的小正方形组成一个轴对称图形.(范例:如图1-2所示)请你在图3中画出四个与范例不同且符合要求的图形.2、在数学活动课上,王老师要求学生将图1所示的3×3正方形方格纸,涂黑其中三个方格,使剩下的部分成为轴对称图形.规定:凡通过旋转能重合的图形视为同一种图形,如图2的四幅图就视为同一种设计方案(阴影部分为涂黑部分)请在图中画出4种不同的设计方案,将每种方案中三个方格涂黑(每个3×3的正方形方格画一种,例图除外,并且画上对称轴)3、如图,在正方形网格中,点A、B、C、M、N都在格点上.(1)作△ABC关于直线MN对称的图形△A'B'C';(2)作出AB边上的中线;(3)若每个小正方形边长均为1,则△ABC的面积=______.4、如图,已知△ABC各顶点坐标分别为A(﹣3,2)、B(﹣4,﹣3)、C(﹣1,﹣1).(1)画出△ABC关于x轴对称的△A1B1C1;(2)写出△ABC关于y轴对称的△A2B2C2的各顶点坐标.5、如图,P为AOB∠内一定点,M、N分别是射线OA、OB上的点,(1)当PMN周长最小时,在图中画出PMN(保留作图痕迹);(2)在(1)的条件下,已知110MPN∠=︒,求AOB∠的度数.-参考答案-一、单选题1、D【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此可得结论.【详解】解:A.不是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项不合题意;C.不是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项符合题意;故选:D.【点睛】本题主要考查了轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合.2、D【分析】先根据三角形内角和定理求出∠B的度数,再由图形翻折变换的性质得出∠CED的度数,再由三角形外角的性质即可得出结论.【详解】解:在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°-25°=65°,∵△CDE由△CDB折叠而成,∴∠CED=∠B=65°,∵∠CED是△AED的外角,∴∠ADE=∠CED-∠A=65°-25°=40°.故选:D.【点睛】本题考查了三角形内角和定理,翻折变换的性质,根据题意得出∠ADE=∠CED-∠A是解题关键.3、D【分析】轴对称图形的定义:如果一个平面图形沿着一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形,据此逐项判断即可.【详解】解:A中图形是轴对称图形,不符合题意;B中图形是轴对称图形,不符合题意;C中图形是轴对称图形,不符合题意;D中图形不是轴对称图形,符合题意,故选:D.【点睛】本题考查轴对称的定义,理解定义,找准对称轴是解答的关键.4、A【分析】根据轴对称图形的定义:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形,进行判断即可.【详解】解:A、是轴对称图形,符合题意;B、不是轴对称图形,不符合题意;C、不是轴对称图形,不符合题意;D、不是轴对称图形,不符合题意;故选:A.【点睛】本题考查了轴对称图形的识别,熟记定义是解本题的关键.5、C【分析】根据三角形的高、中线和角平分线的定义(1)三角形的角平分线定义:三角形的一个角的平分线与这个角的对边相交,连接这个角的顶点和交点的线段叫做三角形的角平分线;(2)三角形的中线定义:在三角形中,连接一个顶点和它所对边的中点的连线段叫做三角形的中线;(3)三角形的高定义:从三角形一个顶点向它的对边(或对边所在的直线)作垂线,顶点和垂足间的线段叫做三角形的高线,简称为高.求解即可.【详解】解:A、BE是△ABC的中线,所以AE=CE,故本表达式正确;B、AD是△ABC的高,所以∠ADC=90,故本表达式正确;C、由三角形的高、中线和角平分线的定义无法得出∠CAD=∠CBE,故本表达式错误;D、CF是△ABC的角平分线,所以∠ACB=2∠ACF,故本表达式正确.故选:C.【点睛】本题考查了三角形的高、中线和角平分线的定义,是基础题,熟记定义是解题的关键.6、C【分析】根据轴对称图形的定义逐一进行判断即可得答案.【详解】A.不是轴对称图形,故该选项不符合题意,B.不是轴对称图形,故该选项不符合题意,C.是轴对称图形,故该选项符合题意,D.不是轴对称图形,故该选项不符合题意,故选:C.【点睛】本题考查的是轴对称图形,如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形;轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、D【分析】根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;B、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;C、不是轴对称图形,因为找不到任何这样的一条直线,使它沿这条直线折叠后,直线两旁的部分能够重合,即不满足轴对称图形的定义.不符合题意;D、是轴对称图形,符合题意.故答案为:D.【点睛】本题考查了轴对称图形,解题关键是掌握轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.8、B【分析】由剪去的三角形与展开后的平面图形中的三角形是全等三角形,观察形成的图案是否符合要求判断即可.【详解】解:图3中,图③不符合题意,图③中的4个三角形与图2中剪去的三角形不全等.故①②④符合题意,故选:B.【点睛】本题考查的是轴对称的性质,全等三角形的性质,动手实践是解此类题的关键.9、B【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形进行判断即可.【详解】解:第一个图形不是轴对称图形;第二个图形是轴对称图形;第三个图形是轴对称图形;第四个图形不是轴对称图形;∴轴对称图形有2个,故选B.【点睛】本题主要考查了轴对称图形,解题的关键在于能够熟练掌握轴对称图形的定义.10、B【详解】解:A、不是轴对称图形,故本选项错误,不符合题意;B、是轴对称图形,故本选项正确,符合题意;C、不是轴对称图形,故本选项错误,不符合题意;D、不是轴对称图形,故本选项错误,不符合题意.故选:B.【点睛】本题考查了轴对称图形,解题的关键是掌握轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.二、填空题1、【分析】由图知,该图案是1,2,3,4,5的轴对称构成的图象,据此可得答案.【详解】解:为1的轴对称构成的图象,为2的轴对称构成的图象,为4的轴对称构成的图象,为5的轴对称构成的图象,故横线上为3的轴对称构成的图象.故答案为.【点睛】本题考查了图形的变化规律.解题的关键是根据题意得到图案是1,2,3,4,5的轴对称构成的图象.2、丁【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行判断即可.【详解】解:观察图形可知与甲成轴对称的图形是丁,故答案为:丁.【点睛】本题主要考查了轴对称图形的定义,解题的关键在于能够熟练掌握轴对称图形的定义.3【分析】分两种情况:当CE⊥AB时,设垂足为M,在Rt△AMC中,∠A=45°,由折叠得:∠ACD=∠DCE=22.5°,证明△BCM≌△DCM,得到BM=DM,证明△MDE是等腰直角三角形,即可得解;当CE⊥AC时,根据折叠的性质,等腰直角三角形的判定与性质计算即可;【详解】当CE⊥AB时,如图,设垂足为M ,在Rt △AMC 中,∠A =45°,由折叠得:∠ACD =∠DCE =22.5°,∵等腰△ABC 中,顶角∠A =45°,∴∠B =∠ACB =67.5°,∴∠BCM =22.5°,∴∠BCM =∠DCM ,在△BCM 和△DCM 中,90BMC DMC CM CM BCM DCM ∠=∠=︒⎧⎪=⎨⎪∠=∠⎩, ∴△BCM ≌△DCM (ASA ),∴BM =DM ,由折叠得:∠E =∠A =45°,AD =DE ,∴△MDE 是等腰直角三角形,∴DM =EM ,设DM =x ,则BM =x ,DE =,∴AD =.∵AB =2,∴2x 2x =2,解得:x =∴BD=2x=当CE⊥AC时,如图,∴∠ACE=90°,由折叠得:∠ACD=∠DCE=45°,∵等腰△ABC中,顶角∠A=45°,∴∠E=∠A=45°,AD=DE,∴∠ADC=∠EDC=90°,即点D、E都在直线AB上,且△ADC、△DEC、△ACE都是等腰直角三角形,2,∵AB=AC==∴AD==22,BD=AB﹣AD=(2)﹣(22)=综上,BD【点睛】本题主要考查折叠的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,注重分类讨论思想的运用是解题的关键.4、121°【分析】根据轴对称的性质,轴对称图形全等,则∠A=∠A′,∠B=∠B′,∠C=∠C′,再根据三角形内角和定理即可求得.【详解】解:∵△ABC与△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∴∠A=∠A′,∠B=∠B′,∠C=∠C′,∴∠A=∠A′=36°,∠B=∠B′=23°,∴∠C=180°−36°−23°=121°.故答案为:121°.【点睛】本题考查了轴对称图形的性质,全等的性质,三角形内角和定理,理解轴对称图形的性质是解题的关键.5、65°【分析】作CD⊥平面镜,垂足为G,交地面于D.根据垂线的性质可得∠CDH+α=90°,根据平行线的性质可得∠AGC=∠CDH,根据入射角等于反射角可得25AGC∠=︒,从而可得夹角α的度数.【详解】解:如图,作CD⊥平面镜,垂足为G,交地面于D.∴∠CDH+α=90°,根据题意可知:AG∥DF,∴∠AGC=∠CDH,11 250225AGC AGB︒⨯︒∠=∠==,∴∠CDH=25°,∴α=65°.故答案为:65°.【点睛】本题考查了入射角等于反射角问题,解决本题的关键是掌握平行线的性质、明确法线CG平分∠AGB.三、解答题1、画图见解析【分析】把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,根据定义先确定对称轴,再移动其中一个小正方形即可.【详解】解:如图,【点睛】本题考查的是轴对称图案的设计,确定轴对称图案的对称轴是解本题的关键.2、见解析【分析】根据轴对称图形的定义求解即可.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.【详解】解:如图所示,【点睛】此题考查了轴对称图形的定义,解题的关键是熟练掌握轴对称图形的定义.轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形.3、(1)见解析;(2)见解析;(3)3.【分析】(1)分别作点A,B,C关于直线MN对称的点A′,B′,C′,连接A′B′,B′C′,A′C′,即可画出△A′B′C′;(2)取格点EF,连接EF交AB于点D,连接CD即为所求;(3)观察图形,找出△ABC的底和高,利用三角形的面积公式即可求出结论.【详解】(1)如图,△A'B'C'即为所求;(2)如图,CD即为所求;(3)△ABC的面积为:12×3×2=3.【点睛】本题主要考查了利用轴对称变换作图,以及全等三角形的判定和性质,解决本题的关键是掌握轴对称的性质准确作出对应点.4、(1)见解析;(2)A2(3,2),B2(4,﹣3),C2(1,﹣1)【分析】(1)分别作出三个顶点关于x轴的对称点,再首尾顺次连接即可;(2)根据关于y轴对称的点的坐标特征:横坐标互为相反数,纵坐标相等,可得答案.【详解】解:(1)如图,111A B C△即为所求;(2)根据题图可知,ABC 的各点坐标是:A (-3,2),B (-4,﹣3),C (-1,﹣1),则ABC 关于y 轴对称的222A B C △的各点坐标分别是:A 2(3,2),B 2(4,﹣3),C 2(1,﹣1).【点睛】本题主要考查作图-轴对称变换,掌握轴对称变换的定义和性质,并据此得出变换后的对应点是解题的关键.5、(1)见解析,(2)35°【分析】(1)作P 关于OA ,OB 的对称点P 1,P 2.连接OP 1,OP 2.则当M ,N 是P 1P 2与OA ,OB 的交点时,△PMN 的周长最短,于是得到结论;(2)根据对称的性质可以证得MPN ∠=∠OPN +∠OPM =∠OP 2N +∠OP 1M =110°,∠P 1OP 2=2∠AOB ,根据三角形内角和即可求解.【详解】解:(1)作P 关于OA ,OB 的对称点P 1,P 2.连接OP 1,OP 2.分别交OA 、OB 于点M 、N ,△PMN 的周长为P 1 P 2长,此时周长最短;(2)连接P1O、P2O,∵PP1关于OA对称,∴∠P1OP=2∠MOP,∠OP1M=∠OPM,同理,∠P2OP=2∠NOP,∠OP2N=∠OPN,∴∠P1OP2=2∠AOB,∵MPN∠=∠OPN+∠OPM=∠OP2N+∠OP1M=110°,∴∠P1OP2=180°﹣110°=70°,∴∠AOB=35°.【点睛】本题考查了轴对称﹣最短路线问题,正确作出图形,利用对称得出角之间的关系是解题的关键.。
北师大版七年级下册数学第五章知识点详细归纳附第五章测试卷及参考答案

一、轴对称图形
1、如果一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形,这条直线叫做对称轴。
2、理解轴对称图形要抓住以下几点:
(1)指一个图形;
(2)存பைடு நூலகம்一条直线(对称轴);
(3)图形被直线分成的两部分互相重合;
(4)轴对称图形的对称轴有的只有一条,有的则存在多条;
C.有一个内角为30°,另一个内角为120°的三角形
D.有一个内角为60°的三角形
9.在等腰△ABC中,AB=AC,O为不同于A的一点,且OB=OC,则直线AO与底边BC的关系为 ( )
A.平行B.垂直且平分
C.斜交D.垂直不平分
10.三角形的三个顶点的外角平分线所在的直线两两相交,所围成的三角形一定是 ( )
2、相等的两条边叫做腰;另一边叫做底边;
3、两腰的夹角叫做顶角,腰与底边的夹角叫做底角;
4、三条边都相等的三角形也是等腰三角形。
5、等腰三角形是轴对称图形,有一条对称轴(等边三角形除外),其底边上的高或顶角的平分线,或底边上的中线所在的直线都是它的对称轴。
6、等腰三角形的三条重要线段不是它的对称轴,它们所在的直线才是等腰三角形的对称轴。
三、角平分线的性质
1、角平分线所在的直线是该角的对称轴。
2、性质:角平分线上的点到这个角的两边的距离相等。
四、线段的垂直平分线
1、垂直于一条线段并且平分这条线段的直线叫做这条线段的垂直平分线,又叫线段的中垂线。
2、性质:线段垂直平分线上的点到这条线段两端点的距离相等。
五、等腰三角形
1、有两条边相等的三角形叫做等腰三角形;
A.9cmB.12cm
C.9cm和12cmD.在9cm与12cm之间
北师大七年级下《第五章生活中的轴对称》单元测试题(含答案)

第五章自我综合评价第Ⅰ卷(选择题共36分)一、选择题(每小题3分,共36分)1.下面四个手机应用图标中是轴对称图形的是( )图5-Z-12.如图5-Z-2,若△ABC与△A′B′C′关于直线MN对称,BB′交MN于点O,则下列说法中不一定正确的是( )图5-Z-2A.AC=A′C′B.AB∥B′C′C.AA′⊥MN D.BO=B′O3.等腰三角形的一个内角是50°,则另外两个角的度数分别是( )A.65°,65°B.50°,80°C.65°,65°或50°,80°D.50°,50°4.图5-Z-3中显示的是从镜子中看到的背后墙上电子钟的读数,由此你可以推断这时的实际时间是( )图5-Z-3A.10:05 B.20:01C.20:10 D.10:025.如图5-Z-4所示,在3×3的正方形网格中,已有三个小正方形被涂黑,将剩余的白色小正方形再任意涂黑一个,则所得黑色图案是轴对称图形的情况有( ) A.6种B.5种C.4种D.2种图5-Z-46.如图5-Z-5是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是( )图5-Z-5A.SSS B.SASC.ASA D.AAS7.如图5-Z-6,直线l是一条河,P,Q是两个村庄.欲在l上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( )图5-Z-68.如图5-Z-7所示,线段AC的垂直平分线交线段AB于点D,垂足为E,∠A=50°,则∠BDC=( )A.50°B.100°C.120°D.130°图5-Z-79.如图5-Z-8,在△ABC中,∠ACB=90°,BE平分∠ABC,DE⊥AB于点D,如果AC =3 cm,那么AE+DE等于( )图5-Z-8A.2 cm B.3 cm C.4 cm D.5 cm10.如图5-Z-9,在△ABC中,AB=AC,∠A=30°,以B为圆心,BC的长为半径画弧,交AC于点D,连接BD,则∠ABD的度数是( )A.30°B.45°C.60°D.90°图5-Z-911.如图5-Z-10,l∥m,等边三角形ABC的顶点B在直线m上,∠1=20°,则∠2的度数为( )图5-Z-10A.60°B.45°C.40°D.30°12.如图5-Z-11所示,△ABC的周长为30 cm,把△ABC的边AC对折,使顶点C和点A重合,折痕交BC边于点D,交AC边于点E,连接AD,若AE=4 cm,则△ABD的周长是( )图5-Z-11A.22 cm B.20 cm C.18 cm D.15 cm请将选择题答案填入下表:题号 1 2 3 4 5 6 7 8 9 10 11 12 总分答案第Ⅱ卷(非选择题共64分)二、填空题(每小题3分,共12分)13.△ABC中,已知AB=AC,∠C=50°,则∠A=________°.14.△ABC与△A′B′C′关于直线l对称,且∠A=78°,∠C′=48°,则∠B的度数为________.15.如图5-Z-12,△ABC是等边三角形,AD为中线,AD=AE,则∠EDC的度数为________.图5-Z-1216.如图5-Z-13所示,小章利用一张左、右两边已经破损的长方形纸片ABCD做折纸游戏,他将纸片沿EF折叠后,D,C两点分别落在D′,C′的位置,并利用量角器量得∠EFB =65°,则∠AED′等于________度.图5-Z-13三、解答题(共52分)17.(8分)如图5-Z-14,方格纸中每个小正方形的边长均为1,四边形ABCD的四个顶点都在小正方形的顶点上,点E在边BC上,且点E也在小正方形的顶点上,连接AE.(1)在图中画出△AEF,使△AEF与△AEB关于直线AE对称,点F与点B是对称点;(2)请直接写出△AEF与四边形ABCD重叠部分的面积.图5-Z-1418.(8分)如图5-Z-15,△ABC中,AB=AC,∠A=40°,AB的垂直平分线MN交AC 于点D,连接BD,求∠DBC的度数.图5-Z-1519.(8分)如图5-Z-16所示,在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于点D.(1)若BC=10,BD=6,则点D到AB的距离是多少?(2)若∠BAD=30°,求∠B的度数.图5-Z-1620.(8分)如图5-Z-17,△ABC中,AB,AC的垂直平分线分别交BC于D,E两点,垂足分别是M,N.(1)若△ADE的周长是10,求BC的长;(2)若∠BAC=100°,求∠DAE的度数.图5-Z-1721.(10分)如图5-Z-18,E,F分别是等边三角形ABC的边AB,AC上的点,且BE=AF,CE,BF交于点P.(1)试说明:CE=BF;(2)求∠BPC的度数.图5-Z-1822.(10分)我们已学习了角平分线的概念,那么你会用这一知识解决有关问题吗?(1)如图5-Z-19①所示,将长方形笔记本的一张活页纸的一角折叠,使该角的顶点A 落在点A′处,BC为折痕.若∠ABC=55°,求∠A′BD的度数;(2)在(1)的条件下,如果将它的另一个角也斜折过去,并使BD边与BA′重合,点D落在点D′处,折痕为BE,如图②所示,求∠D′BE和∠CBE的度数;(3)若改变图②中∠ABC的大小,则BA′的位置也随之改变,那么(2)中∠CBE的大小会不会改变?请说明理由.图5-Z -19详解详析1.D 2.B3.[解析] C 当50°是底角时,顶角为180°-50°×2=80°; 当50°是顶角时,底角为(180°-50°)÷2=65°. 故选C.4.[解析] B 画图分析可得题中所给的“10:05”与“20:01”成轴对称,所以这时的实际时间是20:01.5.C 6.A 7.D8.[解析] B 因为DE 是线段AC 的垂直平分线, 所以DA =DC ,所以∠DCA =∠A =50°,所以∠ADC =180°-∠DCA -∠A =80°, 所以∠BDC =180°-∠ADC =100°.9.[解析] B 因为BE 平分∠ABC ,DE ⊥AB ,∠ACB =90°, 所以DE =EC ,所以AE +DE =AE +EC =AC =3 cm.10.[解析] B 因为AB =AC ,∠A =30°,所以∠ABC =∠ACB =12(180°-∠A )=12×(180°-30°)=75°. 因为以点B 为圆心,BC 长为半径画弧,交AC 于点D , 所以BC =BD ,所以∠CBD =180°-2∠ACB =180°-2×75°=30°, 所以∠ABD =∠ABC -∠CBD =75°-30°=45°. 故选B.11.[解析] C 因为△ABC 为等边三角形, 所以∠ACB =60°.如图,过点C 作CD ∥l .因为l ∥m ,所以l ∥m ∥CD , 所以∠2=∠ACD , ∠1=∠DCB ,所以∠1+∠2=∠ACB . 又因为∠1=20°, 所以∠2=40°. 故选C.12.[解析] A 根据轴对称的性质,可得 AE =CE ,AD =CD ,所以AC =8 cm, 所以AB +BC =30-8=22(cm),所以C △ABD =AB +BD +AD =AB +BD +CD =AB +BC =22 cm.13.8014.[答案] 54°[解析] 因为在△ABC 中,∠A =78°,△ABC 与△A ′B ′C ′关于直线l 对称, 所以∠C =∠C ′=48°,所以∠B =180°-78°-48°=54°. 15.[答案] 15°[解析] 因为△ABC 是等边三角形,AD 为中线,所以AD ⊥BC ,∠CAD =30°. 因为AD =AE ,所以∠ADE =∠AED =75°,所以∠EDC =∠ADC -∠ADE =90°-75°=15°. 16.5017.解:(1)如图所示:(2)△AEF 与四边形ABCD 重叠部分的面积S =2×4-12×2×2=6. 18.解:因为AB =AC ,∠A =40°, 所以∠ABC =∠ACB =180°-∠A 2=180°-40°2=70°. 因为MN 垂直平分AB ,所以DA =DB ,所以∠A =∠ABD =40°,所以∠DBC =∠ABC -∠ABD =70°-40°=30°.19.[解析] (1)根据角平分线的性质,点D 到AB 的距离等于点D 到AC 的距离;(2)因为直角三角形两锐角互余,所以要求∠B 的度数,可求∠CAB 的度数,利用角平分线的定义易求∠B 的度数.解: (1)因为∠C =90°,CD =BC -BD =4,所以点D 到AC 的距离为4,根据角平分线的性质,点D 到AB 的距离等于CD ,即等于4.(2)因为AD 平分∠BAC , 所以∠BAC =2∠BAD =60°. 又因为∠C =90°,所以∠B =90°-60°=30°.[点析] 角平分线的性质是判断线段相等的重要依据.20.解:(1)因为AB ,AC 的垂直平分线分别交BC 于D ,E 两点,垂足分别是M ,N , 所以AD =BD ,AE =CE . 因为△ADE 的周长是10,所以AD +DE +AE =BD +DE +CE =BC =10,即BC =10.(2)因为∠BAC =100°,所以∠B +∠C =180°-∠BAC =80°. 因为AD =BD ,AE =CE ,所以∠BAD =∠B ,∠CAE =∠C , 所以∠BAD +∠CAE =80°,所以∠DAE =∠BAC -(∠BAD +∠CAE )=100°-80°=20°.21.[解析] (1)欲说明CE =BF ,只需说明它们所在的△BCE 和△ABF 全等即可;(2)欲求∠BPC 的度数,根据三角形内角和等于180°,知只需求出∠PCB +∠PBC 即可.解:(1)因为△ABC 是等边三角形, 所以AB =BC ,∠A =∠EBC =60°.又因为BE =AF ,所以△BCE ≌△ABF ,所以CE =BF . (2)由(1)得△BCE ≌△ABF ,所以∠PCB =∠ABF , 所以∠PCB +∠PBC =∠ABF +∠PBC =∠EBC =60°. 因为∠PCB +∠PBC +∠BPC =180°,所以∠BPC =180°-(∠PCB +∠PBC )=180°-60°=120°. 22.解:(1)因为∠ABC =55°,由折叠的性质,得∠A ′BC =∠ABC =55°,所以∠A ′BD =180°-∠ABC -∠A ′BC =180°-55°-55°=70°. (2)由(1)中的结论可知∠DBD ′=70°,由折叠的性质,得∠D ′BE =12∠DBD ′=12×70°=35°,所以∠CBE =∠A ′BC +∠D ′BE =90°.(3)不会改变.理由:由折叠的性质,得∠A ′BC =∠ABC =12∠ABA ′,∠D ′BE =∠EBD =12∠DBD ′,所以∠CBE =∠A ′BC +∠D ′BE =12(∠ABA ′+∠DBD ′)=12×180°=90°, 所以∠CBE 的大小不会改变,为定值90°.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版数学七年级下册第五章综合测试卷
【总分:100 考试时间:90分钟】
姓名:分数:
一单项选择(共5题,每题2分,共10分)
1.在下列四组线段中,能组成三角形的是( ).
A.2,2,5
B.3,7,10
C.3,5,9
D.4,5,7
2.已知一个三角形的两条边分别为:x,y,则第三边z的取值范围为( ).
A.x < z <y
B.z < x <y
C.x-y < z <x+y
D.x+y < z <x-y
3.已知△ABC,∠A=2∠C,∠B=∠A-40°,则∠A+∠C=( ).
A.28°
B.132°
C.84°
D.92°
4.已知△ABC≌△EFG,∠A=50°,∠B=60°,则∠G+∠B=( ).
A.120°
B.70°
C.50°
D.130°
5.如右图所示,已知方格纸由4个相同的正方形组成,则∠1+∠2+∠3=
().
A.135°
B.180°
C.125°
D.120°
二填空题(共8题,10空,每空2分,共20分)
6.若一个等腰三角形的两边长分别是:3cm,6cm,则这个三角形的周长为____cm.
7.若∠A=2∠C=∠B,则△ABC是______三角形.(填“锐角”“直角”或“钝角”)
8.以下有关三角形的结论中,正确的有____________(填序号即可).
①三个内角对应相等的三角形全等.
②三条边对应相等的三角形全等.
③两边和任意一角对应相等的三角形全等.
④两内角极其任意一边对应相等的三角形全等.
⑤两边和它们夹角对应相等的三角形全等.
9.如下图所示,已知AB∥CF,∠A=∠C,要使得△ABE≌△CFD,则还需添加条件:___________________________(填两个即可)
10. 如图(3),∠1=27°,∠2=83°,∠3=47°,则∠4=____°.
11.∠α+∠β=180
°,则∠β的余角为__________.
12.如下图所示,在△ABC 中,AB=AC,BC=8,BD是AC上的中线,△ABD与△BDC的周长差为2,则AB=________.
第12题图第13题图
13.如右上图所示,△ABC≌△DEF,∠B=30°,∠D=70°,则∠ACB=_____.则AB∥DE的理由是_________________.这两个角是______________.
三操作题(共2小题,第一题6分,第二题4分,共10分)(请用铅笔作答)
14.(1)已知a,b,c三条线段,按要求作图.作△ABC,使得:AC=a,CB=b,AB=c.
(2)作出△XYZ的三条高.
四解答题(共6题,第15,16题每题6分,第17,18题8分,第19,20题10分,21题12分,共60分)
15.如右图所示,在△ABC中,试证明:∠A+∠B+∠C=180°.
第10题图
16.在一个直角三角形中,一个锐角比另一个锐角的3倍多10°,求这两个锐角的度数.
17.如下图所示,∠C=∠D=90°,AC=BD ,AD 和BC 相交于点E.(1)求证:AE=BE.(2)若∠AEC=45°,AC=1,求CE 的长.
18.如下图所示,AB=AD,BC=DC,BD 相交于E ,由这些条件你能得出哪些结论?请写出4个.(注意:不可添加题目中未标出的字母,不写推理过程,只写结论)
(1)___________________________
(2)___________________________
(3)___________________________
(4)___________________________
19.如图所示,已知△ABC ,BD 平分∠ABC ,CD 平分∠ACB ,BD 和CD 交于点D ,试证明: ∠BDC=90°+21∠A.
20.如右图所示,AB=CD,BE=DF,AE=CF.求证EO=FO.
21.如右下图所示,AB=AC,AD=AE,点E在AC上,已知∠BAD=20°,求∠CDE的度数.
说明:这套试卷的难度很小,以基础题为主,适合成绩中等或中等偏下的学生。
参考答案
一 1.D 2.C 3.B 4.D 5.A
二 6. 15
7. 直角
8.②④⑤
9.答案不唯一,例:AB=CF
10. 43°
11.∠α-90°
12. 6或10
13. 80°;内错角相等,两直线平行;∠B 和∠E
三 略.
四
15.解析:方法不唯一;例如:过A 点作BC 的平行线l ,根据两直线线平行,内错角相等的定理,得到∠B ,∠C ,∠A 组成了一个平角,故其和为180°.也可以过点B 作直线l 平行于AC ,或者过点C 作直线l 平行于AB ,方法相近.
16.解析:设两锐角中其中一个锐角度数为x ,则另一个锐角的度数为103+x ,根据三角形的内角和为180°,列出方程18090)103(=+++x x ,解得20=x ,则其中一个锐角为20°,另一个锐角为7010320=+⨯°.
17.解析:
(1)易证Rt △ACE 全等于Rt △BDE (角角边),所以AE=BE.
(2)当∠AEC=45°时,△ACE 为等腰直角三角形,则AC=CE=1.
18.答案有很多,这里给出4种:
(1)△DAC 全等于△BAC (2)△DEA 全等于△BEA
(3)AC 垂直平分DB (4)∠BDC=∠DBC.
19.解析:设∠A 的度数为x ,则∠ABC+∠ACB=(180-x )°,因为BD 平分∠ABC ,CD
平分∠ACB ,所以∠DBC+∠DCB=
)180(21x -°=)2
190(x -°,所以∠BDC=180°-(∠DBC+∠DCB )=180°-)2190(x -°=)2190(x +°,即∠BDC=A ∠+︒2190.
20.解析:根据已知条件,得知△DFC 全等于△BEC (边边边),所以∠DFC=∠BEA ,所以∠CFO=∠AEO (等角的补角相等),又因为∠FOC=∠EOA (对顶角相等),AE=CF (已知),所以△COF 全等于△AOE (边边角),所以EO=FO.
21.解析:
此题初看条件似乎太少,难以入手,但是我们可以通过设未知数来简单地解决这道题. 因为已知AB=AC ,所以∠B=∠C (等边对等角),我们设∠B=∠C=x °,则等腰△ABC 的顶角∠BAC=)2180(x -°,进而得知∠DAE=)202180(--x °=)2160(x -°,因为
AD=AE ,所以△ADE 为等腰三角形,故∠ADE=∠AED=)]2160(180[2
1x --°=)10(x +°.因为∠AED 是△EDC 的一个外角,所以∠AED-∠C=∠EDC ,即:∠EDC=10)10(=-+x x °.
事实上,我们可以证明出∠BAD=2∠EDC.这道题是很典型的在解几何题时运用了方程思想,几何与代数相结合,用含有未知数的代数式表示各个角,以达到方便理解和求证的目的.
总结:这张试卷题目非常简单,但是一路做下来会发现很多题目都可以用第21题的设未知数方法求出答案,例如第3,7,11,12,16,19题.掌握了这种简便的方法在以后解几何题中会方便许多.。