地埋管计算方法
地埋管施工方案

3、换热参数
a、为了避免热短路,任何形式的换热器都对换热器之间的距离有一定要求,具体确定这个距离要考虑多方面的因素,最重要的是确定换热器的运行时间,对竖埋套管换热器而言,换热模型是以埋管为中心的圆柱面辐射状向外传热,且这种传热是以时间为坐标的不稳定传热。影响单根竖管的换热距离一般为1.5m和3m。短时间和间歇运行的换热管间距在1.5m较合适,长时间连续运行的间距在3m以上较合适。
b、土壤打孔直径为150mm,完孔后,迅速提起所有钻杆,用顶端钻杆插入U形管接头处所捆扎的钢筋内,开始下管,用钻杆下管时要注意监测U形管上所接的压力表,大幅下降则说明井壁磨破了管道,需要提起修补。
(2)人工下管:有些钻机钻杆太粗无法用钻杆下管,只得采用人工下管:在一段外径100mm,长度1500mm的钢管内,浇注混凝土,凝固后捆绑在U形管接头处,然后人工放入孔内。
b、土壤热物性试验结果表明:本地区适合采用地埋管地源热泵空调系统,冬季初始温度较高,利于冬季取热供暖;地源热泵地埋换热器的取热过程的主要热阻是土壤,但钻孔深度较深时,建议采用PE100的聚乙烯管材。
c、双U时,地下放热性能(夏季):按管长计算为60-65W/m,按井深100米,埋管外径为32的管计算;
6.下管到底后,即刻慢填回填物料,可间歇回填,确保回填密实。
7.密封所下好的U形管上端口,异物不得进入。
8.回填结束后,可用绳索捆绑住PE管地面外漏部分,并压一重物,目的是防止万一回填不实时,U形管浮出地面,造成损失,第二天即可去除捆绑。
9.所有直埋管路施工完毕后,拆除钻机,开挖1m-1.5m深的沟槽,沟槽内薄填一层砂土,管子按7‰坡度接至支集水器和支分水器(集分水器端高),热熔至支集分水器上的Φ75承插式直通上,并将支集水器和支分水器固定安装在一专用检查井内,各个支集分水器上的汇水主管接至机房内的主集分器上,最后再将主集分水器上的汇水主管接至主机,在此整个过程中密切注意管路走向,保证不气堵。
地埋管道长度量测方法

地埋管道长度量测方法嘿,咱今儿就来说说这地埋管道长度量测的事儿!你可别小瞧了这个,就好像你要知道一条路有多长才能规划好怎么去走一样,这地埋管道的长度量测那也是相当重要的呀!咱先来说说最直接的办法,那就是用尺子去量呗!就跟咱平时量个东西长短差不多。
可这地埋管道它是埋在地下的呀,你总不能直接把它挖出来量吧,那多费劲呀!所以这时候就得动点小脑筋啦。
咱可以从管道的起始点开始,沿着它大概的走向,用一些标记来记录下走过的距离。
这就好比你走路的时候,隔一段就放个小石头做个记号一样。
然后再把这些标记之间的距离加起来,不就大概能知道管道有多长啦。
还有啊,现在科技这么发达,咱也可以借助一些高科技工具呀。
比如说什么全站仪啊,它能很精确地测量出距离呢。
就好像给你配了个超级厉害的眼睛,能一下子就看清多远的距离。
你想想看,要是没有这些方法,那多麻烦呀。
就好比你要去一个地方,却不知道路有多远,那心里得多没底呀。
那怎么安排行程,怎么准备东西呀?这地埋管道也是一样的道理呀。
而且呀,这量测的时候可得仔细喽,不能马马虎虎的。
万一量错了,那后续的工作不都得受影响呀。
这就好像你算错了一道数学题,后面的答案可能就都不对啦。
咱再打个比方,这地埋管道就像是一条隐藏在地下的秘密通道,你得想办法把它的长度给搞清楚,才能更好地利用它呀。
要是量得不准确,那不是就像在黑暗中摸索一样,容易出问题嘛。
还有哦,不同的管道情况可能还不一样呢。
有的可能弯弯曲曲的,那你就得更小心地去量;有的可能埋得特别深,这又增加了难度呢。
但咱可不能被这些困难吓倒呀,办法总比困难多嘛!你说,这地埋管道长度量测是不是很有意思呀?咱可得认真对待,不能马虎大意呀!只有把它量准确了,咱才能更好地进行后续的工作呢。
所以呀,别小看了这小小的量测工作,它可关系重大着呢!。
地埋管长度计算中关键参数的计算方法研究

第$%卷第%期土木建筑与环境工程L A D 4$%<A 4%&++,年&月S A T @G 7D A U\C X C D ;@8V C E H 8E T @7De R G X C @A G 9H G E 7D R G K C G H H @C G K^H B 4&++,地埋管长度计算中关键参数的计算方法研究田慧峰% 曹伟武&%4上海理工大学动力工程学院 上海&+++,$ &4上海工程技术大学机械工程学院 上海&++$$2收稿日期 &++3'+/'%&基金项目 上海市重点学科建设项目"6%*+%#作者简介 田慧峰"%,/,'#%男%上海理工大学博士研究生%主要从事建筑节能+能源系统优化等方面的研究%"R '97C D#E V T C U H G KK 97C D 48A 9!摘!要 地埋管换热器是地源热泵系统的核心组件 文中对基于线热源理论的地埋管换热器长度计算中的关键参数计算进行了讨论 将典型气象年数据应用在确定最热月 最冷月和地表面年平均温度上 引入平衡温度的概念 计算建筑物逐时负荷 进而提出由建筑物逐时负荷和水源热泵机组性能拟合曲线 计算地源热泵系统制冷运行系数和制热运行系数的方法 给出热泵机组最高进液温度 最低进液温度 钻孔热阻和土壤热阻等地埋管长度计算关键参数的选取 计算方法 最后提出垂直Y 形地埋管换热器长度计算步骤关键词 地埋管地源热泵系统 地埋管换热器 典型气象年 平衡温度中图分类号 >Z %&*文献标志码 ;文章编号 %2/*'*/2* &++, +%'+%%+'+*123B 35@,4,;3734:8372(6(<-,)'.),7+0*M 3(7234;,)N 3,7&O '2,0*34D 30*72;8#)",13<&02%%:#$=&13>,&"%4\A D D H K H A U6A N H @R G K C G H H @C G K %#V 7G K V 7CY G C X H @J C E F A U #8C H G 8H 7G ->H 8V G A D A K F %#V 7G K V 7C &+++,$%64[4\V C G 7)&4\A D D H K H A U5H 8V 7G C 87D R G K C G H H @C G K %#V 7G K V 7CY G C X H @J C E F A UR G K C G H H @C G K #8C H G 8H %#V 7G KV 7C &++$$2%64[4\V C G 7#A >:74,'7'>V H K H A E V H @97D V H 7E H c 8V 7G K H @C J E V HP H F 8A 9I A G H G E A U K @A T G -'8A T I D H -V H 7E I T 9I J F J E H 9J 4?H -C J 8T J J E V HP H FI 7@79H E H @J 9H E V A -A U87D 8T D 7E C G KK H A E V H @97DV H 7EH c 8V 7G K H @D H G KE VB 7J H -A GD C G H 'J A T @8H E V H A @F 4>F I C 87D9H E H A @A D A K C 87D F H 7@-7E 7C JT J H -E A-H E H @9CG HE V HV A E EH J E9A G E V %E V H8A D -H J E9A G E V7G -7G G T 7D 7X H @7K H J T @U 78H E H 9I H @7E T @H 4>V H B T C D -C G K V A T @D F D A 7-87GB H A B E 7C G H -B F C G E @A -T 8C G K E V H 8A G 8H I E A U H f T C D C B @C T 9E H 9I H @7E T @H 4>V H 8A A D C G K U @78E C A G 7G -E V H V H 7E C G K U @78E C A G E V H G 87GB H 87D 8T D 7E H -TJ C GK B T C D -C G K V A T @D F D A 7-7G -I H @U A @97G 8H I 7@79H E H @J8T @X H 'U C EA U7N 7E H @J A T @8HV H 7E I T 9I T G C E 4>V H 9H E V A -U A @J H D H 8E C G K E V HV A E E H J E 7G -D A N H J E H G E H @C G K U D T C -E H 9I H @7E T @H 7G -87D 8T D 7E C G K E V H B A @H V A D H 7G -K @A T G -E V H @97D @H J C J E 7G 8H C J K C X H G 4;X H @E C 87DY 'E T B HV H 7E H c 8V 7G K H @D H G K E V87D 8T D 7E C A G I @A 8H -T @H C J I @A IA J H -4B 35C (46:'K @A T G -'8A T ID H -V H 7E I T 9I JF J E H 9)K H A E V H @97DV H 7EH c 8V 7G KH @)E FI C 87D9H E H A @A D A K C 87D F H 7@)H f T C D C B @C T 9E H 9IH @7E T @H !!地源热泵是随全球能源环境问题的可持续发展而兴起的一种节能环保的地热利用技术!我国3可再生能源法4已于&++1年颁布%同年推出了国家标准3地源热泵系统工程技术规范4%为我国推广地源热泵技术的应用提供了政策保障和技术准则!地埋管地源热泵系统是地源热泵系统的一种形式%由于该系统只取热%不取水%没有地下水位下降和地面沉降问题%不存在腐蚀和开凿回灌井问题%也不存在对大气排热+排冷的热污染和排烟+排尘+排水等污染问题%所以应用最为广泛!地埋管换热器是地埋管欢迎访问重庆大学期刊网 地源热泵系统不同于传统空调系统之处%亦是体现其优越性的关键性组件!在实际地埋管地源热泵工程中%由于更换和维修的不便%要求地埋管换热器的设计寿命至少应在&+ $+年以上!由于地埋管换热器设计的好坏%直接关系到地埋管换热器的性能%因此%对地埋管换热器的长度计算进行优化研究%找出更适合实际工程且操作性强的地埋管换热器长度计算方法%很有必要和现实意义!目前我国工程技术人员进行地埋管换热器长度计算%大多采用估算方法%即根据经验值得出单位管长"或孔长#的换热量%然后用夏季或冬季地下负荷除以单位管长的换热量得到地埋管设计长度!为了保证系统的空调能力%使用该方法设计时单位管长"或孔长#换热量的选取均偏于保守%从而导致系统过大%不必要地增加初投资!也有少部分设计人员采用国外软件进行地埋管长度计算%例如R R_+ =\"6\;!\等$%&%由于这些软件输入复杂且许多参数不易获得%难于在国内推广!线热源理论"!C G H'J A T@8H E V H A@F#较早应用于地埋管换热器长度计算中%该理论没有考虑进水管内流体的温度分布和出水管流体的温度分布是不一致的%存在不足!其优点是计算快捷%便于工程应用!文献$&&建立了垂直Y形地埋管换热器的三维模型%采用\^_软件对埋管深度+进口水温+管内流速等一系列因素在冬夏不同工况下对埋管传热量的影响进行了数值模拟研究%为地埋管长度计算提供了有益参考%但因其建模+参数设置均较复杂%暂无法推广使用!在3地源热泵系统工程技术规范4中提供了垂直Y形地埋管换热器长度计算方法%该方法基于线热源理论$$&!由于该方法涉及到几个不易直接获得的数据"例如大地热阻+制冷制热运行系数等#%使得该方法在实际工程中难以应用!本文基于线热源理论%引入平衡温度的概念%运用典型气象年数据%给出制冷+制热运行系数等地埋管长度计算中关键参数的计算方法%并提出了易操作应用的地埋管长度计算步骤!!!建筑物逐时负荷与水源热泵机组性能确定!!建筑物全年逐时负荷和水源热泵机组性能是地埋管换热器长度计算的必要前提!!4!!建筑物逐时负荷使用_]R'&+R G H@K F6D T J等建筑能耗模拟软件可以得到建筑全年逐时负荷%但该方法费时费力%且不易掌握%在实际工程中应用较少!在计算出建筑物夏季峰值冷负荷4M\和冬季峰值热负荷4M"后%可根据以下方法计算建筑物逐时负荷!这里先引入平衡温度的概念!夏季平衡温度2#M是指建筑物不需要制冷时所对应的最高室外温度)冬季平衡温度2?M是指建筑物不需要供热时的最低室外温度!当室外温度在冬季平衡温度和夏季平衡温度之间时%建筑物既不需制冷也不需供热!文献$*&讨论了平衡温度%并给出了推荐取值!设冬季空调室外计算温度为2_?)夏季空调室外计算温度为2_#!则当室外温度2V@大于夏季平衡温度2#M时%建筑物在该时刻的冷负荷为'4M\V@)4M\2_#-2#MD"2V@-2#M#"%#当室外温度2V@小于冬季平衡温度2?M时%建筑物在该时刻的热负荷为'4M"V@)4M"2?M-2_?D"2?M-2V@#"&# !4#!水源热泵机组的性能水源热泵机组的性能主要与进液温度"R G E H@ ^D T C->H9I H@7E T@H%R^>#有关%R^>会随室内负荷以及水源热泵本身特性的变化而变化!如果要让地埋管换热器的设计更符合实际情况%最好的方法是让用户输入水源热泵的参数!考虑到大多数水源热泵厂商给出的数据为对应R^>下的热泵制冷量*制热量+输入功率%所以在本文的设计方法中%将给定的水源热泵制冷量+制热量+输入功率拟合成R^>的多项式!这样%只需确定R^>就可以根据拟合公式计算出热泵的制冷量+制热量和输入功率!图%是根据美意5#[D P"P N*Q机组性能参数拟合曲线根据图%可计算在所需R^>下的水源热泵机组制冷能效比R R[和制热性能系数\]6!#!典型气象年数据应用典型气象年是以近$+年气象数据的月平均值%%%第%期田慧峰 等 地埋管长度计算中关键参数的计算方法研究欢迎访问重庆大学期刊网 为依据%从近%+年的资料中选取一年各月接近$+年的气象参数平均值%并对月间做平滑处理!九十年代以来%典型气象年被广泛应用到建筑能耗模拟领域!利用典型气象年数据可以得到地表面年平均温度+最热月+最冷月等用于地埋管换热器长度计算的重要参数!#4!!地表面年平均温度确定在地埋管地源热泵的研究工作中%必须确定不同深度的土壤温度%最好的办法是采用现场测试工具!对于工程设计而言%只需要确定打孔深度范围内的土壤温度平均值即可!经过比较计算$1&%地表面年平均温度大致等于全年空气温度的平均值%所以本文中的地表面年平均温度是根据典型气象年全年空气温度数据%计算其平均值得到!#4#!最冷月和最热月确定典型气象年数据提供了全年逐时室外干球温度%通过计算可得到每月室外干球温度的平均值%最大者即为最热月%最小者即为最冷月!例如%经过计算可得出上海的最冷月为%月%平均温度为*4$i )最热月为3月%平均温度为&/4/i !"!制冷运行系数和制热运行系数制冷运行系数用于描述热泵的间歇运行%定义为';8)最热月份运行小时数最热月份天数D &*"$#制热运行系数定义为';V )最冷月份运行小时数最冷月份天数D &*"*#为了计算;8和;V %需要首先确定最热月和最冷月运行小时数!最热月某时刻的运行率可使用下式计算'E 8)4M \V @48"297c #"1#最冷月某时刻的运行率为'E V )4M "V @4V "29C G#"2#其中'48"297c #为热泵机组在297c 下的制冷量%P ?)4V "29C G #为热泵机组在29C G 下的制热量%P ?!当E 8和E V 大于%时取%!对整个最热月的E 8进行累加即可得到最热月运行小时数)对整个最冷月的E V 进行累加即可得到最冷月运行小时数!$!地埋管长度计算可采用以下工程设计计算公式来确定地埋管换热器的长度$*%2&'制冷工况':8)%+++48"1B +1f D ;8#297c -2+9R R [+%"#R R ["/#供热工况':V )%+++4V "1B +1f D ;V #2+9-29C G \]6-%"#\]6"3#式中%:8,,,由制冷工况确定的地埋管换热器所需长度%9):V ,,,由供热工况确定的地埋管换热器所需长度%9)48,,,水源热泵机组额定制冷量%P ?)4V ,,,水源热泵机组额定制热量%P ?);8,,,制冷运行系数);V ,,,供热运行系数)297c ,,,水源热泵机组制冷时冷凝器设计最高进液温度%i )R R [,,,在297c 下水源热泵机组的制冷能效比)29C G ,,,水源热泵机组制热时蒸发器设计最低进液温度%i )\]6,,,在29C G 下水源热泵机组的制热性能系数)2+9,,,地表面年平均温度%i )1B ,,,钻孔热阻%"92Z #*?)1f ,,,土壤热阻%"92Z #*?!式"/#和式"3#中仍需讨论的有297c +29C G +1B 和1f !$4!!热泵机组最高进液温度297c 和最低进液温度29C G在用户侧进口水温或空气温度一定的情况下%热泵机组的制冷或制热能力是由机组进液温度"即地埋管换热器出口流体温度#决定的%而地埋管换热器的长度与热泵机组的进液温度有关$,'%&&!在制冷工况时%设定的热泵机组最高进液温度越低%机组运行的\]6就越高%机组的运行费用就越低%但所需的地埋管换热器的长度就越长%系统的初投资就越高!可见这个问题涉及到热泵系统最佳经济性的研究!目前国内仍缺乏这方面的研究%也没有统一的计算方法!根据文献$/&%对垂直地埋管换热器%夏季的设计最高出口温度一般为土壤温度加上%% %*i %冬季的设计最低出口温度为土壤温度减去3 %%i !文献$3&通过编制的设计软件计算表明%按照上述方&%%土木建筑与环境工程!!!!!!!!!!!!!!!!第$&卷欢迎访问重庆大学期刊网 法确定的地埋管换热器的初投资太大%建议热泵机组的设定温度如下'夏季制冷时%地埋管换热器循环流体最高出口温度为当地地下岩土温度加上%1 &+i )冬季制热时%地埋管换热器循环流体最低出口温度为地下岩土温度减去%+ %1i !实际工程中%若埋管场地受限%水温将超过这个限度%采用复合式热泵系统比较经济!文献$2&推荐297c ($/i %29C G )& 1i !设计者可按照上述方法之一取值!$4#!钻孔热阻1B钻孔热阻1B 取决于钻孔直径F B +埋管内径F IC +埋管外径F I A +回填料导热系数 K 及其热阻1K +钻孔内Y 形埋管数量及埋管在钻孔内的位置$%$'%1&%也取决于管壁热阻1'%对流换热热阻1E !具体计算方法参见文献$*&!$4"!土壤热阻1f按照文献$%&%1f 可近似表达为'1f )%& D G *槡 .*- "#&% *, , 7",#1f )%& D G G &.*%) 7"%+#式中%1f :钻孔周围的土壤热阻%"92Z #*?) :土壤导热系数%B *"92Z #) :运行时间%J ).*:钻孔半径%9)G :钻孔深度%9) :欧拉常数%-+<1//&) 7:由非稳态传热达到稳态传热所需时间%简称稳态时间% 7)G &*",H #%J ) *:钻孔内近似为稳态所需最短时间%由式"%%#描述! *)1.&*"%%#其中% 为土壤的导温系数%9&*J )%!地埋管换热器长度计算步骤根据上面的论述%地埋管换热器长度的计算步骤总结如下'%#根据建筑物的结构尺寸%确定建筑物的设计冷负荷和设计热负荷!&#根据设计地点典型气象年室外逐时温度计算出地表面年平均温度2+I %确定机组的最高进液温度297c 和最低进液温度29C G %然后根据设定的温度和设计负荷选取水源热泵机组型号及台数!$#根据水源热泵机组的水流量确定地埋管并联数!*#确定钻孔+地埋管以及土壤参数%包括钻孔直径+地埋管管材+地埋管规格+Y 形管布置方式+土壤导热系数+土壤热扩散率等!1#由设计冷负荷和水源热泵机组在297c 下的制冷R R [确定地埋管换热器的放热量)由设计热负荷和水源热泵机组在29C G 下的制热\]6确定地埋管换热器的吸热量!2#根据典型气象年室外逐时温度确定最热月和最冷月!/#根据设计冷负荷和最热月室外逐时温度计算出建筑物的逐时冷负荷)根据设计热负荷和最冷月室外逐时温度计算出建筑物的逐时热负荷!3#由建筑物的逐时冷负荷+水源热泵机组在297c下的制冷量计算出;8)由建筑物的逐时热负荷+水源热泵机组在29C G 下的制热量计算出;J !,#根据地埋管单管流量+地埋管内径以及流体特性参数计算管内流体流速6"+18和5.等!%+#根据;8+;V 和钻孔参数分别计算制冷工况和制热工况下的土壤热阻1K )根据钻孔+地埋管+管内流体参数以及土壤参数计算钻孔热阻1*!%%#最后根据式"/#和式"3#计算制冷工况下地埋管换热器所需长度:8和供热工况下地埋管换热器所需长度:V !:8和:V 中较大者为设计长度!L !结!论论文对基于线热源理论的地埋管换热器长度计算中的关键参数计算进行了讨论%并探讨了地埋管换热器的长度计算步骤!结论表明'%#运用典型气象年数据%引入平衡温度概念%在已知建筑物设计负荷的前提下%可计算出建筑物的逐时负荷)&#可将水源热泵机组制冷量+制热量拟合为进液温度"R ^>#的二次曲线%并应用到地埋管换热器长度计算中)$#运用典型气象年数据及建筑物逐时负荷%可以求出地埋管换热器长度计算的重要参数,,,制冷运行系数;0和制热运行系数;J !笔者已根据文中计算步骤编制了地埋管换热器设计软件,,,="R >A A D !参考文献$%&田慧峰%王鹏英%曹伟武4大地耦合热泵系统国内外研究近况$S &4制冷与空调%&++2%2"$#'%1'&+4!!>W ;<"Y W '^R <=%?;<=6R <='O W <=%\;]?R W '?Y4_A 9H J E C 87G -A X H @J H 7JJ E T -F A U K @A T G -'8A T I D H -V H 7E I T 9I J F J E H 9$S &4[H U @C K H @7E C A G 7G -;C @'8A G -C E C A G C G K%&++2%2"$#'%1'&+4 下转第%&*页$%%第%期田慧峰 等 地埋管长度计算中关键参数的计算方法研究欢迎访问重庆大学期刊网 .M,-,.G E-K P G K.P,L B@E.M,L K P@Q S A-Q O L B R,G E-@Q[E@E L G K L,LQ K F S K E F BK L;Q-G M E,P G'M K L, I *",-G M <.K E L.E6-Q L G K E-P 133? $% 4 $0?V$?%$1 I9'7##*+/L,@K.P Q S S F O K B K L N Q-Q O P@E B K, ! *;E Rb Q-Z "F P E[K E- $C01*$2 叶为民 金麒 等*地下水污染试验研究进展 I *水利学报 133% 2) 1 1%$V1%%*!!b"=":V!:; I:;J: E G,F*8E[K E R Q L,B[,L.EK L E\N E-K@E L G,F P G O B/Q S N Q F F O G K Q L B K P N E-P K Q L K L A-Q O L B R,G E- I *I Q O-L,FQ S]/B-,O F K."L A K L E E-K L A 133% 2) 1 1%$V1%%*$4 ']"&9U:"8U8 =9U U9'"8#*1V+ "\N E-K@E L G,F:L[E P G K A,G K Q L Q S<O-S,.G,L G!Q Y K F K T,G K Q L Q S U K A M G;Q L,_O E Q O P D M,P E U K_O K B I *9<'";,G K Q L,F 'Q L[E L G K Q L =,P M K L A G Q L+*'* ;Q[E@Y E-$1V$4;E R b Q-Z 9<'" $C C) 2%0V2)?*$% 黄军旗*求解水动力弥散方程的多单元均衡法 I *水动力学研究与进展 9辑 $C C3 % 4 $C V1)*!!]^9;WI^;V J:*9!E G M Q BQ S!O F G K V E F E@E L G#,F,L.E S Q-<Q F[K L A]/B-Q B/L,@K.+K P N E-P K Q L"_O,G K Q L I *I Q O-L,F Q S]/B-Q B/L,@K.P $C C3 % 4 $C V1)*$) 吕凤翥*'((语言基础教程 ! *北京 清华大学出版社 $C C C*!!U&6";W V H]^*'((Y,P K.G E,.M K L A Y Q Q Z ! * #E K X K L A >P K L A M O,^L K[E-P K G/D-E P P $C C C*$0 薛禹群*地下水动力学 ! *北京 地质出版社 $C C0* !!a^"b^V J^;*+/L,@K.,F!E.M,L K.P Q S W-Q O L B =,G E- ! *#E K X K L A W E Q F Q A/D-E P P $C C0*编辑!胡!玲#################################################上接第$$2页1 吴玉庭 顾中煊 马重芳 等*^型管传热量影响因素的数值模拟研究 I *工程热物理学报 1330 1? $ $$)V$$?*!!=^b^V>:;W W^H]7;W V a^9; !9']7;W V 69;W E G,F*;O@E-K.,F P G O B/Q L G M E K L S F O E L.K L A S,.G Q-PQ L G M E M E,G G-,L P S E-Q S G M E^V G O Y E I *I Q O-L,F Q S "L A K L E E-K L A>M E-@Q N M/P K.P 1330 1? $ $$)V$$?*2 田慧峰*垂直^形地埋管换热器传热模型和设计方法+ *上海 上海理工大学 133)*4 谢汝镛*地源热泵系统的设计 I *现代空调 133$ 222V04*!!a:"8^V b7;W*+E P K A L@E G M Q BQ SW-Q O L B V P Q O-.EM E,G N O@N P/P G E@ I *!Q B E-L9K-'Q L B K G K Q L K L A*133$ 2 22V04*% 丁勇 刘宪英 胡鸣明等*地热源热泵系统实验研究综述 I *现代空调 133$ 2 $$V21*) 中华人民共和国建设部*W#%32))V133%地源热泵系统工程技术规范 < *北京 中国建筑工业出版社 133%* 0 <>"&"`*+E P K A L.Q L P K B E-,G K Q LS Q-A-Q O L B,L B R,G E-P Q O-.EM E,G N O@N P K LP Q O G M E-L.F K@,G E P I *9<]89"G-,L P*$C?C C% $ $$2C V$$4?*? 曲云霞*地源热泵系统模型与仿真 + *西安 西安建筑科技大学*1334*C 98:6]"D#9<U:*>M E-@Q B/L,@K.,L,F/P K P Q S,A-Q O L B V P Q O-.E M E,G N O@N P/P G E@S Q-B K P G-K.G M E,G K L A I * :L G E-L,G K Q L,F I Q O-L,F Q S"L E-A/8E P E,-.M 133% 1C 0 )0$V)?0* $3 +:97;9:V8"; U:J:;V b^; 69;W H]97V ]7;W*]E,G G-,L P S E-K L A-Q O L BM E,GE\.M,L A E-PR K G M A-Q O L B R,G E-,B[E.G K Q L I *:L G E-L,G K Q L,F I Q O-L,F Q S >M E-@,F<.K E L.E P 1334 42 $1 $132V$1$$*$$ 7;+"87H W";"8 98:6]"D#9<U:*"\N E-K@E L G,F N E-S Q-@,L.E,L,F/P K PQ S,P Q F,-,P P K P G E B A-Q O L B V P Q O-.E M E,G N O@NA-E E L M Q O P EM E,G K L A P/P G E@ I *"L E-A/,L B #O K F B K L A P 133% 20 $ $3$V$$3*$1 #^8`]98+<9;;"8*'O--E L G P G,G O P Q S A-Q O L B P Q O-.E M E,G N O@N P,L B O L B E-A-Q O L B G M E-@,FE L E-A/ P G Q-,A E K L"O-Q N E I *W E Q G M E-@K.P 1332 21 4 %0C V 1??*$2 !^<>969;9U U :`!">"<";*"\N E-K@E L G,FG M E-@,F N E-S Q-@,L.EE[,F O,G K Q LQ S,M Q-K T Q L G,F A-Q O L B VP Q O-.E M E,G N O@N P/P G E@ I *9N N F K E B>M E-@,F "L A K L E E-K L A 1334 14 $4 11$C V1121*$4 ]:`!">"<";;9 !^<>969:;9U U:# !"]!">"<";*>E.M L Q E.Q L Q@K.,N N-,K P,F Q S, A-Q O L B P Q O-.EM E,G N O@N P/P G E@S Q-,M E,G K L A P E,P Q L K L E,P G E-L>O-Z E/ I *"L E-A/'Q L[E-P K Q L,L B !,L,A E@E L G*133) 40 C $1?$V$1C0*$% H";W]"V b: +:97;9:V8"; 69;W H]97V ]7;W*"S S K.K E L./Q S[E-G K.,F A E Q G M E-@,F M E,G E\.M,L A E-P K L G M E A-Q O L BP Q O-.EM E,G N O@N P/P G E@ I *I Q O-L,F Q S>M E-@,F<.K E L.E*1332 $1 $ 00V?$*编辑!陈!蓉41$土木建筑与环境工程!!!!!!!!!!!!!!!!第21卷欢迎访问重庆大学期刊网 。
埋地管道温降计算

2.92 0.274 260000 0.577 2244
W/m2℃m
m3/d
J/kg℃
a= 已知: t 0= t 1= x=
0.53535
10 ℃ 70 ℃ 1.3 km
则输气管道沿线任意点的气体温度计算如下: tx=t0+(t1-t0)e-ax tx= 39.91804 ℃
埋地管道温降计算
埋地管道温降计算参见《输气管道工程设计规范》GB50251-94, 第8页,公式(3.3.3-1)及公式(3.3.3-2)。 tx=t0+(t1-t0)e-ax 式中: tx------输气管道沿线任意点的气体温度(℃); t0------输气管道埋设处的土壤温度(℃); t1------输气管道计算段起点的气体温度(℃); e-------自然对数底数,宜按2.718值; x-------输气管道计算段起点至沿线任意点的长度(km)。
a=225.256×10 KD/(qv△CP)
6
式中: K------输气管道中气体至土壤的总传热系数(W/m2℃) D------输气管道外直径(m)
qv-------输气管道中气体在标准状况下的流量(m3/d) △-------气体的相对密度 CP-------气体的定比热(J/kg℃) 已知: K= D= qv= △= CP= 则: a=225.256×10 KD/(qv△CP)
地埋防腐公式计算大全(国标)

地埋防腐公式计算大全一、管道防腐计算防腐层的面积S=πDLD--- 直径(m)L--- 设备筒体或管道长(m)二,阀门防腐计算S=πD×2.5DKND--- 直径(m)K--- 系数,取1.05N--- 阀门个数三,弯头防腐计算S=πD×1.5DK×2πN/BD--- 直径(m)K--- 系数,取1.05N--- 弯头个数B--- 90度弯头取4; 45度弯头取8;四,法兰防腐计算S=πD×1.5DKND--- 直径(m)K--- 系数,取1.05N--- 法兰个数五,设备和管道法兰翻边防腐工作计算S=π(D+A)AD--- 直径(m)A--- 法兰翻边宽六,设备防腐计算设备本体计算S=πLDD--- 直径(m)L--- 筒体长圆形封头计算S=(D/2)2π×1.6N平封头计算S=2π(D/2)2保温层上防腐工作量计算一,管道保层上刷油量计算公式S=π(D+2δ+2δ×5%+2d1+3d2)×LS=π(D+2.1δ+2d1+3d2)×L二,平封头S=LπD+2π(d/2)2D--- 直径(m)L--- 筒体长d--- 封头直径S=(L+2.1δ)×π(D+2.1δ)+2π[(D+2.1δ)/2]2三,圆封头筒体长×筒体直径周长×2(封头直径÷2)2×封头展开面积系数S=(L+2.1δ)×π(D+2.1δ)+2π[(D+2.1δ)/2]2×1.6D--- 直径(m)L--- 筒体长δ--- 保温层的厚度(m)一、管道绝热、防潮和保护层计算绝热层的体积V=π×(D+1.033δ)×1.033×δ×L绝热层的面积S=π×(D+2.1δ+0.0082)×LD--- 直径(m)1.033,2.1-- 调整系数δ-- 绝热层的厚度(m)L--- 设备筒体或管道长(m)0.0082--- 捆扎线直径或钢带厚二,阀门绝热计算V=π(D+1.033δ)×2.5D×1.033δ×1.05NS=π(D+2.1δ)×2.5D×1.05ND--- 外径(m)δ-- 绝热层的厚度(m)2.5D--- 阀门长(m)1.05 调整系数L--- 设备筒体或管道长(m)N--- 阀门个数三,法兰绝热计算V=π(D+1.033δ)×1.5D×1.033δ×1.05NS=π(D+2.1δ)×1.5D×1.05ND--- 外径(m)δ-- 绝热层的厚度(m)1.5D--- 法兰长(m)1.05 调整系数N--- 法兰个数四,弯头绝热计算V=π(D+1.033δ)×1.5D×2π×1.033δN/BS=π(D+2.1δ)×1.5D×2πN/BD--- 外径(m)δ-- 绝热层的厚度(m)1.5D--- 弯头长(m)1.05 调整系数N--- 阀门个数B--- 90度弯头取4; 45度弯头取8五,设备封头绝热和保护层工程量圆封头计算V=π[(D+1.033δ)/2]^2×1.033δ×1.6NS=π[(D+2.1δ)/2]^2×1.6N圆封头设备整体计算V=π×(D+1.033δ)×1.033×δ×L+π[(D+1.033δ)/2]^2×1.033δ×1.6N平封头设备整体计算V=π×(D+1.033δ)×1.033×δ×(L+2.066δ)+πD^2×1.033δ×N六,伴热管道绝热工程量计算1) 单伴热管或双伴热管(管径相同,夹角小于90度时)D'=D1+D2+(10~20mm)D'---- 伴热管综合值D1--- 主管道直径D2--- 伴热管道直径2) 双伴热管(管径相同,夹角大于90度时)D'=D1+1.5D2+(10~20mm)3) 双伴热管(管径不相同,夹角小于90度时)D'=D1+D伴大+(10~20mm)计算得出的管道直径代入管道绝热公式举例说明:外径mm 数量m 保温厚度mm 弯头个数封头个数阀门个数设备筒体或管道弯头封头阀门管道+弯头设备+封头管道+阀门保温m3 保护层m2 防腐面积m2 保温m3 保护层m2 表面积保温m3 保护层m2 防腐面积m2 保温保护层表面积保温保护层表面积保温保护层表面积保温保护层表面积89 25 50 2 0.57 15.88 6.99 0.01 0.26 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.58 16.14 7.11 0.5715.88 6.99 0.57 15.88 6.9957 20 50 5 0.35 10.69 3.58 0.01 0.34 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.36 11.04 3.70 0.3510.69 3.58 0.35 10.69 3.5889 21 50 8 0.48 13.34 5.87 0.04 1.02 0.47 0.00 0.00 0.00 0.00 0.00 0.00 0.52 14.36 6.34 0.4813.34 5.87 0.48 13.34 5.87159 25 50 10 0.85 21.38 12.49 0.13 3.10 1.87 0.00 0.00 0.00 0.00 0.00 0.00 0.98 24.48 14.36 0.8521.38 12.49 0.85 21.38 12.4989 93 50 37 2.12 59.08 26.00 0.18 4.72 2.17 0.00 0.00 0.00 0.00 0.00 0.00 2.30 63.80 28.17 2.1259.08 26.00 2.12 59.08 26.00108 35 50 9 0.91 24.32 11.88 0.06 1.53 0.78 0.00 0.00 0.00 0.00 0.00 0.00 0.97 25.85 12.65 0.9124.32 11.88 0.91 24.32 11.88108 47 50 27 1.22 32.66 15.95 0.18 4.59 2.33 0.00 0.00 0.00 0.00 0.00 0.00 1.40 37.25 18.28 1.2232.66 15.95 1.22 32.66 15.95159 38 50 15 1.30 32.50 18.98 0.19 4.66 2.80 0.00 0.00 0.00 0.00 0.00 0.00 1.49 37.15 21.79 1.3032.50 18.98 1.30 32.50 18.98159 21 50 10 0.72 17.96 10.49 0.13 3.10 1.87 0.00 0.00 0.00 0.00 0.00 0.00 0.85 21.06 12.36 0.7217.96 10.49 0.72 17.96 10.49159 53 50 25 1.81 45.32 26.47 0.32 7.76 4.67 0.00 0.00 0.00 0.00 0.00 0.00 2.13 53.08 31.15 1.8145.32 26.47 1.81 45.32 26.4757 28 50 9 0.49 14.97 5.01 0.02 0.61 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.51 15.59 5.23 0.4914.97 5.01 0.49 14.97 5.0189 25 50 9 0.57 15.88 6.99 0.04 1.15 0.53 0.00 0.00 0.00 0.00 0.00 0.00 0.61 17.03 7.52 0.5715.88 6.99 0.57 15.88 6.9932 30 50 8 0.41 13.68 3.02 0.01 0.26 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.42 13.94 3.08 0.4113.68 3.02 0.41 13.68 3.0257 23 50 7 0.41 12.30 4.12 0.02 0.48 0.17 0.00 0.00 0.00 0.00 0.00 0.00 0.42 12.78 4.29 0.4112.30 4.12 0.41 12.30 4.1232 25 50 8 0.34 11.40 2.51 0.01 0.26 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.35 11.66 2.57 0.3411.40 2.51 0.34 11.40 2.51108 165 50 8 4.27 114.66 55.98 0.05 1.36 0.69 0.00 0.00 0.00 0.00 0.00 0.00 4.33 116.02 56.67 4.27 114.66 55.98 4.27 114.66 55.9889 14 50 7 0.32 8.89 3.91 0.03 0.89 0.41 0.00 0.00 0.00 0.00 0.00 0.00 0.35 9.79 4.32 0.328.89 3.91 0.32 8.89 3.9145 11 50 3 0.17 5.47 1.56 0.00 0.15 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.18 5.62 1.60 0.175.47 1.56 0.17 5.47 1.5625 25 50 5 0.31 10.85 1.96 0.00 0.12 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.31 10.97 1.99 0.3110.85 1.96 0.31 10.85 1.9645 38 50 0.60 18.89 5.37 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.60 18.89 5.37 0.6018.89 5.37 0.60 18.89 5.3745 40 50 0.63 19.88 5.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63 19.88 5.65 0.6319.88 5.65 0.63 19.88 5.65219 115 50 27 5.05 120.02 79.12 0.61 14.17 9.58 0.00 0.00 0.00 0.00 0.00 0.00 5.66 134.19 88.70 5.05 120.02 79.12 5.05 120.02 79.12108 37 50 7 0.96 25.71 12.55 0.05 1.19 0.60 0.00 0.00 0.00 0.00 0.00 0.00 1.00 26.90 13.16 0.9625.71 12.55 0.96 25.71 12.5532 70 50 5 0.95 31.93 7.04 0.01 0.16 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.96 32.09 7.08 0.9531.93 7.04 0.95 31.93 7.04159 35 50 5 1.20 29.93 17.48 0.06 1.55 0.93 0.00 0.00 0.00 0.00 0.00 0.00 1.26 31.48 18.42 1.2029.93 17.48 1.20 29.93 17.48159 24 50 0.82 20.52 11.99 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.82 20.52 11.99 0.8220.52 11.99 0.82 20.52 11.9932 35 50 0.48 15.97 3.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.48 15.97 3.52 0.4815.97 3.52 0.48 15.97 3.5232 51 50 4 0.69 23.26 5.13 0.00 0.13 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.70 23.39 5.16 0.6923.26 5.13 0.69 23.26 5.1332 43 50 0.58 19.61 4.32 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.58 19.61 4.32 0.5819.61 4.32 0.58 19.61 4.321200 4.5 2 0.00 17.08 16.96 0.00 0.00 0.00 0.00 3.39 3.39 0.00 0.00 0.00 0.00 17.08 16.96 0.0020.47 20.36 0.00 17.08 16.96325 20 50 1.22 27.53 20.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.22 27.53 20.42 1.2227.53 20.42 1.22 27.53 20.42325 50 6 0.28 6.20 4.69 0.00 0.00 0.00 0.00 0.00 0.00 0.28 6.20 4.69 0.00 0.00 0.000.00 0.00 0.00325 0.6 50 0.04 0.83 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.83 0.61 0.040.83 0.61 0.04 0.83 0.612300 50 1 0.00 0.00 0.00 0.00 0.00 0.00 0.34 6.81 6.23 0.00 0.00 0.00 0.00 0.00 0.00 0.346.81 6.23 0.00 0.00 0.0057 37 0.00 7.58 6.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.58 6.63 0.007.58 6.63 0.00 7.58 6.6389 59.6 0.00 18.20 16.66 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 18.20 16.66 0.0018.20 16.66 0.00 18.20 16.66159 15 0.00 7.88 7.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 7.88 7.49 0.007.88 7.49 0.00 7.88 7.491000 1.468 50 2 0.25 5.13 4.61 0.00 0.00 0.00 0.13 2.88 2.36 0.00 0.00 0.00 0.25 5.13 4.610.39 8.01 6.97 0.25 5.13 4.6157 19 50 3 0.33 10.16 3.40 0.01 0.20 0.07 0.00 0.00 0.00 0.00 0.00 0.00 0.34 10.36 3.47 0.3310.16 3.40 0.33 10.16 3.4089 40 50 12 0.91 25.41 11.18 0.06 1.53 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.97 26.94 11.89 0.9125.41 11.18 0.91 25.41 11.18108 27 50 1 0.70 18.76 9.16 0.01 0.17 0.09 0.00 0.00 0.00 0.00 0.00 0.00 0.71 18.93 9.25 0.7018.76 9.16 0.70 18.76 9.16159 22 50 4 0.75 18.81 10.99 0.05 1.24 0.75 0.00 0.00 0.00 0.00 0.00 0.00 0.80 20.05。
地埋管计算方法

地源热泵地埋部分设计(一)管材选择及流体介质一、管材一般来讲,一旦将地下埋管系统换热器埋入地下后,基本不可能进行维修或更换,因此地下的管材应首先要保证其具有良好的化学稳定性、耐腐性。
1、聚乙烯(PE)和聚丁烯(PB)在国外地源热泵系统中得到了广泛应用。
2、PVC(聚氯乙烯)管的导热性差和可塑性不好,不易弯曲,接头处耐压能力差,容易导致泄漏,因此在地源热泵系统中不推荐用PVC 管.3、为了强化地下埋管的换热,国外有的提出采用薄壁(0。
5mm)的不锈钢钢管,但目前实际应用不多.4、管件公称压力不得小于1.0Mpa,工作温度应在-20℃~50℃范围内。
5、地埋管壁厚宜按外径与壁厚之比为11倍选择。
6、地埋管应能按设计要求长度成捆供应,中间不得有机械接口及金属接头.二、连接1、热熔联接(承接联接和对接联接,对于小管径常采用)2、电熔联结三、流体介质及回填料流体介质南方地区:由于地温高,冬季地下埋管进水温度在0℃以上,因此多采用水作为工作流体;北方地区:冬季地温低,地下埋管进水温度一般均低于0℃,因此一般均需使用防冻液.(①盐类溶液——氯化钙和氯化钠水溶液;②乙二醇水溶液;③酒精水溶液等).埋管水温:1、热泵机组夏季向末端系统供冷水,设计供回水温度为7-12℃,与普通冷水机组相同。
地埋管中循环水进入U管的最高温度应<37℃,与冷却塔进水温度相同。
2、热泵机组冬季向末端系统供水温度与常规空调不同,在满足供热条件下,应尽量减低供热水温度,这样可改善热泵机组运行工况、减小压缩比、提高cop值,并降低能耗。
地埋管中循环水冬季进水温度,以水不冻结并留安全余地为好,可取3—4℃.当然为了使地埋管换热器获得更多热量,可加大循环水与大地间温差传热,然而大地的温度是不变的,因此只有将循环水温降至0℃以下,为此循环水必须使用防冻液,如乙二醇溶液或食盐水。
但这样会提高工程造价、增加对设备的腐蚀。
在严寒地区不得不这样做,而在华北地区的工程中用水就可满足要求,不一定要加防冻液.地温是恒定值,可通过测井实测。
地源热泵系统工程技术规范及埋管计算方法

主要内容
1 总则 2 术语 3 工程勘察 4 地埋管换热系统 5 地下水换热系统 6 地表水换热系统 7 建筑物内系统 8 整体运转、调试与验收 9 附录
地源热泵系统工程技术规范
2 术语
2.0.1 地源热泵系统 groud-source heat pump system 以岩土体、地下水或地表水为低温热源,由水源热泵
分为直接地下水换热系统和间接地下水换热系 统。
2.0.11 直接地下水换热系统 由抽水井取出的地下水,经处理后直接流
经水源热泵机组热交换后返回地下同一含水层 的地下水换热系统。
8
地源热泵系统工程技术规范
2 术语
2.0.12 间接地下水换热系统 由抽水井取出的地下水经中间换热器热交换
后返回地下同一含水层的地下水换热系统。 2.0.13 地表水换热系统
14
地源热泵系统工程技术规范
3.1 一般规定
3.1.4 工程场地状况调查应包括下列内容: 1 场地规划面积、形状及坡度;(是否满足打井或埋管面
积和位置要求) 2 场地内已有建筑物和规划建筑物的占地面积及其分布; 3 场地内树木植被、池塘、排水沟及架空输电线、电信电
缆的分布; 4 场地内已有的、计划修建的地下管线和地下构筑物的分
蕴藏在浅层岩土体、地下水或地表水中的热能资源。 2.0.5 传热介质 heat-transfer fluid
地源热泵系统中,通过换热管与岩土体、地下水或地 表水进行热交换的一种液体。一般为水或添加防冻剂的水 溶液。
6
地源热泵系统工程技术规范
2 术语
2.0.6 地埋管换热系统 ground heat exchanger system 传热介质通过竖直或水平地埋管换热器与岩土体进行热交
埋地管道荷载计算-3

给水排水工程结构设计手册第7章活荷载1.单轮荷载,适用于车重10、15吨(H≤0.4)和车重20吨(H≤0.35)情况,深度H处的压力q1的计算公式P 后轴一个轮子的压力5000kga 后胎着地长度,0.2m 20cmcmH覆土厚度m 40cmq1=0.384615kg/cm22.一排轮子情况,两辆并列的车轮最小中距为1.3m时,考虑两个轮子的情况。
适用于车重10、15吨(H为0.4~0.65)及车重20吨(H为0.35~0.6)的情况。
P后轴一个轮子的压力5000kg a后胎着地长度,0.2m 20cm b轮胎宽度,50cm H覆土厚度m45cmq1=0.3367kg/cm23.4轮子并排情况,适用于车重10、15吨(H为0.65~0.8)及车重20吨(H为0.6~0.8)的情况。
P后轴一个轮子的压力5000kg a后胎着地长度,0.2m 20cm b轮胎宽度,50cm H覆土厚度m 45cmq1=0.2886kg/cm24.当H大于0.8米时弹性半无限体压力分布公式r=0时有即为P后轴一个轮子的压力5000kg R力作用点与计算压力点的距离r力作用点与计算压力点的水平距离H覆土厚度m 60cm qlmax=0.663889kg/cm25.履带车辆c 履带间净距180cm P 车辆总重50000kg a 履带着地长度450cm b 履带宽度,70cm H 覆土厚度m45cmq1=0.289352kg/cm2q1=0.225836kg/cm26.钢轨下深度H处的压力计算c轮距80cm P轮压5000kg n轮数20a枕木长140cm b枕木宽250cm H覆土厚度m 80cmq1=0.680272kg/cm27.线荷载作用下深度H处的压力计算P线荷载10kg/cm H 覆土厚度80cmx 计算力作用点与力作用线的水平距离,取0即为q1=0.0795kg/cm28.矩(圆形)形截面上作用均布荷载时,矩形面积中心下深度H处的压力q0地面均布荷载5kg/cm2c系数0.5q1= 2.5kg/cm29.刚性铺装层的影响集中荷载通过刚性铺装层作用在离铺装层深度H处的管道上压力R 混凝土铺装层的刚度半61.32733cmC25Ek混凝土的弹性模量280000kg/cm228000N/mm2h铺装层厚度20cm μ混凝土泊松比0.15κ铺装层下土的反力模量13.5kg/cm3P集中荷载5000kg H管道埋深60cm 根据H/R 0.9783566c系数0.09q1=0.119648kg/cm210.活荷载产生的侧向压力q1活载产生的垂直压力5λ侧向土压力系数0.5qc 活载产生的侧向土压力 2.5q1的计算公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三、流体介质及回填料
流体介质 南方地区:由于地温高,冬季地下埋管进水温度在 0℃以上,因此多 采用水作为工作流体; 北方地区:冬季地温低,地下埋管进水温度一般均低于 0℃,因此一 般均需使用防冻液。
(①盐类溶液——氯化钙和氯化钠水溶液;②乙二醇水溶液;③酒 精水溶液等)。
地源热泵地埋部分设计
(一)管材选择及流体介质
一、管材
一般来讲,一旦将地下埋管系统换热器埋入地下后,基本不可能进 行维修或更换,因此地下的管材应首先要保证其具有良好的化学稳定性、 耐腐性。
1、聚乙烯(PE)和聚丁烯(PB)在国外地源热泵系统中得到了广泛 应用。
2、PVC(聚氯乙烯)管的导热性差和可塑性不好,不易弯曲,接头 处耐压能力差,容易导致泄漏,因此在地源热泵系统中不推荐用 PVC 管。
2 、垂直埋管
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力通根保1据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试、中件资且卷管包中料拒试路含调试绝验敷线试卷动方设槽技作案技、术,以术管来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内 故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
2)套管式换热器:的外管直径一般为 100~200mm,内管为 φ15~φ25mm。其换热效率较 U 形管提高 16.7%。缺点:⑴下管比较 困难,初投资比 U 形管高。⑵在套管端部与内管进、出水连接处不好处 理,易泄漏,因此适用于深度≤30m 的竖埋直管,对中埋采用此种形式 宜慎重。
二、地下埋管系统环路方式
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力通根保1据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试、中件资且卷管包中料拒试路含调试绝验敷线试卷动方设槽技作案技、术,以术管来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内 故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
埋管水温:
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力通根保1据过护生管高产线中工敷资艺设料高技试中术卷资0配不料置仅试技可卷术以要是解求指决,机吊对组顶电在层气进配设行置备继不进电规行保范空护高载高中与中资带资料负料试荷试卷下卷问高总题中体2资2配,料置而试时且卷,可调需保控要障试在各验最类;大管对限路设度习备内题进来到行确位调保。整机在使组管其高路在中敷正资设常料过工试程况卷中下安,与全要过,加度并强工且看作尽护下可关都能于可地管以缩路正小高常故中工障资作高料;中试对资卷于料连继试接电卷管保破口护坏处进范理行围高整,中核或资对者料定对试值某卷,些弯审异扁核常度与高固校中定对资盒图料位纸试置,卷.编保工写护况复层进杂防行设腐自备跨动与接处装地理置线,高弯尤中曲其资半要料径避试标免卷高错调等误试,高方要中案求资,技料编术试写5交、卷重底电保要。气护设管设装备线备置4高敷、调动中设电试作资技气高,料术课中并3试、中件资且卷管包中料拒试路含调试绝验敷线试卷动方设槽技作案技、术,以术管来及架避系等免统多不启项必动方要方式高案,中;为资对解料整决试套高卷启中突动语然过文停程电机中气。高课因中件此资中,料管电试壁力卷薄高电、中气接资设口料备不试进严卷行等保调问护试题装工,置作合调并理试且利技进用术行管,过线要关敷求运设电行技力高术保中。护资线装料缆置试敷做卷设到技原准术则确指:灵导在活。分。对线对于盒于调处差试,动过当保程不护中同装高电置中压高资回中料路资试交料卷叉试技时卷术,调问应试题采技,用术作金是为属指调隔发试板电人进机员行一,隔变需开压要处器在理组事;在前同发掌一生握线内图槽部纸内 故资,障料强时、电,设回需备路要制须进造同行厂时外家切部出断电具习源高题高中电中资源资料,料试线试卷缆卷试敷切验设除报完从告毕而与,采相要用关进高技行中术检资资查料料和试,检卷并测主且处要了理保解。护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
(二)埋管系统环路
一、埋管方式
1、水平埋管 水平埋管主要有单沟单管、单沟双管、单沟二层双管、单沟二层四 管、单沟二层六管等形式,由于多层埋管的下层管处于一个较稳定的温 度场,换热效率好于单层,而且占地面积较少,因此应用多层管的较多。 (单层管最佳深度 1.2~2.0m,双层管 1.6~2.4m)
近年来国外又新开发了两种水平埋管形式,一种是扁平曲线状管,另一 种是螺旋状管。它们的优点是使地沟长度缩短,而可埋设的管子长度增 加。
地温是恒定值,可通过测井实测。有关资料介绍某地地下约 100 米 的地温是当地年平均气温加 4℃左右。天津市年平均气温是 12.2℃, 实测天津市地下约 100 米的地温约为 16℃,基本符合以上规律。
回填材料 可以选用浇铸混凝土、回填沙石散料或回填土壤等。材料选择要 兼顾工程造价、传热性能、施工方便等因素。从实际测试比较浇 铸混凝土换热性能最好,但造价高、施工难度大,但可结合建筑 物桩基一起施工。回填沙石或碎石换热效果比较好,而且施工容 易、造价低,可广泛采用。
1、串联方式 优点:①一个回路具有单一流通通路,管内积存的空气容易排出;
②串联方式一般需采用较大直径的管子,因此对于单位长度埋 管换热量来讲,串联方式换热性能略高 缺点:①串联方式需采用较大管径的管子,因而成本较高; ②由于系统管径大,在冬季气温低地区,系统内需充注的防冻 液(如乙醇水溶液)多; ③安装劳动成本增大; ④管路系统不能太长,否则系统阻力损失太大。 2、并联方式 优点:①由于可用较小管径的管子,因此成本较串联方式低; ②所需防冻液少; ③安装劳动成本低。 缺点: ①设计安装中必须特别注意确保管内流体流速较高,以充分排
根据埋管形式的不同,一般有单 U 形管,双 U 形管,套管式管,小 直径螺旋盘管和大直径螺旋盘管,立式柱状管、蜘蛛状管等形式;按埋 设深度不同分为浅埋(≤30m)、中埋(31~80m)和深埋(>80m)。
1)U 形管型:是在钻孔的管井内安装 U 形管,一般管井直径为 100~150mm,井深 10~200m,U 形管径一般在 φ50mm 以下。
3、为了强化地下埋管的换热,国外有的提出采用薄壁(0.5mm)的 不锈钢钢管,但目前实际应用不多。
4、管件公称压力不得小于 1.0Mpa,工作温度应在-20℃~50℃范围 内。
5、地埋管壁厚宜按外径与壁厚之比为 11 倍选择。 6、地埋管应能按设计要求长度成捆供应,中间不得有机械接口及金 属接头。