实数计算题练习
幂的运算实数练习题

幂的运算实数练习题一、基础题1. 计算:\(2^3\)2. 计算:\((3)^2\)3. 计算:\(\left(\frac{1}{2}\right)^4\)4. 计算:\((2)^5\)5. 计算:\(\left(\frac{3}{4}\right)^3\)二、混合运算题6. 计算:\(2^3 \times 3^2\)7. 计算:\(\frac{4^3}{2^2}\)8. 计算:\((5^2)^3\)9. 计算:\(\left(\frac{2}{3}\right)^2 \times \left(\frac{3}{4}\right)^2\)10. 计算:\(\left(\frac{5}{6}\right)^3 \div \left(\frac{2}{3}\right)^2\)三、指数比较题11. 比较:\(3^4\) 和 \(4^3\)12. 比较:\((2)^5\) 和 \((3)^4\)13. 比较:\(\left(\frac{3}{4}\right)^2\) 和\(\left(\frac{4}{5}\right)^2\)14. 比较:\(\left(\frac{2}{3}\right)^3\) 和\(\left(\frac{3}{4}\right)^3\)15. 比较:\(2^6\) 和 \(3^4\)四、应用题16. 一个正方形的边长为2,求其面积。
17. 一个数的平方是64,求这个数。
18. 一个数的立方是216,求这个数。
19. 如果一个数的平方根是4,求这个数的平方。
20. 如果一个数的立方根是3,求这个数的立方。
五、拓展题21. 计算:\(2^3 + 3^2 4^2\)22. 计算:\(\left(\frac{1}{2}\right)^5 \times\left(\frac{2}{3}\right)^4\)23. 计算:\(\left(\frac{3}{4}\right)^2 \div\left(\frac{4}{5}\right)^2\)24. 计算:\(\left(2^3\right)^2 \times \left(3^2\right)^3\)25. 计算:\(\sqrt[3]{64} \times \sqrt[4]{81}\)六、根式运算题26. 计算:\(\sqrt{49}\)27. 计算:\(\sqrt[3]{27}\)28. 计算:\(\sqrt{64} + \sqrt{25}\)29. 计算:\(\sqrt[4]{16} \times \sqrt[3]{8}\)30. 计算:\(\sqrt{121} \sqrt{81}\)七、分数指数幂题31. 计算:\(4^{\frac{1}{2}}\)32. 计算:\(9^{\frac{3}{2}}\)33. 计算:\(\left(\frac{1}{16}\right)^{\frac{1}{4}}\)34. 计算:\(\left(\frac{1}{25}\right)^{\frac{2}{3}}\)35. 计算:\(32^{\frac{1}{5}}\)八、指数方程题36. 解方程:\(2^x = 32\)37. 解方程:\(3^{x+1} = 27\)38. 解方程:\(\left(\frac{1}{2}\right)^x = 8\)39. 解方程:\(5^{2x1} = 25\)40. 解方程:\(4^{x+2} = \frac{1}{16}\)九、指数不等式题41. 解不等式:\(2^x > 16\)42. 解不等式:\(3^{x1} < 27\)43. 解不等式:\(\left(\frac{1}{3}\right)^x \geq 9\)44. 解不等式:\(5^{2x3} \leq 125\)45. 解不等式:\(4^{x+1} > \frac{1}{64}\)十、综合题46. 已知\(a^2 = 36\),\(b^3 = 64\),计算\(a^3 + b^2\)。
实数计算题专题练习及答案

实数计算题练习1.计算:(1)||+|﹣1|﹣|3|(2)﹣++.2.计算:﹣|2﹣|﹣.3.(1)计算:++4.计算:﹣32+|﹣3|+.5.计算+|3﹣|+﹣.6.计算:+|﹣2|++(﹣1)2015.7.计算:(﹣1)2015++|1﹣|﹣.8.解方程(1)5x3=﹣40(2)4(x﹣1)2=9.9.求下列各式中x的值:①4x2=25②27(x﹣1)3﹣8=0.12.计算(1)+()2+(2)+﹣|1﹣| 13.计算题:.14.计算(1)+﹣;(2)+|﹣1|﹣(+1).15..16.计算:(1)(﹣)2﹣﹣+﹣|﹣6|(2)|1﹣|+|﹣|+|﹣2|.(3)4(x+3)2﹣16=0(4)27(x﹣3)3=﹣8.计算下列各题:1、2、 3、|﹣2|+|﹣1|.4、5、 6、7、|-3|+-+; 8、9、;10、; 11、+|﹣2|+(﹣6)×(﹣). 12、13、计算:﹣32+﹣|2﹣|+. 14、计算:()2﹣﹣15、计算:+|﹣2|++(﹣1)2015 16、计算:()2+﹣+|2﹣|.17、计算:; 18、计算:++﹣()2+19、计算: 20、计算:;21、22、 23、.解下列方程:24、(2x+1)2=. 25、(x+1)2=16. 26、4x2﹣49=0;27、64(x+1)2﹣25=0. 28、36(﹣x+1)2=25 29、3(x+2)2+6=33.30、31、2(x+1)3+16=0; 32、27 (x+1)3=-6433、如图,实数、在数轴上的位置,化简.34、已知2a-3的平方根是5,2a+b+4的立方根是3,求a+b的平方根。
35、一个数的平方根为2n+1和n﹣4,而4n是3m+16的立方根,求m值.36、一种长方体的书,长与宽相等,四本同样的书叠在一起成一个正方体,体积为216立方厘米,求这本书的高度.37、若|x﹣3|+(y+6)2+=0,求代数式的值.38、已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,c是的整数部分,求a+2b+c的算术平方根.参考答案1、2、0.453、原式==2﹣1=14、=-125、6、-6;7、158、-39、.10、1/411、解:原式=2+2+4=8.12、13、【解答】解:原式=﹣9+5﹣(﹣2)+2=﹣4﹣+2+2=﹣.14、原式=4﹣2﹣5=﹣3;15、原式=2+2﹣3﹣1=0;16、【解答】解:原式=4﹣4﹣+﹣2=﹣2.17、解:原式= 3-3+10-6=418、++﹣()2+=2+2+1.5﹣0.5﹣5=0;19、原式=+2+4﹣4=;20、.21、原式=3-1+1=3.22、略23、.24、(2x+1)2=(2x+1)2=4, 2x+1=2或﹣2,解得:x=或x=﹣.25、【解答】解:开方,得x+1=±4,则x=3或x=﹣5.26、方程整理得:x2=,开方得:x=±;27、方程整理得:(x+1)2=,开方得:x+1=±,解得:x1=﹣,x1=﹣.28、∵36(﹣x+1)2=25,∴(﹣x+1)2=,∴﹣x+1=±,∴x1=,x2=.29、1,5.解得x=1或x=-5.30、x=-231、解:∴32、33、解:由图可知: ,,∴.∴原式===.34、±335、【解答】解:∵一个数的平方根为2n+1和n﹣4,∴2n+1+n﹣4=0,∴n=1,∵4n是3m+16的立方根,∴(4n)3=3m+16,即64=3m+16,解得:m=16.36、1.5㎝)解析:设书的高度为㎝,由题意可得37、【解答】解:由题意得,x﹣3=0,y+6=0,z+2=0,解得x=3,y=﹣6,z=﹣2,所以,==﹣.38、【解答】解:∵2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,∴2a﹣1=9,3a+b﹣1=16.解得:a=5,b=2.∵49<57<64,∴7<<8.∴c=7.∴a+2b+c=5+2×2+7=16.∵16的算术平方根是4.∴a+2b+c的算术平方根是4.。
实数的运算练习题

实数的运算练习题一、选择题1. 与-2的和为0的数是( )A .-2B .-12C .12D .2 2.4的算术平方根是( )A .16B .2C .-2D .±23.对于实数x ,我们规定[x]表示不大于x 的最大整数,例如[1.2]=1,[3]=3,[-2.5]=-3.若⎣⎢⎡⎦⎥⎤x +410=5,则x 的取值可以是( ) A .40 B .45 C .51 D .56二、填空题4.如图,在数轴上,点A 表示的数是-13,点B ,C 表示的数是两个连续的整数,则这两个整数为________.5.按如图所示的运算程序,能使输出结果为3的值是________.(填序号) 开始输入x 乘2输入y 乘(-1)相加输出3①x =5,y =-2;②x=3,y =-2;③x =-4,y =2;④x=-3,y =-9.三、解答题6. 计算:12+(π-2008)0+(12)-1-6tan 30°.7.计算:()-12016+⎝ ⎛⎭⎪⎫13-1+||-2-2sin 45°.8.计算:(6-π)0+(-15)-1-3tan 30°+|-3|.9.计算:(3-π)0+4sin 45°-8+|1-3|.10.计算:2sin 45°+||2-3-()π-20160+⎝ ⎛⎭⎪⎫13-2.11.计算:tan 60°+||3-2-(2-1)0-(12)-1.参考答案1.D 2.B3.C [解析] 如果⎣⎢⎡⎦⎥⎤x +410=5,[x]表示不大于x 的最大整数,那么说明5≤x +410<6,即50≤x+4<60,可得46≤x<56,故选C .4.-4,-35.④6.解:原式=2 3+1+2-6×33=2 3+1+2-2 3=3.7.解:原式=1+3+2-2×22=4. 8.解:原式=1+(-5)-3×33+3=-4. 9.解:原式=1+4×22-22+3-1= 3. 10.解:原式=2×22+3-2-1+9=11. 11.解:原式=3+2-3-1-2=-1.。
专题14-13 《实数》计算题(专项练习)(巩固篇100题)-2021-2022学年八年级数学上册

专题14.13 《实数》计算题(专项练习)(巩固篇100题)一、解答题12.计算:(+1|+(5-2π)03.(1);(2)已知()2x 1- =4,求x 的值.4.已知:,x y 为实数,且3y <,化简:3y -5.计算:(1)110101(1)(3)2π-⎛⎫-+-+ ⎪⎝⎭(226213.14+6+2π-⎛⎫-- ⎪⎝⎭()7.计算:()23- 8.计算(1(2(x <2y <0)92 .10.计算:(2)(1+(12. 11.计算:12.计算:(1+(2)+1)213.计算:21-21-2-⎛⎫ ⎪⎝⎭14.计算:+2)2+2﹣215.计算:()202011-+16.计算: 21)3)(3--17.18.计算:(1﹣3|(2)1)2+)2﹣21)) 19.计算下列各式: (1)√6×(√3+√2)-2√3; (2)4√15÷√3−√20+5√15.20.计算:20-11-23+())()21.计算:|−2|+(−1)2012×(π−3)0−√8+(−2)−2222)023.(1)计算:2(1(2)求x 的值:3641)270x +-=(24.计算:(3(2. 25.已知x,y =,求4x yy x +-的值.26.计算:(1(2)2(11)-.27.已知4. (1)求x 、y 的值;28.计算:;(23;(3)(22017×(22016-2-(0(4)(a +b -.29.计算:|1.30(22π-+.31.计算:(13;(2)32.计算:33.已知 x y(1)x yy x+的值;(2)2x 2+6xy +2y 2的值.34.计算(1)0(2)((2 35.化简:(1(2(10+|﹣2|﹣(12)﹣136.计算下列各式(1) (2)371+ 38.计算:(1)()2320181122⎛⎫-+- ⎪⎝⎭(23+39.计算(1)﹣(2)1))﹣(1﹣2.40.计算:41.计算:(1)−√83+√16−|√3−2|;(2)(√12+3√3)×√3; (3)12×(√2+√3)−34×(√2−√27);(4)(−12)2×√(−2)2+12×√1253;42432(2 +44.计算:22 |1|3-⎛⎫-- ⎪⎝⎭45.计算:|3﹣1)2018.46.计算1.47.计算:2(3)21)-+⨯--.482318 49.计算:⎛⎝;12⎛⎫⎪⎝⎭.50.计算:(1)11(251233312713++.52.计算:(1)(2)201811-+53.计算:(1)21(2)--;(2)2(3254.计算:(1;(2)12)﹣12|;(3)2)2;(4)2020•2021. 55.计算(1|1(2)2|(3(4|3562.57.计算题:2--;(2)58.完成下列各题.(1)计算:())0311-+(2)计算:(()201412π1-+-.(3)(041-.(4)计算:())3212523-⎛⎫-+--+ ⎪⎝⎭.(5)计算:122323---.(6)1382+.(7)计算:2112-⎛⎫- ⎪⎝⎭.59.计算:2(71)+--60()0221( 3.14().2π-+---⨯61()()2202021--- 62.计算(12236 (2)220201020.2513163.计算:(1)- (2)(3) (4)64.计算:(1) (2) ()012018π+--6566.计算:4÷672020(1)-.68.计算:1||3+-69. 计算:+2|-2|;(-1)2018. 70.计算:(1)(√8+√3)×√6√10−√15√5; (2)2√12×(3√48−4√18−3√27)(3)√72−√32√8(√5−√2)(√5+√2); (4)(π−1)0+(−12)−1+|5−√27|−2√371.计算:(−3)2−(12)−1+(−2019)0.72.计算:201( 3.14)2π-⎛⎫-- ⎪⎝⎭.73.计算:(1)9×(﹣23)﹣3|(22+74.计算1). 75.计算:(1)(10+|2(﹣1)2018﹣13(2)(x+y )2﹣x (2y ﹣x ) 76.计算:(1(20,0)a b >>(3(477.78.计算:(1)⎛ ⎝;(2|1 79.计算:(1)()20201821--⨯--;(2)()()()221a a a a +--+.80.计算:(1)|﹣3|12+(﹣2)2 . |2.81.(12| (2)求x 的值:(2x ﹣1)2=9.822(317)0x y -+=的值.83.计算:()()20211211π--++.84.计算:(﹣1)2008+π0﹣(13)﹣185.计算:86.计算:3(1)|1-+ 87.计算:(1)217110.5395⎛⎫-÷⨯- ⎪⎝⎭(2)(2212-+88.02018)(1)|1π+-+.89.计算:(1) (2)(÷(3)0,0)a b >> 90.计算:(1321(2)(10)4---⨯- (2)225(24)-⨯--91.解下列方程:(1) 9(3-y )2=4; (2) 2732-3x ⎛⎫ ⎪⎝⎭+125=0.9221)+ 93.计算:(1) (2)01)1)(3) (4)0(3)|1---.94.计算:(1)|-5|+(-2)2-1;95.计算: 96.计算:(1)(22-97 98.计算下列各题(1)⎛÷ ⎝ (2)2- 99.(1);(2)(3);(4)100.计算:(12018(1)- (23参考答案1.-11 4【分析】先将二次根式化简,再根据实数的运算法则求得计算结果.=111 30224 ---++==-11 4.【点拨】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是二次根式、绝对值等考点的运算.2.【分析】按顺序先分别进行二次根据的乘法运算、绝对值的化简、0次幂的计算,然后再按运算顺序进行计算即可.解:(+1|+(5-2π)0=1+1=【点拨】本题考查了二次根式的混合运算,熟练掌握二次根式的混合运算的法则是解题的关键.3.(1)13-;(2) x1=3,x2=-1.【分析】(1)根据平方根和立方根的意义,化简求解即可;(2)根据平方根的意义,把方程化为一元一次方程求解.解:(1-2-13=-13;(2)(x-1)2=4,x-1=±2,x-1=2,x-1=-2.解得:x1=3,x2=-1.【点拨】此题主要考查了平方根和立方根的应用,灵活利用平方根和立方根的概念是解题关键.4.-1.【分析】根据所给的已知式子,由二次根式有意义的条件,可求x 取值范围,得到x ,然后求出y 的取值范围,然后根据二次根式的性质求解即可.解:由题意可知: 10x -≥且10x -≥1x ∴=3<-y x 3∴<y3∴-y34=---y y()()34=-+--+y y34=-++-y y1=-5.(1)3(2)18﹣﹣【分析】(1)先算乘方和开方,然后合并同类二次根式即可;(2)先算乘方、乘法、除法,然后合并同类二次根式即可.解:(1)原式=(﹣1)+1+21)=(﹣1)+1+2=3(2(2+12-=4﹣+12﹣=18﹣﹣【点拨】本题考查了二次根式的混合运算,熟练掌握二次根式的运算法则是解答本题的关键,整式的乘法的运算公式及运算法则对二次根式的运算同样适应.6.11【解析】试题分析:根据二次根式的相关公式,零指数幂的规定,绝对值的意义以及负整数指数幂的相关规则,分别对算式的各个部分进行化简和运算,然后再对所得到的中间结果进行进一步的运算即可.试题解析:()2013.1462π-⎛⎫-+-+ ⎪⎝⎭ =2-1+6+4=117.4.5【分析】先计算平方、开平方和开立方,再计算加减.解:解:原式=9—32-3 =4.5【点拨】本题考查平方、算术平方根、立方根,解题关键是熟练掌握定义.8.(1) 203;(2)-21xy 解:试题分析:(1)根据二次根式的乘法和除法法则计算,(2)根据二次根式的性质进行化简. 试题解析=203,(2x <2y <0) =2122y x y x xy -⨯--, =21xy -. 9.-2.【解析】【分析】根据二次根式、三次根式的化简方法计算,再合并同类项.2,=332,=-2.【点拨】本题考查实数的综合运算能力.解决此类题目的关键是熟练掌握二次根式、三次根式的化简.10.(2) 2+【分析】(1)先利用二次根式的除法法则计算,再把各二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式和完全平方公式化简合并即可.解:(1)原式===(2)原式=1-5+1+5=2+【点拨】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.11.(1) 2(2)-30. 【分析】(1)先算除法,再算减法.(2)先化简,再利用平方差公式计算.解:(1)原式=2(2)原式=((4=-30.【点拨】本题考查根式化简,能够掌握平方差公式是解题关键.12.(1);(2)7-【分析】(1)先分别进行化简,然后再合并同类二次根式即可;(2)先利用平方差公式以及完全平方公式进行展开,然后再进行加减运算即可.解:(1)原式==;(2)原式=5231-+-=7-【点拨】本题考查了二次根式的化简,二次根式的混合运算,熟练掌握相关的运算法则是解题的关键.13.1【解析】【分析】按顺序先分别进行立方根的运算、绝对值的化简、负指数幂的运算,然后再按运算顺序进行计算即可.解:原式=-2×(-3)1-4=1【点拨】本题考查了实数的运算,涉及了立方根、负整数指数幂等,熟练掌握各运算的运算法则是解题的关键.14.29 4【分析】按顺序分别利用完全平方公式展开,化简二次根式,利用负指数幂进行计算,然后再按运算顺序进行计算即可.解:原式﹣14=294. 【点拨】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.1532【分析】首先计算乘方、负整数指数幂、算术平方根、立方根和绝对值,然后计算乘法,最后从左向右依次计算,求出算式的值是多少即可.解:解:()202011-+)1=1212+-+ 1=1212+- 32【点拨】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.16.3-【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算.解:解:原式=4-[32-2]=4-[32-2]-4=4--4=3-【点拨】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.17【分析】根据二次根式的混合运算法则进行计算.解:解:原式143+=(14327+=-==【点拨】本题考查二次根式的运算,解题的关键是掌握二次根式的运算法则.18.(1)﹣6;(2)9.【解析】【分析】(1)先进行二次根式的乘法运算,再把二次根式化为最简二次根式和去绝对值,然后合并即可;(2)先把各二次根式化为最简二次根式,然后把括号内合并后进行二次根式的除法运算.解:(13|3﹣3=﹣6;(2)3﹣﹣2(2)=3﹣﹣6﹣=9.【点拨】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.19.(1) 3√2;(2) 3√5.【解析】【分析】(1)先利用分配律进行计算,然后再合并同类二次根式即可;(2)按顺序进行二次根式的除法运算、化简二次根式,然后再合并同类二次根式即可.解:(1)原式=3√2+2√3-2√3=3√2;(2)原式=4√5-2√5+√5=3√5.【点拨】本题考查了二次根式的混合运算,熟练掌握二次根式混合运算的运算顺序以及运算法则是解题的关键.20.5【分析】按照乘方,算术平方根,零指数幂,负整数指数幂的性质化简,进行计算即可解答解:解:原式4313=-++5=【点拨】此题考查算术平方根,零指数幂,负整数指数幂,解题关键在于掌握运算法则21.解:原式=。
完整版)实数练习题基础篇附答案

完整版)实数练习题基础篇附答案实数练题一、判断题(1分×8=8分)1.3不是9的算术平方根。
(×)2.2的平方根是根号2,它的算术平方根也是根号2.(√)3.-2没有实数平方根。
(×)4.-0.5不是0.25的一个平方根。
(×)5.2的平方根是a。
(×)6.6根是4.(√)7.-10不是1000的一个立方根。
(×)8.-7是-343的立方根。
(√)9.无理数可以用数轴上的点表示出来。
(√)10.有理数和无理数统称实数。
(√)二、选择题(3分×5=15分)11.列说法正确的是(B)A、1是0.5的一个平方根B、正数有两个平方根,且这两个平方根之和等于它们的和C、7的平方根是7D、负数有一个平方根12.如果y=0.25,那么y的值是(C)A、0.0625B、-0.5C、0.5D、±0.513.如果x是a的立方根,则下列说法正确的是(A)A、-x也是a的立方根B、-x是-a的立方根C、x是-a的立方根D、x等于a14.√3、22/7、-3、3343、3.1416都是无理数,它们的个数是(C)A、1个B、2个C、3个D、4个15.与数轴上的点建立一一对应的是(C)A、全体有理数B、全体无理数C、全体实数D、全体整数16.如果一个实数的平方根与它的立方根相等,则这个数是(A)A、0B、正实数且等于1C、负实数且等于-1D、1三、填空题(1分×30=30分)2.100的平方根是10,10的算术平方根是3.3.±3是√9的平方根,-3是√9的平方根;(-2)^2的算术平方根是2.4.正数有两个平方根,它们分别是正数和负数;负数没有实数平方根。
5.-125的立方根是-5,±8的立方根是2,27的立方根是3.6.正数的立方根是正数;负数的立方根是负数;0的立方根是0.7.2的相反数是-2,-π≈-3.14.8.比较下列各组数大小:⑴ <⑵ 3-64=2.5>1.5⑶ π≈3.14<3.5⑷ 2322>2000四、解下列各题。
实数习题练习题

实数习题练习题一、实数的概念与性质1. 判断下列各数中哪些是实数:(1) √9(2) 5.6(3) 3+4i(4) √162. 填空题:(1) 实数分为______、______和______。
(2) 无理数是无限不循环的______。
3. 选择题:A. πB. √4C. 0.333D. 1/3二、实数的运算1. 计算下列各题:(1) (3) + 7(2) 5 (2)(3) 4 × (3)(4) 18 ÷ 32. 简化下列各题:(1) √36 × √49(2) (π 3) × 0(3) (5/7) ÷ (15/21)3. 解下列方程:(1) 3x 7 = 11(2) 5 2x = 1 3x三、实数的应用1. 一根绳子的长度是√2米,将其对折两次,求对折后的绳子长度。
2. 一个正方形的边长是2√3厘米,求该正方形的面积。
3. 某商品的原价是500元,打八折后,售价是多少元?四、实数的综合题1. 已知a、b为实数,且a > b,求证:a² > b²。
2. 设x、y为实数,且x + y = 5,xy = 3,求x² + y²的值。
3. 已知一组数据:2,3,5,7,11,13,17,请计算这组数据的平均数、中位数和众数。
四、实数的综合题(续)4. 已知一组数据:3, 0, 1, 4, 9,求这组数据的极差、方差和标准差。
5. 若实数a满足|a 1| = 2,求a的所有可能值。
6. 设实数x满足等式(x 2)(x + 3) = 0,求x的值。
五、实数的逻辑推理1. 如果一个实数的平方大于0,那么这个实数一定是______。
2. 下列说法正确的是:A. 有理数的和是有理数B. 无理数的和是无理数C. 有理数和无理数的和是有理数D. 无理数和无理数的和是无理数A. a² < b²B. a b < 0C. a/b < 1D. a + 1 < b + 1六、实数的实际应用问题1. 甲、乙两辆汽车从同一地点出发,甲车以60km/h的速度行驶,乙车以80km/h的速度行驶,两车相向而行。
【汇总】初中数学专项练习《实数》100道计算题包含答案

初中数学专项练习《实数》100道计算题包含答案一、解答题(共100题)1、计算:| -2|+2cos45°- + .2、已知2a﹣1的平方根是±3,3a+b+9的立方根是3,求2(a+b)的平方根.3、已知且与互为相反数,求的平方根.4、如图,在正方形ABCD中,AB=4,AE=2,DF=1,请你判定△BEF的形状,并说明理由.5、一个正数的两个平方根为和,是的立方根,的小数部分是,求的平方根.6、如图:已知点A、B表示两个实数﹣、,请在数轴上描出它们大致的位置,用字母标示出来;O为原点,求出O、A两点间的距离.求出A、B两点间的距离.7、填表:相反数等于它本身绝对值等于它本身倒数等于它本身平方等于它本身立方等于它本身平方根等于它本身算术平方根等于它本身立方根等于它本身最大的负整数绝对值最小的数8、已知2a-1的平方根是±3,b-1的立方根是2,求a-b的值.9、求下列各式中的x值.(1)25x2﹣196=0(2)(2x﹣1)3=8.10、若|x|=7,y2=9,且x>y,求x+y值11、在数轴上表示下列各数,并用“<”连接起来。
, , , , , 。
12、把下列各实数填在相应的大括号内,﹣|﹣3|,,0,,﹣3. ,,1﹣,1.1010010001…(两个1之间依次多1个0)整数{…};分数{…};无理数{…}.13、计算:(﹣3)0﹣+|1﹣|+×+(+)﹣1.14、己知:2m+2的平方根是±4;3m+n的立方根是-1,求:2m-n的算术平方根15、一个正数x的平方根是3a﹣4和1﹣6a,求x的值.16、求下列式中的x的值:3(2x+1)2=27.17、解下列方程:(1)(x+5)2+16=80(2)﹣2(7﹣x)3=250.18、已知25x2﹣144=0,且x是正数,求代数式的值.19、规定一种新的运算a△b=ab﹣a+1,如3△4=3×4﹣3+1,请比较与的大小.20、若5a+1和a﹣19是数m的平方根,求m的值.21、已知的平方根是,的立方根是2,是的整数部分,求的值..22、若5a+1和a﹣19是数m的平方根.求a和m的值.23、已知2a-7的平方根是±5,2a+b-1的算术平方根是4,求- +b的值.24、把下列各数填在相应的集合内:100,﹣0.82,﹣30 ,3.14,﹣2,0,﹣2011,﹣3.1 ,,﹣,2.010010001…,正分数集合:{ …}整数集合:{ …}负有理数集合:{ …}非正整数集合;{ …}无理数集合:{ …}.25、+3﹣5.26、已知a、b是有理数且满足:a是-8的立方根,=5,求a2+2b的值.27、求下列各式中x的值.(1)9x2﹣4=0(2)(1﹣2x)3=﹣1.28、(1)已知:(x+1)2﹣9=0,求x的值;(2)已知a﹣3的平方根为±3,求5a+4的立方根.29、计算:(﹣)﹣2﹣|﹣1+|+2sin60°+(π﹣4)0.30、计算:()﹣2﹣(π﹣3.14)0+﹣|2﹣|.31、已知和互为相反数,且x-y+4的平方根是它本身,求x、y 的值.32、在数轴上表示下列各数:0,﹣2.5,3 ,﹣2,+5,1 ,并用“<”号连接。
初二数学实数及计算练习题

初二数学实数及计算练习题一、填空题1. 已知a=−1/3, a=2/5, 则a+a的值是_________。
2. a=−2/7, a=4/7, a=−1/7, 则a+a+a的值是_________。
3. 若两个实数的和为0,则这两个实数互为_________。
4. 若三个实数a,a,a的和为0,则它们满足的关系式为_________。
5. 如果实数a,a,a满足a+a+a=0,那么a,a,a的和是_________。
二、选择题1. 下列选项中,不是有理数的数是:A. -1B. 0C. 5%D. √22. a和−a之间的关系是:A. a>−aB. a=−aC. a<−aD. 无法确定3. -√49与7之间的关系是:A. -√49<7B. -√49=7C. -√49>7D. 无法确定4. 设a为正数,则-a与a之间的关系是:A. -a>aB. -a=aC. -a<aD. 无法确定三、计算题1. 计算: (-2/3) + 3/52. 计算: -5.6 +3.8 - 1.23. 化简: -5(4/7) - (-1)(2/3)4. 若a是一个有理数,已知a=−2/3a,如果a=9/4,则a的值是多少?5. 若a为正有理数,已知a=−3/5a,如果a=6/5,则a的值是多少?四、应用题Tom和Jerry比赛跳远。
已知Tom跳远的成绩是2.3米,Jerry的成绩是-1/5米。
请回答以下问题:1. Tom跳得更远还是Jerry跳得更远?2. 两人跳远成绩的和是多少?3. 如果两人再跳一次,如果Tom跳得更远,则他们两人的跳远成绩之和是多少?4. 如果两人再跳一次,如果Jerry跳得更远,则他们两人的跳远成绩之和是多少?五、解决问题1. 请用实数解方程:2a + 3 = -5a - 72. 请用实数解方程:-1/3(a + 5) + 2a = 43. 将一个有理数a扩大8倍后再减去1,得到的结果是5,请问a是多少?六、拓展思考1. 设a为一个实数,根据不等式-2<a≤5,若a=2a+3,求满足-2<a≤k的实数k的范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数计算题练习 3.5
计算下列各题:
1、2、 3、|﹣2|+|﹣1|.4、5、 6、
7、|-3|+-+; 8、9、;
10、; 11、+|﹣2|+(﹣6)×(﹣). 12、
13、计算:﹣32+﹣|2﹣|+. 14、计算:()2﹣﹣
15、计算:+|﹣2|++(﹣1)2015 16、计算:()2+﹣+|2﹣|.17、计算:; 18、计算:++﹣()2+
19、计算: 20、计算:;
21、22、 23、.
解下列方程:
24、(2x+1)2=. 25、(x+1)2=16. 26、4x2﹣49=0;
27、64(x+1)2﹣25=0. 28、36(﹣x+1)2=25 29、3(x+2)2+6=33.30、31、2(x+1)3+16=0; 32、27 (x+1)3=-64
33、如图,实数、在数轴上的位置,化简.
34、已知2a-3的平方根是5,2a+b+4的立方根是3,求a+b的平方根。
35、一个数的平方根为2n+1和n﹣4,而4n是3m+16的立方根,求m值.
36、一种长方体的书,长与宽相等,四本同样的书叠在一起成一个正方体,体积为216立方厘米,求这本书的高度.
37、若|x﹣3|+(y+6)2+=0,求代数式的值.
38、已知2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,c是的整数部分,求a+2b+c的算术平方根.
参考答案
1、
2、0.45
3、原式==2﹣1=1
4、=-12
5、
6、-6;
7、15
8、-3
9、.
10、1/4
11、解:原式=2+2+4=8.
12、
13、【解答】解:原式=﹣9+5﹣(﹣2)+2=﹣4﹣+2+2=﹣.
14、原式=4﹣2﹣5=﹣3;
15、原式=2+2﹣3﹣1=0;
16、【解答】解:原式=4﹣4﹣+﹣2=﹣2.
17、解:原式= 3-3+10-6=4
18、++﹣()2+=2+2+1.5﹣0.5﹣5=0;
19、原式=+2+4﹣4=;
20、.
21、原式=3-1+1=3.
22、略
23、.
24、(2x+1)2=(2x+1)2=4, 2x+1=2或﹣2,解得:x=或x=﹣.
25、【解答】解:开方,得x+1=±4,则x=3或x=﹣5.
26、方程整理得:x2=,开方得:x=±;
27、方程整理得:(x+1)2=,开方得:x+1=±,解得:x1=﹣,x1=﹣.
28、∵36(﹣x+1)2=25,∴(﹣x+1)2=,∴﹣x+1=±,∴x1=,x2=.
29、1,5.解得x=1或x=-5.
30、x=-2
31、解:∴
32、
33、解:由图可知: ,,∴.∴原式===.
34、±3
35、【解答】解:∵一个数的平方根为2n+1和n﹣4,∴2n+1+n﹣4=0,∴n=1,
∵4n是3m+16的立方根,∴(4n)3=3m+16,即64=3m+16,解得:m=16.
36、1.5㎝)解析:设书的高度为㎝,由题意可得
37、【解答】解:由题意得,x﹣3=0,y+6=0,z+2=0,解得x=3,y=﹣6,z=﹣2,
所以,==﹣.
38、【解答】解:∵2a﹣1的平方根是±3,3a+b﹣1的平方根是±4,
∴2a﹣1=9,3a+b﹣1=16.解得:a=5,b=2.
∵49<57<64,∴7<<8.∴c=7.∴a+2b+c=5+2×2+7=16.
∵16的算术平方根是4.∴a+2b+c的算术平方根是4.。