电流型控制的开关电源系统
UC3844开关电源电路原理分析

UC3844开关电源电路原理分析引言UC3844是美国Unitrode公司(已被TI公司收购)生产的高性能电流型脉宽调制器(PWM)控制器。
早期的PWM控制器是电压控制型的,常用的电压型PWM控制器有TL494、TL495、SG3524、SG3525等。
电压型PWM是指控制器按反馈电压来调节输出脉宽,电流型PWM是指控制器按反馈电流来调节输出脉宽。
电流型PWM是在脉宽比较器的输入端,直接用流过输出电感线圈电流的信号与误差放大器输出信号进行比较,从而调节占空比,使输出的电感峰值电流跟随误差电压变化而变化。
由于结构上有电压环、电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型PWM控制器。
1 电流型PWM控制与电压型PWM控制原理及性能比较1. 1 电压型PWM控制电压型PWM控制系统框图如图1所示。
电源输出反馈电压U f与基准电压U g比较放大得到误差电压U e,该误差电压再与锯齿波发生器产生的锯齿波信号进行比较,产生占空比变化的矩形波驱动信号。
这种结构属于典型的单闭环系统,缺点是控制过程中主电路的电流没有参入输出控制。
由于电感的作用,电流滞后于电压的变化,因而系统响应速度慢,稳定性差。
图1 电压型PWM控制系统框图1. 2 电流型PWM控制电流型PWM正是针对电压PWM型的缺点发展起来的。
它在原有的电压环上增加了电流反馈环节,构成电压电流双闭环控制。
内环为电流控制环,外环为电压控制环。
无论电流的变化,还是电压的变化,都会使PWM 输出脉冲占空比发生变化。
这种控制方式可改善系统的电压调整率,提高系统的瞬态响应速度,增加系统的稳定性。
其控制系统框图如图2所示。
图2 电流型PWM控制系统框图1. 3 电流型PWM控制的优点a) 电压调整率好。
输入电压的变化立即引起电感电流的变化,电感电流的变化立即反映到电流控制回路而被抑制。
不像电压控制要经过输出电压反馈到误差放大器,然后再调节的复杂过程,所以响应快。
uc3844开关电源电路图解

uc3844开关电源电路图解
UC3844是一种高性能的单端输出的电流控制型脉宽调制器芯片由美国Unitrode公司生产。
控制脉宽调制开关电源的总电压相比,开关电源组成的集成电路,具有外围电路简单等优点,电压调整率好,良好的频率响应特性,稳定幅度大等等。
具有过电流限制,过电压保护和欠压锁定。
UC3844是一种单端输出电流型控制器,共内部框图如图3所示。
1脚为补偿端子,外接RC网络可补偿识差放大器的频率响应。
2脚是电压反馈端,取样电压加在误差放大器的反相输入端,与2.5V的基准电压进行比较,产生谈差电压。
3脚为电流检测输入脚,外接过流检测电阻,可构成过流保护电路,当3脚电乐等丁或高T 1V时,电流检测比较器输出高电平,复位PWM锁存器,从而关闭输出脉冲。
4脚外接定时电阻和电容,用以确定振荡器的I.。
开关电源控制模式分析

开关电源控制模式分析摘要:开关电源高频化、模块化、数字化的实现,标志着开关电源控制技术的成熟,本文分析了开关电源控制模式,在总结了开关电源发展历程的基础上分析了数字化控制及电流型控制模式的优点。
关键词:开关电源控制模式数字化控制模块化开关电源作为一种能够稳定持续输出电压的电源,其主要是由控制开关晶体管控制开通和关断时间的,因此,在开关电源中最重要、最核心的部分就是控制电路,本文进行了开关电源控制模式分析。
1 开关电源概述开关电源是伴随着电力电子技术的进步而发展起来的,由于具有高效节能、轻巧便捷等特点,开关电源得到了越来越广泛的应用。
开关电源的效率可达到85%以上,与普通的线性电源相比其效率提高了近一倍,且其可靠性也较高,采用了体积较小的散热器和滤波元件,具有良好的发展前途。
可将开关电源分为AC/AC和DC/DC电源等类型,其中DC/DC电源变换器已实现了模块化的设计和发展,得到了广大用户的普遍认可。
2 开关电源发展历程开关电源的发展已经经历了40多年,早期开发的开关频率非常低,且价格较高,只能应用于卫星等少数要求电源质量较高的领域。
但自20世纪60年代晶闸管相位控制模式出现后开关电源经历了较快的发展,70年代时制约开关电源发展的瓶颈主要是效率问题,同时由于调试工作困难而难以大规模的推广应用。
70年代后期,随着大规模集成电路技术的出现,各种专用的开关电源芯片进入市场,将控制电路、驱动电路、保护电路和检测电路封装在一起的模式非常有利于开关电源的发展,由于焊点减小提高了开关电源的可靠性,同时也由于集成化的发展是开关电源的体积减小,为应用带来了极大的便利。
如今,集成化的电源已被广泛应用于计算机、航天、彩色电视等各个领域,且随着微电子技术、半导体技术的进一步发展,功能更强大,集成度更高的超大规模集成电路的出现,电子设备的体积和重量仍在不断减小,但与之相匹配的电源体积却大的多,在现代化的电子产品中,电源的体积要比微处理器大10倍以上,因此,如何缩小电源的体积就是一项非常具有意义的研究课题。
第三节 开关电源电压型控制和电流型控制基本原理

电压型控制的优点
• 1。单环控制,易于设计和分析; • 2。噪声裕量大; • 3。多路输出时,交叉调节性能好。
负载
0
x
PWM比较器 + C1 z=xy
R3
PI调节器
X为误差信号
+
Vref
将前面各个环节的传递函数代入上述控制系统,并进行 归一化后可以得到博德图。从博德图可知,电压模式控 制的开关电源,其稳定性和动态特性之间的矛盾比较突 出。(参阅教材和参考书得到此问题的详尽解释)
电压型控制的过电流保护形式 及其常用控制芯片
一、电压控制模式和电流控制模式
开关电源的控制模式分为:电压控制模式(Voltage Mode Control)和电流控制模式(Current Mode Control)两种。 电压控制模式:仅有一个输出电压反馈控制环。 电流控制模式:输出电压反馈控制外环和电流控制内环。 电流控制模式分类:峰值电流、滞环电流和平均电流控 制模式三种。
t=0
Qs =
π ( M1 − M 2 + 2M c )
2( M 1 + M 2 )
, 通过合理选择 M c,就可以使 Qs > 0,
MC − M2 n ] e0 从而保证系统的稳定。 此时误差en = [ M C + M1
峰值电流控制的优缺点及其 集成电路芯片
优点:(1)系统得稳定性增强,响应速度快(能够直接将干
电流控制模式原理

电流控制模式原理
电流控制模式(CurrentModeControl)又称电流型控制,是一种常用的电源开关控制方式,主要用于开关电源中的稳压控制和输出电流限制。
与传统的电压控制模式( Voltage Mode Control )不同,电流控制模式的控制对象是电感或电容的电流,而不是输出电压。
其原理是通过对电感或电容的电流进行快速反馈调整,从而控制开关管的导通和断开,实现对输出电流的精准控制。
电流控制模式有多种实现方式,其中比较常见的是平均电流控制( Average Current Control )和峰值电流控制( Peak Current Control )。
平均电流控制是通过对电感或电容的平均电流进行反馈控制,实现对输出电流的控制;峰值电流控制则是通过对电感或电容的峰值电流进行反馈控制,实现对输出电流的控制。
两种方式各有优缺点,需要根据具体情况进行选择。
电流控制模式的优点是响应速度快,稳定性好,输出电流波形平稳,对于负载变化响应迅速,可以有效提高系统的动态响应能力。
同时,电流控制模式能够实现电感或电容的电流保护,避免输出电流过载或瞬间过大对系统带来的损害。
因此,在高精度稳压和大功率开关电源中,电流控制模式被广泛应用。
总之,电流控制模式是一种高效、稳定、可靠的开关电源控制方式,具有广泛的应用前景。
- 1 -。
开关电源电流控制原理

开关电源电流控制原理开关电源电流控制原理1. 引言在现代电子设备的设计和应用中,开关电源是一种常见的电源供应方案。
相比传统的线性电源,开关电源具有高效率、小体积、低成本等优点,因此被广泛应用于各个领域。
在开关电源中,电流控制是一个关键的技术,通过合理的电流控制手段可以实现电源的稳定工作和优化性能。
本文将从开关电源电流控制的原理出发,深入探讨其深度和广度。
2. 开关电源的基本原理开关电源主要由变压器、整流电路、滤波电路和稳压电路等几个基本部分组成。
其中,变压器起到了电压变换的作用,整流电路将交流电转换为直流电,滤波电路用于去除直流电中的纹波,稳压电路则确保输出电压的稳定。
这些部分协同工作,实现了开关电源的正常运行。
3. 开关电源电流控制的基本原理在开关电源中,电流控制的基本原理是通过控制开关管的导通和截止时间来实现的。
电流控制的主要手段有三种:固定频率恒定占空比控制、固定占空比变频控制和边界控制。
固定频率恒定占空比控制是最常用的一种方法,通过调节开关管的导通时间和截止时间来控制输出电流的大小。
固定占空比变频控制则是在保持占空比不变的情况下改变开关频率来控制电流。
而边界控制是根据输入电压和输出电流的边界条件来控制开关管的导通和截止时间。
4. 开关电源电流控制的影响因素在进行开关电源电流控制时,有一些关键因素需要考虑。
首先是开关管的导通电流和截止电流。
导通电流的大小决定了输出电流的上限,而截止电流的大小决定了输出电流的下限。
其次是开关管的导通和截止时间。
导通时间的长短决定了输出电流的持续时间,截止时间的长短决定了输出电流的间断时间。
输入电压和负载变化也会对电流控制产生影响。
5. 开关电源电流控制的优化策略为了实现更好的电流控制效果,可以采取一些优化策略。
首先是采用合适的控制算法来控制开关管的导通和截止时间。
常见的控制算法有PID控制、模糊控制和神经网络控制等。
其次是使用合适的电感和电容进行滤波,以减小输出电流的纹波。
开关电源电流控制模式工作原理

开关电源电流控制模式工作原理1. 电流控制模式简介开关电源的电流控制模式是一种常见的控制方法,主要用于稳定和调节电源的输出电流。
通过检测电源的输出电流并对其进行相应的调节,可以确保输出电流保持在一个预设的范围内。
这种控制模式在各种电子设备和系统中得到了广泛应用,如计算机、通信设备、医疗设备等。
2. 反馈环路组成电流控制模式的开关电源通常包含一个反馈环路,用于将输出电流与预设值进行比较,并根据比较结果进行调节。
反馈环路主要由电流检测器、误差放大器、调节器、PWM比较器和开关管等元件组成。
3. 误差放大器误差放大器是反馈环路中的一个关键元件,用于放大输出电流与预设值之间的误差。
误差放大器的输出与输入成比例关系,当输出电流偏离预设值时,误差放大器的输出会相应地增加或减小,以驱动调节器进行相应的调节。
4. 调节器调节器是反馈环路中的另一个重要元件,它通常采用PID(比例-积分-微分)控制器或类似的控制器。
调节器接收误差放大器的输出信号,并根据预设的控制参数(如比例系数、积分系数和微分系数)计算出一个控制信号。
该控制信号用于调节PWM比较器的输出,从而控制开关管的通断时间。
5. PWM比较器PWM比较器是开关电源中的另一个关键元件,它根据调节器输出的控制信号和振荡器输出的三角波信号进行比较,产生一个脉宽调制信号。
该信号的脉冲宽度与控制信号的大小成比例关系,从而控制开关管的通断时间,进而调节输出电流的大小。
6. 开关管控制开关管是开关电源中的主要执行元件,用于控制电源的通断。
在电流控制模式下,开关管的通断时间由PWM比较器输出的脉宽调制信号控制。
当脉宽调制信号为高电平时,开关管导通,电能输出到负载;当脉宽调制信号为低电平时,开关管关断,停止电能输出。
通过调节脉宽调制信号的占空比(即高电平时间占一个周期的比例),可以调节输出电流的大小。
7. 输出电压调整在某些情况下,开关电源需要具备输出电压调整功能。
通过在反馈环路中引入输出电压检测和相应的调节机制,可以实现对输出电压的稳定和调节。
基于UC3842的电流控制型脉宽调制开关稳压电源的研究

基于UC3842的电流控制型脉宽调制开关稳压电源的研究摘要:介绍了UC3842的特点和原理,并对其构成的电流控制型脉宽调制开关稳压电源进行了分析和实验。
实验结果表明,该开关稳压电源具有频响快、电压调整率和负载调整率高的特点,是一种性能较好的开关稳压电源。
关键词:UC3842;开关稳压电源;电压调整率;负载调整率1 引言电源装置是电力电子技术应用的一个重要领域,其中高频开关式直流稳压电源由于具有效率高、体积小和重量轻等突出优点,获得了广泛地应用。
开关电源的控制电路可以分为电压控制型和电流控制型,前者是一个单闭环电压控制系统,系统响应慢,很难达到较高的线形调整率精度;后者是一个电压、电流双闭环控制系统,电流控制型较电压控制型有不可比拟的优点。
本文介绍的UC3842是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片,由该集成电路构成的开关稳压电源和电压控制型脉宽调制开关稳压电源相比具有以下特点:(1)管脚数量少,外围电路简单,价格低廉;(2)电压调整率很好;(3)负载调整率明显改善;(4)频响特性好,稳定幅度大;(5)具有过流限制、过压保护和欠压锁定功能。
因此他是目前比较理想的新型的脉宽调制器,其内部原理框图如图1所示。
2 UC3842简介2.1 主要特点·工作电压8~40 V·电流传感和电压反馈输入-0.3~+5.5 V·误差放大输出吸入电流10 mA·欠压锁存功能·占空比可调·最高开关频率500 kHz,稳定度0.2%,电源效率高·内部有高稳定度的基准电压源5.0 V·稳定性能好,电压调整率很容易达到0.01%,启2.2 工作原理UC3842为8脚双列直插式封装形式,如图1所示,他内部主要由5.0 V基准电压源、用来精确地控制占空比调定的振荡器、降压器、电流测定比较器、PWM 锁存器、高增益E/A误差放大器和适用于驱动功率MOSFET的大电流推挽输出电路等构成。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电流型控制的开关电源系统
电流型控制的开关电源系统有三种控制方式:即峰值电流控制、平均电流控制和滞环电流控制。
图1 所示即为电流型控制的开关电源系统结构框图。
它包含有两个负反馈控制环:内环是电流环,外环是电压环。
电压控制器的输出控制信号ue 作为电流环的给定信号;电流环由电流检测(如直流电流互感器)、处理(I-U 转换)和电流控制器等组成;被检测的电流可以是电感电流iL,也可以是主开关管的电流iv,通过电流检测电阻Ri,将检测到的电流(iL 或iv)转换成电压iLRi 或ivRi,然后再与电流给定信号ue 进行比较,并将得
到的误差信号经过电流控制器放大之后,通过PWM 脉冲调制器进行调制,产生出占空比d 去控制开关转换器的主开关管V 的通/断。
为了介绍简单,本文
只介绍连续导电模式(CCM)。
图1 电流型控制的开关电源系统结构框图
图2 所示的电源系统框图即为电流型控制开关电源系统的方框图,也即开关电源系统的频域模型。
图中kv(s)为电压控制器(补偿网络)的传递函数;ki(s)为电流控制器(补偿网络)的传递函数;Fv、Fm 分别为电压检测元件和脉宽调制器的传递函数;Ri 为电流采样电阻。
图2 电流型控制的开关电源系统方框图
tips:感谢大家的阅读,本文由我司收集整编。
仅供参阅!。