第2讲 空间中的平行与垂直

合集下载

《平行与垂直》说课-优秀PPT

《平行与垂直》说课-优秀PPT
教师应对自己的教学过程和效果进行 反思和总结,找出可以改进的地方。
调整教学策略
根据评价结果和反馈意见,调整教学 策略和方法,提高教学效果。
提升教师素质
教师可以通过参加培训、观摩优秀教 师的教学等方式,提高自己的教学水 平和能力。
更新课程资源
根据评价结果和实际需要,更新和优 化课程资源,包括教材、课件、练习 题等。
学生对知识难度的接受度
学生对本节课所涉及的知识难度表示接受良好,认为难度适中,能够通过努力 掌握所学内容。
谢谢
THANKS
CHAPTER
学生知识掌握情况
掌握平行与垂直的基本概念
通过本节课的学习,学生能够理解并掌握平行与垂直的基本 定义和性质,能够准确判断两条线段是否平行或垂直。
理解平行与垂直的应用
学生能够理解平行与垂直在实际生活中的应用,如建筑、工 程、交通等领域,能够运用所学知识解决实际问题。
学生能力提升情况
培养空间想象能力
03 教学内容与过程
CHAPTER
教学内容分析
教学目标
教材处理
理解平行与垂直的概念,掌握它们的 性质和判定方法。
根据学生实际情况,对教材进行适当 调整,以适应不同层次的学生需求。
重点难点
重点是平行与垂直的判定方法,难点 是理解平行与垂直的性质。
教学过程设计
导入
展开
巩固
总结
通过观察生活中的平行 与垂直现象,引导学生
进入课题。
讲解平行与垂直的概念, 通过实例分析它们的性
质和判定方法。
通过练习题和例题,加 深学生对平行与垂直的
理解和应用。
总结本节课的重点内容, 引导学生进行自我评价
和反思。
课堂互动与反馈

人教版四年级上册《平行与垂直》说课稿范文(精选4篇)

人教版四年级上册《平行与垂直》说课稿范文(精选4篇)

人教版四年级上册《平行与垂直》说课稿范文(精选4篇)四年级上册《平行与垂直》说课稿1一、教材分析“垂直与平行”是人教版四年级上册第四单元第一课时的教学内容。

它是在学生认识了直线、线段、射线的性质、学习了角及角的度量等知识的基础上学习的。

在“空间与图形”的领域中,垂直与平行是学生以后认识平行四边形、梯形以及长方体、正方体等几何形体的基础,也为培养学生空间观念提供了一个很好的载体。

是在学习了单一的直线知识后,开始学习两条直线间的关系,为以后学习复杂的几何图形打下基础。

从学生思维角度看,垂直与平行这些几何图形,在日常生活中应用广泛,学生头脑中已经积累了许多表象,但由于学生生活的局限性,理解概念中的“永不相交”比较困难;由于年龄特点的原因,学生空间想像力不强,想像理解局部不想交,但延长后相交有一定的难度;还有学生年龄尚小,空间观念及空间想象能力尚不丰富,导致他们不能正确理解“同一平面”的本质;再加上以前学习的直线、射线、线段等研究的都是单一对象的特征,而垂线与平行线研究的是同一个平面内两条直线位置的相互关系,这种相互关系,学生还没有建立表象。

这些问题都需要教师帮助他们解决。

二、说教学目标、重点难点本节课我设计的教学目标是:1、让学生通过观察、操作、讨论感知生活中的垂直与平行。

2、帮助学生初步理解垂直与平行是同一平面内两条直线的两种位置关系。

3、培养学生的空间观念及空间想象能力,引导学生树立合作探究的学习意识。

本节课的教学重点是:正确理解“相交”“互相平行”“互相垂直”等概念,特别要注意对看似不相交,而实际上可以相交现象的理解。

教学难点是:正确理解“在同一平面内”“永不相交”等概念的本质属性。

三、说教法学法在教学过程中,根据教材的特点及学生年年龄特征,我选用了归纳法、比较法和观察分析法。

根据教材的编排意图和学情状况,结合数学知识的生成特点,设计的教学方法主要是分类比较法和观察发现法。

即先让学生想像在一个平面上有两条直线,并记下它们的位置,找出一些有代表性进行分类比较,得出平面内的两条直线的位置关系有“不相交”和“相交”两种情况,然后带领学生逐一进行研究和学习。

《平行与垂直》说课稿

《平行与垂直》说课稿

《平行与垂直》说课稿《平行与垂直》说课稿篇一一、说教材新数学课程标准将“空间与图形”安排为一个重要的学习领域,强调发展学生的空间观念和空间想象能力。

“垂直与平行”就属于“空间与图形”这一领域的内容,它是学生在认识了线段、射线、直线和角等概念的基础上进行教学的,教材通过具体的生活情境,让学生充分感知同一平面内两条直线平行与垂直的位置关系。

正确认识平行、垂直等概念是学生今后平行四边形、梯形以及长方体、正方体等几何知识的基础。

同时,它也为培养学生的空间观念提供了一个很好的载体。

知识与技能目标:引导学生通过观察、讨论、感知生活中的垂直与平行的现象。

过程与方法目标:帮助学生初步理解垂直与平行是同一平面内两条直线的两种位置关系,初步认识垂线和平行线。

情感与态度目标:培养学生的空间观念及空间想象能力,引导学生具有合作探究的学习意识。

重点:正确理解“相交”、“互相平行”、“互相垂直”等概念,发展学生的空间想象能力。

难点:相交现象的正确理解(特别是看似不相交,而实际上是相交现象的理解。

)二、说教法和学法课堂教学首先是情感成长的过程,然后才是知识成长的过程,学生的学习过程是一个主动建构、动态生成的过程,教师要激活学生的原有经验,激发学生的学习热情,让学生在经历,体验和运用中真正感悟新知。

基于以上理念:在本节课的教法选择上,我注重体现以下几点:①引导学生采取“观察、想象、分类、比较、操作”等方式进行探究性学习活动。

②组织学生开展有意识的小组合作交流学习活动。

③适时运用多媒体教学手段,充分发挥现代教学手段的优越性。

新课程标准强调指出“动手实际、自主探究、合作交流”是学生学习数学的重要方式,为此,在本课时的学法指导上,我将让学生在感知想象、实际操作、自主探索、合作交流的过程中,经历知识的发生和形成过程,进而使他们在交流中充分体验同一平面内两条直线的位置关系,深刻理解“相交”、“互相平行”、“互相垂直”等概念。

使学生的学习活动成为一个生动、活泼和富有个性的过程。

平行与垂直说课稿(通用5篇)

平行与垂直说课稿(通用5篇)

平行与垂直说课稿平行与垂直说课稿(通用5篇)作为一名教学工作者,总不可避免地需要编写说课稿,写说课稿能有效帮助我们总结和提升讲课技巧。

那么问题来了,说课稿应该怎么写?下面是小编为大家收集的平行与垂直说课稿(通用5篇),希望能够帮助到大家。

一、说教材《垂直与平行》是人教版《义务教育课程标准试验教科书数学》四年级第四单元《平行四边形和梯形》的第一课时,直线的平行与垂直是在学生认识了点和线段以及射线、直线的基础上安排的,也是进一步学习空间与图形的重要基础之一。

垂直与平行是同一平面内两条直线的两种特殊的位置关系,在生活中有着广泛的应用,生活中随处可见平行与垂直的原型。

学生的头脑里已经积累了许多表象,因此教学中让学生在具体的生活情境中,充分感知平面上两条直线的平行和垂直关系。

本课时主要解决平行和垂直的概念问题。

二、说教法本节课我依据学生已有的生活经验和知识为基础,从学生出发,以《数学课程标准》的新理念为指导,遵循学生的认知规律,由生活实例引入,通过猜测、动手画线、图形反馈使学生系统深入地掌握知识,以及运用分类、观察、讨论等方法以拉近学生与知识的距离,从而揭示出平行与垂直的概念,最后加以巩固、提高与应用。

本节课的教学力求创造性地使用教材,在课堂教学设计中力求体现1.注意创设生活情境,体现了小课堂、大社会的理念,使数学学习更贴近生活。

2.让学生通过动手操作,自主探索和合作交流的学习方式,亲身体验,自主完成对知识的建构。

3.努力创设新型的师生关系,让学生主动参与,快乐学习,教师适时给予鼓励,让课堂焕发生命活力。

三、教学目标1、认知目标:让学生结合生活情境,通过自主探究活动,初步认识平行线,垂线。

2、技能目标:使学生经历从现实空间中抽象出平行线的过程,培养空间观念。

3、情感目标:在数学活动中让学生感受到数学知识在生活中的真实存在,增强学生对数学的兴趣,养成独立思考的习惯,培养用数学的意识。

四、教学重难点教学重点:感知平面上两条直线的平行、垂直的关系,认识两线平行垂直。

第2讲空间中的平行与垂直

第2讲空间中的平行与垂直

第2讲空间中的平行与垂直1.线面平行与垂直的判定定理、性质定理2.3.平行关系及垂直关系的转化示意图考点一空间线面位置关系的判断例1(1)l1,l2,l3是空间三条不同的直线,则下列命题正确的是() A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面(2)设l,m是两条不同的直线,α是一个平面,则下列命题正确的是()A.若l⊥m,m⊂α,则l⊥αB.若l⊥α,l∥m,则m⊥αC.若l∥α,m⊂α,则l∥m D.若l∥α,m∥α,则l∥m(1)(2013·广东)设m,n是两条不同的直线,α,β是两个不同的平面,下列命题中正确的是() A.若α⊥β,m⊂α,n⊂β,则m⊥nB.若α∥β,m⊂α,n⊂β,则m∥nC.若m⊥n,m⊂α,n⊂β,则α⊥βD.若m⊥α,m∥n,n∥β,则α⊥β(2)平面α∥平面β的一个充分条件是()A.存在一条直线a,a∥α,a∥βB.存在一条直线a,a⊂α,a∥βC.存在两条平行直线a,b,a⊂α,b⊂β,a∥β,b∥αD.存在两条异面直线a,b,a⊂α,b⊂β,a∥β,b∥α考点二线线、线面的位置关系例2如图,在四棱锥P—ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,P A⊥平面ABCD,E为PD的中点,P A=2AB.(1)若F为PC的中点,求证:PC⊥平面AEF;(2)求证:EC∥平面P AB.考点三面面的位置关系例3如图,在几何体ABCDE中,AB=AD=2,AB⊥AD,AE⊥平面ABD.M为线段BD的中点,MC∥AE,AE=MC= 2.(1)求证:平面BCD⊥平面CDE;(2)若N为线段DE的中点,求证:平面AMN∥平面BEC.如图所示,已知AB⊥平面ACD,DE⊥平面ACD,△ACD为等边三角形,AD=DE=2AB,F为CD的中点.求证:(1)AF∥平面BCE;(2)平面BCE⊥平面CDE.考点四 图形的折叠问题例4 (2012·北京)如图(1),在Rt △ABC 中,∠C =90°,D ,E 分别为AC ,AB 的中点,点F 为线段CD 上的一点,将△ADE 沿DE 折起到△A 1DE 的位置,使A 1F ⊥CD ,如图(2).(1)求证:DE ∥平面A 1CB ; (2)求证:A 1F ⊥BE ;(3)线段A 1B 上是否存在点Q ,使A 1C ⊥平面DEQ ?说明理由.(2013·广东)如图(1),在边长为1的等边三角形ABC 中,D ,E 分别是AB ,AC 上的点,AD =AE ,F 是BC 的中点,AF 与DE 交于点G .将△ABF 沿AF 折起,得到如图(2)所示的三棱锥A -BCF ,其中BC =22.(1)证明:DE ∥平面BCF ; (2)证明:CF ⊥平面ABF ;(3)当AD =23时,求三棱锥F -DEG 的体积V F -DEG .1.证明线线平行的常用方法(1)利用平行公理,即证明两直线同时和第三条直线平行;(2)利用平行四边形进行转换;(3)利用三角形中位线定理证明;(4)利用线面平行、面面平行的性质定理证明.2.证明线面平行的常用方法(1)利用线面平行的判定定理,把证明线面平行转化为证线线平行;(2)利用面面平行的性质定理,把证明线面平行转化为证面面平行.3.证明面面平行的方法证明面面平行,依据判定定理,只要找到一个面内两条相交直线与另一个平面平行即可,从而将证面面平行转化为证线面平行,再转化为证线线平行.4.证明线线垂直的常用方法(1)利用特殊平面图形的性质,如利用直角三角形、矩形、菱形、等腰三角形等得到线线垂直;(2)利用勾股定理逆定理;(3)利用线面垂直的性质,即要证线线垂直,只需证明一线垂直于另一线所在平面即可.5.证明线面垂直的常用方法(1)利用线面垂直的判定定理,把线面垂直的判定转化为证明线线垂直;(2)利用面面垂直的性质定理,把证明线面垂直转化为证面面垂直;(3)利用常见结论,如两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面等.6.证明面面垂直的方法证明面面垂直常用面面垂直的判定定理,即证明一个面过另一个面的一条垂线,将证明面面垂直转化为证明线面垂直,一般先从现有直线中寻找,若图中不存在这样的直线,则借助中点、高线或添加辅助线解决.1. 如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,线段B 1D 1上有两个动点E ,F ,且EF =12,则下列结论中错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A -BEF 的体积为定值D .△AEF 的距离与△BEF 的面积相等2. 如图所示,在正方体ABCD -A 1B 1C 1D 1中,E 是棱DD 1的中点.(1)证明:平面ADC 1B 1⊥平面A 1BE ;(2)在棱C 1D 1上是否存在一点F ,使B 1F ∥平面A 1BE ?证明你 的结论.一、选择题1. 已知α,β,γ是三个互不重合的平面,l 是一条直线,下列命题中正确的是( )A .若α⊥β,l ⊥β,则l ∥αB .若l 上有两个点到α的距离相等,则l ∥αC .若l ⊥α,l ∥β,则α⊥βD .若α⊥β,α⊥γ,则γ⊥β2. 已知直线m ,n 和平面α,则m ∥n 的必要不充分条件是( ) A .m ∥α且n ∥α B .m ⊥α且n ⊥α C .m ∥α且n ⊂αD .m ,n 与α成等角3. 如图,四边形ABCD 中,AD ∥BC ,AD =AB ,∠BCD =45°,∠BAD =90°,将△ADB沿BD 折起,使平面ABD ⊥平面BCD ,构成三棱锥A -BCD .则在三棱锥A -BCD 中,下列命题正确的是( )A .平面ABD ⊥平面ABCB .平面ADC ⊥平面BDC C .平面ABC ⊥平面BDCD .平面ADC ⊥平面ABC4. 下列命题中,m 、n 表示两条不同的直线,α、β、γ表示三个不同的平面.①若m ⊥α,n ∥α,则m ⊥n ;②若α⊥γ,β⊥γ,则α∥β;③若m ∥α,n ∥α,则m ∥n ;④若α∥β,β∥γ,m ⊥α,则m ⊥γ. 正确的命题是( )A .①③B .②③C .①④D .②④5. 一正四面体木块如图所示,点P 是棱VA 的中点,过点P 将木块锯开,使截面平行于棱VB 和AC ,若木块的棱长为a ,则截面面积为( ) A.a 22 B.a 23 C.a 24D.a 256. 在正三棱锥S -ABC 中,M ,N 分别是SC ,BC 的中点,且MN ⊥AM ,若侧棱SA =23,则正三棱锥S -ABC 外接球的表面积是 ( ) A .12π B .32π C .36πD .48π二、填空题7. 设x ,y ,z 是空间中的不同直线或不同平面,下列条件中能保证“若x ⊥z ,且y ⊥z ,则x ∥y ”为真命题的是________(填出所有正确条件的代号).①x 为直线,y ,z 为平面;②x ,y ,z 为平面;③x ,y 为直线,z 为平面;④x ,y 为平面,z 为直线;⑤x ,y ,z 为直线.8. 如图,在三棱柱ABC -A 1B 1C 1中,侧棱AA 1⊥底面ABC ,底面是以∠ABC为直角的等腰直角三角形,AC =2a ,BB 1=3a ,D 是A 1C 1的中点,点F 在线段AA 1上,当AF =________时,CF ⊥平面B 1DF .9. 如图,AB 为圆O 的直径,点C 在圆周上(异于点A ,B ),直线P A 垂直于圆O 所在的平面,点M 为线段PB 的中点.有以下四个命题: ①P A ∥平面MOB ; ②MO ∥平面P AC ; ③OC ⊥平面P AC ; ④平面P AC ⊥平面PBC .其中正确的命题是________(填上所有正确命题的序号). 三、解答题10. 如图,四棱锥P -ABCD 中,P A ⊥底面ABCD ,P A =23,BC =CD =2,∠ACB =∠ACD =π3.(1)求证:BD ⊥平面P AC ;(2)若侧棱PC 上的点F 满足PF =7FC ,求三棱锥P -BDF 的体积.11.(2012·广东)如图所示,在四棱锥P -ABCD 中,AB ⊥平面P AD ,AB ∥CD ,PD =AD ,E 是PB 的中点,F 是DC 上的点且DF =12AB ,PH 为△P AD 中AD 边上的高. (1)证明:PH ⊥平面ABCD ;(2)若PH =1,AD =2,FC =1,求三棱锥E -BCF 的体积; (3)证明:EF ⊥平面P AB .12.如图,在平行四边形ABCD 中,AB =2BC =4,∠ABC =120°,E ,M 分别为AB ,DE 的中点,将△ADE 沿直线DE 翻折成△A ′DE , F 为A ′C 的中点,A ′C =4. (1)求证:平面A ′DE ⊥平面BCD ; (2)求证:FB ∥平面A ′DE .。

高中数学人教A版必修第二册《空间直线、平面的垂直---直线与平面、平面与平面垂直的性质》名师课件

高中数学人教A版必修第二册《空间直线、平面的垂直---直线与平面、平面与平面垂直的性质》名师课件
掌握平面与平面垂直的性质定理.
核心素养
逻辑推理
逻辑推理
学习目标
课程目标
1.理解直线和平面、平面和平面垂直的性质定理并能运用其解决相关问题.
2.通过对性质定理的理解和应用,培养学生的空间转化能力和逻辑推理能力.
数学学科素养
1.逻辑推理:探究归纳直线和平面、平面和平面垂直的性质定理,线线垂直、线面垂直、
变式训练
3.如图所示,在四棱锥PABCD中,底面ABCD是边长为a的菱形,且∠DAB=60°,G为AD边
的中点,侧面PAD为正三角形,其所在的平面垂直于底面ABCD.
(1)求证:BG⊥平面PAD;(2)求证:AD⊥PB.
证明
(1)因为在菱形ABCD中,G为AD的中点, ∠DAB=60° ,所以BG⊥AD.
复习引入
直线与平面垂直的定义:
如果直线与平面内的任意一条直线都垂直,我们说直
线与平面互相垂直,记作 ⊥ .
直线与平面垂直的判定定理:
一条直线与一个平面内的两条相交直线都垂直,则该直线与此平
面垂直.
复习引入
平面与平面垂直的定义
一般地,两个平面相交,如果它们所成的二面角是直二面角,就说
这两个平面互相垂直.
求证:(1)DE=DA;(2)平面BDM⊥平面ECA;(3)平面DEA⊥平面ECA.
证明
(1)如图,取EC的中点F,连接DF.
因为EC⊥平面ABC,BC⊂平面ABC,所以EC⊥BC.
易知DF//BC,所以DF⊥EC.
在Rt△EFD和Rt△DBA中

因为EF= EC,EC=2BD,所以EF=BD.

又FD=BC=AB所以Rt△EFD≌Rt△DBA ,故DE=DA.
又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以BG⊥平面PAD.

高中数学必修2——立体几何平行和垂直(教案)

高中数学必修2——立体几何平行和垂直(教案)

立体几何平行和垂直知识讲解知识点1 点、线、面一、平面的基本性质二、空间直线的位置关系1.位置关系的分类⎩⎨⎧共面直线⎩⎪⎨⎪⎧相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线:不同在任何一个平面内,没有公共点.2.平行公理平行于同一条直线的两条直线互相平行.3.等角定理空间中如果两个角的两边分别对应平行,那么这两个角相等或互补.4.异面直线所成的角(或夹角)(1)定义:设ba,是两条异面直线,经过空间中任一点O作直线bbaa//',//',把'a与'b所成的锐角(或直角)叫做异面直线a与b所成的角.I,,Pl P l且且三、直线与平面的位置关系llAα//l知识点2 线线垂直判断线线垂直的方法:所成的角是直角,两直线垂直;垂直于平行线中的一条,必垂直于另一条。

三垂线定理:在平面内的一条直线,如果它和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直。

三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直。

推理模式:,,PO O PA A a AO a a AP αααα⊥∈⎫⎪=⇒⊥⎬⎪⊂⊥⎭注意:⑴三垂线指AO PO PA ,,都垂直α内的直线a 其实质是:斜线和平面内一条直线垂直的判定和性质定理⑵要考虑a 的位置,并注意两定理交替使用。

知识点3 线面垂直定义:如果一条直线l 和一个平面α相交,并且和平面α内的任意一条直线都垂直,我们就说直线l 和平面α互相垂直其中直线l 叫做平面α的垂线,平面α叫做直线l 的垂面,直线与平面的交点叫做垂足。

直线l 与平面α垂直记作:α⊥l 。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线和平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

知识点4 面面垂直两个平面垂直的定义:相交成直二面角的两个平面叫做互相垂直的平面。

关于平行与垂直教案(精选范文4篇)

关于平行与垂直教案(精选范文4篇)

关于平行与垂直教案(精选范文4篇)垂直,是指一条线与另一条线相交并成直角,这两条直线相互垂直。

通常用符号“⊥”表示。

设有两个向量a和b,a⊥b的充要条件是a·b=0,即(x1x2+y1y2)=0 。

对于立体几何中的垂直问题,主要涉及到线面垂直问题与面面垂直问题,而要解决相关的,以下是为大家整理的关于平行与垂直教案4篇, 供大家参考选择。

平行与垂直教案4篇【篇一】平行与垂直教案第四单元平行四边形和梯形第____课时总序第____个教案编写时间:____年____月____日执行时间:____年____月____日【篇二】平行与垂直教案垂直与平行教学内容:人教版《义务教育课程标准试验教科书·数学》四年级上册64~65页的内容。

教学目标:1.引导学生通过视察、探讨感知生活中的垂直与平行的现象。

2.协助学生初步理解垂直与平行是同一平面内两条直线的两种位置关系,初步相识垂线和平行线。

3.造就学生的空间观念及空间想象实力,引导学生树立合作探究的学习意识。

4、在分析、比拟、综合的视察与思维中渗透分类的思想方法。

教学重点:正确理解“相交”“相互平行”“相互垂直”等概念,开展学生的空间想象实力。

教学难点:相交现象的正确理解〔尤其是对看似不相交而事实上是相交现象的理解〕教学过程:一、画图感知,探究两条直线的位置关系同学们,前面我们相识的直线,知道了直线的特点是可以向两端无限延长,这节课咱们接着探究和直线有关的学问!首先教师向学生出示一个魔方,说怎么玩?生:把一样颜色的方块转到同一个平面上。

然后教师又拿出一张白纸,我们把这张白纸看成一个平面,闭上眼睛想象在这个平面上出现了一条直线,又出现了一条直线,你想象的这两条直线是什么样儿呢?睁开眼睛!把他们用直尺和彩色笔画在纸上!〔生画直线,师巡察〕二、视察分类,了解平行的特征师:好多同学都已经画完坐端正了,你们都画完了吗?好!刚刚教师收集了几幅作品,我们贴黑板上吧!师:你们看,同学们的想象真丰富,我们在同一个平面内想象两条直线,竟然出现了这么多不同的样子,真不简洁!师:细致看看,能不能给他们分分类呢?好!为了大家表达起来便利,咱们给他们编上号,一起来吧!师:下面请你把分类的状况写在练习本上,用序号表示〔小组合作完成〕〔起先吧!〕师:都分好了吗?谁情愿到前面来分给大家看看!给大家说说你分的理由!1、教学相交师:这个同学把黑板上的分成了两类!对于这样的分发你有没有不同的想法?这个同学的观点认为4号是穿插的,你们认为呢?为什么?谁能再说说理由?大家说能再画长一些吗?〔能〕师小结:也就是说这幅作品把穿插的局部没画出来,它穿插了吗?〔穿插了〕嗯!它看似不穿插实际却是穿插了的!此时此刻我们可以把它放到哪一类?〔穿插的一类〕师总结:好!大家看,我们把黑板上的作品分成了两类,这一类是两条直线相互穿插了,这一类就是相交〔板书:相交〕2、教学相互平行师:那这一类相交了吗?是不是因为这两条直线画的太短了呢?那是为什么?你从哪儿看出来再画也不会相交呢?师:也就是说这边的宽窄和这边儿的宽窄一样,对吗?那你用什么方法证明这两边的宽窄一样呢?〔用尺子量〕谁情愿上来量?这一幅谁来量?师:这两个同学量了这边儿是3厘米,这边儿也是3厘米,这幅这边是2厘米,这边儿也是2厘米,把它们画的再长些,这两条直线会相交吗?为什么?谁能再说说理由!师小结:也就是说这两条直线之间必需一样宽窄!那么像这样在同一平面内的两条直线画的再长、再长也不会相交。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析 如图,过点P作PO⊥平面ABC于O,则PO为P到平面ABC的距离. 再过O作OE⊥AC于E,OF⊥BC于F, 连接PC,PE,PF,则PE⊥AC,PF⊥BC. 所以 PE=PF= 3,所以 OE=OF, 所以CO为∠ACB的平分线,即∠ACO=45°. 在 Rt△PEC 中,PC=2,PE= 3,所以 CE=1, 所以 OE=1,所以 PO= PE2-OE2= ( 3)2-12= 2. 答案 2
A.m=n
12
B.m=n+2
C.m<n
真题感悟 考点整合
D.m+n<8
8
真题感悟 考点整合
热点聚焦 分类突破
@《解 过点C作C1E的垂线,垂足为H. 由已知可得DE⊥BC,DE⊥C1C,又BC∩C1C=C,BC,C1C⊂平面C1CE, 所以DE⊥平面C1CE, 故DE⊥CH.又C1E∩DE=E,所以CH⊥平面C1DE, 故CH的长即为点C到平面C1DE的距离. 由已知可得CE=1,C1C=4,
3
真题感悟 考点整合
热点聚焦 分类突破
@《创新设计》
解析 连接 BD,BE,∵点 N 是正方形 ABCD 的中心,∴点 N 在 BD 上,且 BN=DN,∴BM,EN 是△DBE 的中线,∴BM,
EN 必相交.连接 CM,设 DE=a,则 EC=DC=a,MC= 23a, ∵平面 ECD⊥平面 ABCD,且 BC⊥DC,∴BC⊥平面 EDC,则
@《创新设计》
11
真题感悟 考点整合
热点聚焦 分类突破
@《创新设计》
热点一 空间点、线、面位置关系 【例1】 (1)(2020·河南百校大联考)如图,正方体的底面与正四面体的底面在同一平面
α上,且AB∥CD,若正方体的六个面所在的平面与直线CE,EF相交的平面个数分 别记为m,n,则下列结论正确的是( )
@《创新设计》
第2讲 空间中的平行与垂直
1
真题感悟 考点整合
热点聚焦 分类突破
@《创新设计》
高考定位 1.以几何体为载体考查空间点、线、面位置关系的判断,主要以选择 题、填空题的形式出现,题目难度较小;2.以解答题的形式考查空间平行、垂直 的证明,并与空间角的计算综合命题.
2
真题感悟 考点整合
热点聚焦 分类突破
@《创新设计》
真题感悟 1.(2019·全国Ⅲ卷)如图,点N为正方形ABCD的中心,△ECD为正三角形,平面ECD⊥
平面ABCD,M是线段ED的中点,则( ) A.BM=EN,且直线BM,EN是相交直线 B.BM≠EN,且直线BM,EN是相交直线 C.BM=EN,且直线BM,EN是异面直线 D.BM≠EN,且直线BM,EN是异面直线
所以 C1E=
17,故
CH=4
17 17 .
从而点 C 到平面 C1DE 的距离为41717.
9
真题感悟 考点整合
热点聚焦 分类突破
考点整合 1.直线、平面平行的判定及其性质
(1)线面平行的判定定理:a⊄α,b⊂α,a∥b⇒a∥α. (2)线面平行的性质定理:a∥α,a⊂β,α∩β=b⇒a∥b. (3)面面平行的判定定理:a⊂β,b⊂β,a∩b=P,a∥α,b∥α⇒α∥β. (4)面面平行的性质定理:α∥β,α∩γ=a,β∩γ=b⇒a∥b.
(1)证明 连接 B1C,ME.因为 M,E 分别为 BB1,BC 的中点,
所以 ME∥B1C,且 ME=12B1C.
又因为 N 为 A1D 的中点,所以 ND=12A1D. 由题设知A1B1綊DC,可得B1C綊A1D,故ME綊ND, 因此四边形MNDE为平行四边形,所以MN∥ED.
又MN⊄平面C1DE,ED⊂平面C1DE,所以MN∥平面C1DE.
@《创新设计》
6
真题感悟 考点整合
热点聚焦 分类突破
(2)如图,在棱AA1上取点G,使得AG=2GA1,连接GD1,FC1,FG.
@《创新设计》
因为 ED1=23DD1,AG=23AA1,DD1 綊 AA1,所以 ED1 綊 AG,于是四边形 ED1GA 为
平行四边形,故 AE∥GD1. 因为 B1F=13BB1,A1G=13AA1,BB1 綊 AA1,所以 B1FGA1 是平行四边形,所以 FG 綊
A1B1,所以 FG 綊 C1D1,四边形 FGD1C1 为平行四边形,故 GD1∥FC1. 于是AE∥FC1.所以A,E,F,C1四点共面,即点C1在平面AEF内.
7
真题感悟 考点整合
热点聚焦 分类突破
4.(2019·全国Ⅰ卷)如图,直四棱柱ABCD-A1B1C1D1的底面是菱 形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC, BB1,A1D的中点. (1)证明:MN∥平面C1DE; (2)求点C到平面C1DE的距离.
5
真题感悟 考点整合
热点聚焦 分类突破
3.(2020·全国Ⅲ卷)如图,在长方体ABCD-A1B1C1D1中,点E,F分 别在棱DD1,BB1上,且2DE=ED1,BF=2FB1.证明: (1)当AB=BC时,EF⊥AC; (2)点C1在平面AEF内. 证明 (1)如图,连接BD,B1D1.因为AB=BC, 所以四边形ABCD为正方形,故AC⊥BD. 又因为BB1⊥平面ABCD,于是AC⊥BB1. 又BD∩BB1=B,所以AC⊥平面BB1D1D. 由于EF⊂平面BB1D1D,所以EF⊥AC.
@《创新设计》
10
真题感悟 考点整合
热点聚焦 分类突破
2.直线、平面垂直的判定及其性质 (1)线面垂直的判定定理:m⊂α,n⊂α,m∩n=P,l⊥m,l⊥n⇒l⊥α. (2)线面垂直的性质定理:a⊥α,b⊥α⇒a∥b. (3)面面垂直的判定定理:a⊂β,a⊥α⇒α⊥β. (4)面面垂直的性质定理:α⊥β,α∩β=l,a⊂α,a⊥l⇒a⊥β.
BD= 2a,BE= a2+a2= 2a,BM=
23a2+a2=
27a,又
EN= a22+ 23a2=a,故 BM≠EN.
答案 B
4
真题感悟 考点整合
热点聚焦 分类突破
@《创新设计》
2.(2019·全国Ⅰ卷)已知∠ACB=90°,P 为平面 ABC 外一点,PC=2,点 P 到∠ACB 两 边 AC,BC 的距离均为 3,那么 P 到平面 ABC 的距离为________.
相关文档
最新文档