选修2-2 导数及其应用 典型例题
人教版高中数学选修2-2习题第一章导数及其应用1.1.2导数的概念

第一章导数及其应用1.1变化率与导数导数的观点A 级基础稳固一、选择题1. y= x2在 x= 1 处的导数为 ()A. 2x B. 2 C. 2+ x D. 1分析:由于 f(x)= x2,x= 1,因此y= f(1+x)- f (1)= (1+x)2- 1= 2x+ (x)2,所以y=(2+x)= 2.x答案: B2.一物体运动知足曲线方程s=4t2+ 2t- 3,且 s′(5)= 42(m/s),其实质意义是 () A.物体 5 秒内共走过42 米B.物体每 5 秒钟运动42 米C.物体从开始运动到第 5 秒运动的均匀速度是42 米/秒D.物体以 t= 5 秒时的刹时速度运动的话,每经过一秒,物体运动的行程为42 米分析:由导数的物理意义知,s′ (5)= 42(m/s)表示物体在t= 5 秒时的刹时速度.答案: D3.设函数 f (x)在点 x0邻近有定义,且有 f(x0+x)- f(x0 )= a x+ b(x)2,(a,b 为常数 ),则 ()A. f′ (x)= a B. f′ (x)= bC. f′ (x0)= a D. f′ (x0)= b分析:由于 f′(x=f( x0+x)-f(x)=0)xa x+ b(x)2=(a+ b x)= a,因此 f′(xx0)=a.答案: C4.已知 y=x+ 4,则 y′|x1= ________.=555A. 2B. 10C. 5 D.-10分析:由题意知y=1+x+ 4- 1+ 4=5+x-5,y+-5+-5所以=5x1=5x=. 所以 y′|xx x=xx=5x ( 5+ x +5) 10.答案: B5.假如某物体做运动方程为s = 2(1- t 2)的直线运动 (s 的单位为 m , t 的单位为 s),那么 其在 1.2 s 末的刹时速度为 ()A .- 4.8 m/sB .- 0.88 m/sC . 0.88 m/sD . 4.8 m/s解 析 : 运 动 物 体 在1.2s 末 的 瞬 时 速 度 即 为 s 在 1.2 处 的 导数 , 所 以f ( 1.2+ t )- f ( 1.2)=t222[1-( 1.2+t ) ]- 2×( 1- 1.2 )=2(- 答案: A 二、填空题6.设函数t - 2.4)=- 4.8(m/s).f(x)知足f ( 1)- f ( 1- x )=- 1,则 f ′(1)= ________.x分析: f ( 1)- f ( 1- x ) = f ( 1- x )- f ( 1)= f ′(1)=- 1.x- x答案:- 17.函数 f(x)= x 2+ 1 在 x = 1 处可导,在求 f ′(1)的过程中,设自变量的增量为x ,则函数的增量y = ________.分析:y = f(1+ x)- f(1) =- (1 2+ 1)=2 x + ( x)2.答案: 2 x + (x)28.某物体做匀速直线运动,其运动方程是 s = vt ,则该物体在运动过程中其均匀速度与任何时辰的刹时速度的大小关系是________.s ( +t )- s ( t )分析: v 0== s t 0=ttv ( t 0+ t )- v ( t 0)=v tt= v.t答案:相等三、解答题19.利用导数的定义,求函数y = x 2+ 2 在点 x = 1 处的导数. 解:由于y = 1 2+2 - 1 =( x + x ) x 2+ 2- 2x x -(x ) 2,因此y =- 2x - x ,( x + x ) 2· x 2 x ( x + x ) 2· x 2因此 y ′=y = - 2x - x2=- 23,( x +2xx ) · xx因此 y ′|x =1=- 2.10.在自行车竞赛中,运动员的位移与竞赛时间t 存在关系 s(t)= 10t + 5t 2(s 的单位是 m ,t 的单位是 s).(1)求 t = 20,t = 0.1 时的s 与s ;t(2)求 t = 20 时的速度.解: (1) 当 t = 20, t = 0.1 时,s = s(20+ t)- s(20)= 10(20+ 0.1)+ 5(20+ 0.1)2- (10 ×20+ 5× 202)= 1+ 20+ 5×0.01=21.05.因此s 21.05 = 210.5.= 0.1ts( + t)+(+ t) 2- 10t - 5t 2(2)v ==10 t 5 t =tt5(t ) 2+ 10 t + 10tt(5 t + 10+ 10t)= 10+ 10t ,t=因此 t = 20 时的速度即为10+ 10×20= 210(m/s).B 级 能力提高1.某物体运动规律是 s = t 2 - 4t + 5,若此物体的刹时速度为 0,则 t = ()A .3B .2.5C .2D .1分析: s = (t + t)2- 4(t +t) + 5- ( t 2- 4t + 5)= 2t t + ( t)2- 4 t ,由于 v =st= 2t - 4= 0,因此 t = 2.答案: C2.婴儿从出生到第24 个月的体重变化如下图,第二年婴儿体重的均匀变化率为________kg/ 月.分析:第二年婴儿体重的均匀变化率为14.25- 11.25= 0.25(kg/月 ).24- 12答案: 0.253.若一物体运动方程是 (s 的单位是 m , t 的单位是 s)3t 2+ 2( t ≥3),s =29+ 3( t - 3) 2( 0≤t < 3) .求: (1) 物体在 t ∈内的均匀速度;(2) 物体的初速度v 0;(3) 物体在 t = 1 时的刹时速度.解: (1) 由于物体在 t ∈内的时间变化量为t = 5-3= 2,物体在 t ∈内的位移变化量为:= × 2+ 2- (3 ×32+ 2)= 3×(52- 32s 3 5 )= 48,因此物体在 t ∈上的均匀速度为 s 48 = 24(m/s).= 2t (2) 求物体的初速度 v 0 即求物体在 t = 0 时的刹时速度.由于物体在 t = 0 邻近的均匀变化率为s ( +)- ( ) == ftftt29+ 3[( 0+ t )- 3]2- 29- 3( 0- 3) 2= 3t - 18.t因此物体在 t = 0 处的刹时变化率为,s (3 t - 18)=- 18,t =即物体的初速度为- 18 m/s.(3)物体在 t = 1 时的刹时速度即为函数在 t = 1 处的刹时变化率.由于物体在 t = 1 邻近的均匀变化率为:s ( + )- ( )= f 1 t f 1 = tt29+ 3[( 1+ t )- 3]2- 29- 3( 1- 3) 2t - 12,= 3t因此物体在 t = 1 处的刹时变化率为:s = (3 t - 12)=- 12.t即物体在 t = 1 时的速度为- 12 m/s.。
高中数学选修2-2导数的应用--函数的最值与导数(解析版)

函数的最大(小)值与导数(解析版)1.设函数f (x )=2x +1x -1(x <0),则f (x )( )A .有最大值B .有最小值C .是增函数D .是减函数解析:f ′(x )=2-1x 2=2x 2-1x 2(x <0),由f ′(x )=0得x =-22, 且x ∈⎝ ⎛⎭⎪⎫-∞,-22时,f ′(x )>0;x ∈⎝ ⎛⎭⎪⎫-22,0时,f ′(x )<0.所以f ⎝ ⎛⎭⎪⎫-22是极大值,也是最大值.答案:A2.函数f (x )=x 2-4x +1在[1,5]上的最大值和最小值分别是( )A .f (1),f (3)B .f (3),f (5)C .f (1),f (5)D .f (5),f (2)解析:f ′(x )=2x -4,由f ′(x )=0得x =2, 因为f (1)=-2,f (5)=6,f (2)=-3,所以函数f (x )在[1,5]上的最大值和最小值是f (5),f (2).答案:D3.函数f (x )=x +2cos x 在区间⎥⎦⎤⎢⎣⎡0,2-π上的最小值是( )A .-π2B .2 C.π6+ 3 D.π3+1解析:令f ′(x )=1-2sin x =0,因为x ∈⎣⎢⎡⎦⎥⎤-π2,0,所以f ′(x )>0,所以f (x )在⎣⎢⎡⎦⎥⎤-π2,0单调递增,所以f (x )min =-π2.答案:A4.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围是( )A .0≤a <1B .0<a <1C .-1<a <1D .0<a <12解析:因为f ′(x )=3x 2-3a =3(x 2-a ),依题意f ′(x )=0在(0,1)内有解.所以0<a <1. 答案:B5.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是( )A .-37B .-29C .-5D .以上都不对解析:令f ′(x )=6x 2-12x =0,得x =0或x =2.由f (-2)=-40+m ,f (0)=m ,f (2)=-8+m ,可知f (0)=m =3,所以f (-2)=-40+m =-37.答案:A6.若函数f (x )=x -2+2x -a 在区间⎥⎦⎤⎢⎣⎡3,21上的最大值、最小值分别为m ,n ,则m -n=( )A.173 B.235 C.267 D.289解析:因为f ′(x )=-2x -3+2=2(x -1)(x 2+x +1)x 3,所以当1≤x ≤3时f ′(x )>0,当12≤x <1时,f ′(x )<0.所以f (x )在⎪⎭⎫⎢⎣⎡1,21上单调递减,在[1,3]上单调递增. 所以f (x )min =f (1)=1+2-a =3-a =n .又因为f ⎪⎭⎫ ⎝⎛21=5-a ,f (3)=559-a ,所以f ⎪⎭⎫⎝⎛21<f (3).所以f (x )max =f (3)=559-a =m ,所以m -n =559-a -(3-a )=289.答案:D 7.设x 0是函数f (x )=12(e x +e -x )的最小值点,则曲线上点(x 0,f (x 0))处的切线方程是________.解析:令f ′(x )=12(e x -e -x )=0,得x =0,可知x 0=0为最小值点.切点为(0,1),切线斜率为k =f ′(0)=0,所以切线方程为y =1.答案:y =18.已知f (x )=-x 2+mx +1在区间[-2,-1]上的最大值就是函数f (x )的极大值,则m 的取值范围是________.解析:令f ′(x )=-2x +m =0,得x =m 2.由题设得m2∈[-2,-1],故m ∈[-4,-2].函数f (x )=x 2+2ax +1在[0,1]上的最小值为f (1),则a 的取值范围为(-∞,-1] 解析:f ′(x )=2x +2a ,因为f (x )在[0,1]上的最小值为f (1),所以f (x )在[0,1]上单调递减,所以x ∈[0,1]时f ′(x )≤0恒成立,于是a ≤(-x )min ,所以a ≤-1. 10.函数f (x )=12e x (sin x +cos x )(x ∈[0,1])的值域为___________.解析:当0≤x ≤1时,f ′(x )=12e x (sin x +cos x )+12e x (cos x -sin x )=e x cos x >0,所以f (x )在[0,1]上单调递增,则f (0)≤f (x )≤f (1),即函数f (x )的值域为⎣⎢⎡⎦⎥⎤12,12e (sin 1+cos 1).答案:⎣⎢⎡⎦⎥⎤12,12e (sin 1+cos 1) 11.设直线x =t 与函数f (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,求当|MN |达到最小值时t 的值.解:由题意,设|MN |=F (t )=t 2-ln t (t >0),令F ′(t )=2t -1t =0, 得t =-22(舍去)或t =22.F (t )在⎝ ⎛⎭⎪⎫0,22上单调递减,在⎝ ⎛⎭⎪⎫22,+∞上单调递增, 故t =22时,F (t )=t 2-ln t (t >0)有极小值,也为最小值. 所以当|MN |达到最小值时t =22. 12.已知a 为常数,求函数f (x )=-x 3+3ax (0≤x ≤1)的最大值.解:f ′(x )=-3x 2+3a =-3(x 2-a ).若a ≤0,则f ′(x )≤0,函数f (x )单调递减, 所以当x =0时,有最大值f (0)=0;若a >0,则令f ′(x )=0,解得x =±a . 由x ∈[0,1],则只考虑x =a 的情况.①0<a <1,即0<a <1时,当x =a 时,f (x )有最大值f (a )=2a a ,如下表所示:↗②a ≥1,即a ≥1时,f ′(x )≥0,函数f (x )在[0,1]上单调递增,当x =1时,f (x )有最大值,f (1)=3a -1.综上,当a ≤0,x =0时,f (x )有最大值0;当0<a <1,x =a 时,f (x )有最大值2a a ;当a ≥1,x =1时,f (x )有最大值3a-113.已知函数f (x )=-x 3+ax 2-4(a ∈R),f ′(x )是f (x )的导函数.(1)当a =2时,对于任意的m ∈[-1,1],n ∈[-1,1],求f (m )+f ′(n )的最小值; (2)若存在x 0∈(0,+∞),使f (x 0)>0,求a 的取值范围.解:(1)当a =2时,f (x )=-x 3+2x 2-4,f ′(x )=-3x 2+4x .令f ′(x )=0,得x 1=0,x 2=43.当x ∈(-1,0)时,f ′(x )<0,所以f (x )在(-1,0)上单调递减;当x ∈(0,1)时,f ′(x )>0,所以f (x )在(0,1)上单调递增; 所以对于m ∈[-1,1],f (m )的最小值为f (0)=-4.因为f ′(x )=-3x 2+4x 的开口向下,且对称轴为x =23,所以对于n ∈[-1,1],f ′(n )的最小值为f ′(-1)=-7.故f (m )+f ′(n )的最小值为-11.(2)f ′(x )=-3x 2+2ax =-3x ⎪⎭⎫ ⎝⎛-32a x .①若a ≤0,当x >0时,f ′(x )<0,所以f (x )在[0,+∞)上单调递减,又f (0)=-4,则当x >0时,f (x )<-4. 所以当a ≤0时,不存在x 0>0,使f (x 0)>0.②若a >0,当0<x <2a 3时,f ′(x )>0,所以f (x )在(0,2a 3]上单调递增;当x >2a3时,f ′(x )<0,所以f (x )在⎪⎭⎫⎢⎣⎡+∞,32a 上单调递减;故当x ∈(0,+∞)时,f (x )max =f ⎪⎭⎫ ⎝⎛32a =427a 3-4.依题意427a 3-4>0,解得a >3.综上,a 的取值范围是(3,+∞).函数的最大(小)值与导数1.设函数f (x )=2x +1x -1(x <0),则f (x )( )A .有最大值B .有最小值C .是增函数D .是减函数2.函数f (x )=x 2-4x +1在[1,5]上的最大值和最小值分别是( )A .f (1),f (3)B .f (3),f (5)C .f (1),f (5)D .f (5),f (2)3.函数f (x )=x +2cos x 在区间⎥⎦⎤⎢⎣⎡0,2-π上的最小值是( )A .-π2B .2 C.π6+ 3 D.π3+14.函数f (x )=x 3-3ax -a 在(0,1)内有最小值,则a 的取值范围是( )A .0≤a <1B .0<a <1C .-1<a <1D .0<a <125.已知f (x )=2x 3-6x 2+m (m 为常数)在[-2,2]上有最大值3,那么此函数在[-2,2]上的最小值是( )A .-37B .-29C .-5D .以上都不对6.若函数f (x )=x -2+2x -a 在区间⎥⎦⎤⎢⎣⎡3,21上的最大值、最小值分别为m ,n ,则m -n=( )A.173 B.235 C.267 D.2897.设x 0是函数f (x )=12(e x +e -x )的最小值点,则曲线上点(x 0,f (x 0))处的切线方程是________.8.已知f (x )=-x 2+mx +1在区间[-2,-1]上的最大值就是函数f (x )的极大值,则m 的取值范围是________.9.函数f (x )=x 2+2ax +1在[0,1]上的最小值为f (1),则a 的取值范围为____________. 10.函数f (x )=12e x (sin x +cos x )(x ∈[0,1])的值域为___________.11.设直线x=t与函数f(x)=x2,g(x)=ln x的图象分别交于点M,N,求当|MN|达到最小值时t的值.12.已知a为常数,求函数f(x)=-x3+3ax(0≤x≤1)的最大值.13.已知函数f(x)=-x3+ax2-4(a∈R),f′(x)是f(x)的导函数.(1)当a=2时,对于任意的m∈[-1,1],n∈[-1,1],求f(m)+f′(n)的最小值;(2)若存在x0∈(0,+∞),使f(x0)>0,求a的取值范围.。
人教课标版(B版)高中数学选修2-2第一章 导数及其应用导数

感悟高考
由 g′(x)=0,得 x1=1,x2=2. 所以当 x∈(-∞, 1)时, g′(x)<0, g(x)在(-∞, 1)上为减函数;
当 x∈(1,2)时,g′(x)>0,g(x)在(1,2)上为增函数; 当 x∈(2,+∞)时,g′(x)<0,g(x)在(2,+∞)上为减函数; 1 所以,当 x=1 时,g(x)取得极小值 g(1)= ,当 x=2 时函数取 e 3 得极大值 g(2)= 2. e 函数 y=k 与 y=g(x)的图象的大致形状如上, 1 3 由图象可知,当 k= 和 k= 2时,关于 x 的方程 f(x)=kex 恰有两 e e 个不同的实根.
1 1 ①当 x∈-2,0时,h′(x)>0,∴h(x)在-2,0上单调递增.
②当 x∈(0,+∞)时,h′(x)<0,∴h(x)在(0,+∞)上单调递减.
1 1 1-2ln 2 ∴当 x∈-2,0时,h(x)>h-2= . 4
g(3)<0, 即a+4-2ln 2<0, 解得 2ln 3-5≤a<2ln 2-4. g(4)≥0, a+5-2ln 3≥0,
综上所述,a 的取值范围是[2ln 3-5,2ln 2-4). 2 方法二 ∵f(x)=2ln(x-1)-(x-1) ,
∴f(x)+x2-3x-a=0 x+a+1-2ln(x-1)=0, 即 a=2ln(x-1)-x-1, 令 h(x)=2ln(x-1)-x-1, 3-x 2 ∵h′(x)= -1= ,且 x>1, x-1 x-1 由 h′(x)>0,得 1<x<3;由 h′(x)<0,得 x>3. ∴h(x)在区间[2,3]上单调递增,在区间[3,4]上单调递减.
选修2-2导数及其应用典型例题

第一章 导数及其应用1.1 变化率与导数【知识点归纳】1.平均变化率:2.瞬时速度:3.导数及导函数的概念:4.导数的几何意义:拓展知识:5.平均变化率的几何意义:6.导数与切线的关系:【典型例题】题型一 求平均变化率:例1.函数2()21y f x x ==-的图像上一点〔1,1〕及其邻近一点(1,1)x y +∆+∆,那么y x∆∆=_______.变式训练:1.以00(0)v v >速度竖直向上抛出一物体,t 秒时的高度为201()2s t v t gt =-,求物体在0t 到0t t +∆这段时间的平均速度v .2.求正弦函数sin y x =在0x =和2x π=附近的平均变化率,并比较他们的大小.题型二 实际问题中的瞬时速度例 2 质点M 按规律223s t =+做直线运动〔位移单位:cm ,时间单位:s 〕〔1〕当2,0.01t t =∆=时,求s t ∆∆;〔2〕当2,0.001t t =∆=时,求s t∆∆; 〔3〕求质点M 在t=2时的瞬时速度.题型三 求函数的导数及导函数的值例 3求函数1y x x =-在1x =处的导数.题型四 曲线的切线问题例 4〔1〕曲线22y x =上一点A 〔1,2〕,求点A 处的切线方程.〔2〕求过点〔-1,-2〕且与曲线32y x x =-想切的直线方程.〔3〕求曲线321()53f x x x =-+在x=1处的切线的倾斜角.〔4〕曲线3y x =在点P 处的切线斜率为3,求点P 的坐标.1.2 导数的计算【知识点归纳】1.常见函数的导数:2.根本初等函数的导数公式:3.导数的运算法那么:4.复合函数的导数:【典型例题】题型 一 根本初等函数导数公式运用例1 给出以下结论: ①1(cos )sin 662ππ'=-=-;②假设21y x=,那么32y x -'=-;③假设()3f x x =,那么[(1)]3f ''=;④.假设y =y '= 其中正确的选项是_________________.题型 二 导数运算法那么的应用例 2 求以下函数的导数:〔1〕531253y x x =+;〔2〕lg x y x e =-;〔3cos x ;〔4〕sin cos 22x x y x =-.变式训练:判断下面的求导是否正确,如果不正确,加以改正.2221cos 2(1cos )sin ()x x x x x x x +++'=题型三复合函数求导的应用例7求以下函数的导数.〔1〕3(1cos2)y x=+;〔2〕21sinyx=.变式训练:求函数2(2y x=-题型四切线方程及应用例4曲线sin xy x e=+在点〔0,1〕处的切线方程是?变式训练:曲线32y x x=+-在P处的切线平行于直线41y x=-,那么点P的坐标为_________.题型五利用导数求参数问题例5 假设曲线3y x ax=+在坐标原点处的切线方程是20x y-=,那么实数a=_________变式训练:假设函数()x ef xx=在x=a处的导数值为函数值互为相反数,求a的值题型 六 对数求导数的应用〔选讲〕例6 求以下函数的导数〔1〕(1)(2)(3)(3)y x x x x =--->;〔2〕(1)(2)(3)1()212x x x y x x +++=>-+;1.3 导数在研究函数中的应用1.3.1 函数的单调性与导数【知识点归纳】1.函数的单调性与其导数的关系:2.利用导数求函数的单调区间:3.导数的绝对值的大小与图像的关系〔选讲〕:【典型例题】题型 一 里用导数的信息确定函数大致图像例1 导函数()f x '的以下信息:当23x <<时,()0f x '<; 当3x >或2x <时,()0f x '>;当3x =或2x =时,()0f x '=;试画出函数f 〔x 〕图像的大致形状.题型 二 判断或者证明函数的单调性例2 试判断函数()ln f x x x =+在其定义域上的单调性.变式训练:证明:函数ln ()xf x x =在区间〔0,2〕上是单调递增函数.题型三求函数的单调性例3确定函数32()267f x x x=-+的单调区间.变式训练:求函数3y x x=-的单调性.题型四含有参数的函数的单调性例4函数2()ln(2)f x x ax a x=-+-,讨论f〔x〕的单调性.变式训练:函数1()2axf xx+=+在(2,)-+∞单调递增,数a的取值围.1.3.2 导数的极值与导数【知识点归纳】1.导数的极值的概念:2.导数的极值的判断和求法:【典型例题】题型 一 求函数的极值例1 求以下函数的极值:〔1〕276y x x =-+; 〔2〕2ln y x x =.变式训练:设32()1f x x ax bx =+++的导数()f x '满足(1)2,(2)f a f b ''==-,其中常数,a b R ∈.〔1〕求曲线()y f x =在点(1,(1))f 处的切线方程.〔2〕设()()xg x f x e -'=,求函数()g x 的极值.题型 二 判断函数极值点的情况例2 判断以下函数有无极值,假设有极值,请求出极值;如果没有极值,请说明理由.〔1〕31()43f x x =+; 〔2〕321()43f x x x x =++; 〔3〕23()1(2)f x x =--.变式训练:设函数2()ln f x ax b x =+,其中0ab ≠.证明:当0ab >时,函数f 〔x 〕没有极值点,当0ab <时,函数f 〔x 〕有且只有一个极值点,并求出极值.题型 三导函数的图像与函数极值的关系 例3 函数f 〔x 〕的定义域为开区间〔a ,b 〕,导函数f′〔x 〕在〔a ,b 〕的图象如下列图,那么函数f 〔x 〕在开区间〔a ,b 〕有极小值点的个数为〔 〕A 1个 B.2个 C.3个 D.4个题型四极值的逆向问题例4 函数44f x ax x bx c x=+->在x=1处取得极值-3-c,其中a,b为常数.()ln(0)〔1〕试确定a,b的值.〔2〕讨论函数f〔x〕的单调区间.综上:假设说明函数没有极值,一般不讨论有无导数,而是在区间上只有一个单调性,没有“拐点〞.1.3.3 函数的最大小值与导数【知识点归纳】1.最大小值与极值的关系:2.求最大小值的步骤:3.开区间的最值问题:【典型例题】题型一利用导数求函数最值问题例1 求函数543f x x x x=+++在区间[1,4]()551-上的最大值和最小值.变式训练:设函数3f x ax bx c a=++≠为奇函数,其图像在(1,(1))()(0)f处的切线与直线--=垂直,导数的最小值为-12.x y670〔1〕求a,b,c的值.〔2〕求函数f〔x〕的单调递增区间,并求函数f〔x〕在[-1,3]上的最大小值.题型 二 含参数最值问题例 2 设a 为常数,求函数3()3(01)f x x ax x =-+≤≤的最大值.变式训练:1.设3211()232f x x x ax =-++ 〔1〕假设f 〔x 〕在2(,)3+∞上存在单调递增区间,求a 的取值围. 〔2〕当02a <<时,f 〔x 〕在[1,4]上的最小值为163-,求f 〔x 〕在该区间上的最大值.题型 三 由函数的最值求参数的值例3 设213a <<,函数323()(11)2f x x ax b x =-+-≤≤的最大值为1,最小值为,求a ,b 的值.1.4 生活中的优化问题【知识点归纳】利用求函数的最大小值的方法际应用中的最优化问题函数的极值与端点值的比较【典型例题】题型 一 利润最大问题例 1 某商品每件本钱9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出商品件数与商品单价的降低值x 〔单位:元, 021x ≤≤〕的平方成正比,商品单价降低2元时,一星期多卖出24件.〔1〕将一星期的商品销售利润表示成x 的函数〔2〕如何定价才能使一个星期的商品销售利润最大变式训练:某分公司经销某种品牌的产品,每件产品的本钱为3元,并且每件产品需向总公司交m 〔3≤m ≤5〕元的管理费,预计当每件产品的售价为x 〔9≤x≤11〕元时,一年的销售量为(12-x)2万件.〔1〕求分公司一年的利润L 〔万元〕与每件产品的售价x 的函数关系式;〔2〕当每件产品的售价为多少元时,分公司一年的利润L 最大,并求出L 的最大值Q 〔m 〕.题型二用料最省、费用最低问题例2如图,某单位用木料制作如下列图的框架,框架的下部是边长分别为x,y〔单位:米〕的矩形,上部是斜边长为x的等腰直角三角形,要求框架围成的总面积为8平方米.〔Ⅰ〕求x,y的关系式,并求x的取值围;〔Ⅱ〕问x,y分别为多少时用料最省?变式训练:某企业拟建造如下列图的容器〔不计厚度,长度单位:米〕,其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r≥.假设该容器的建造费用仅与其外表积有关.圆柱形局部每平方米建造费用为3千元,半球形局部每平方米建造费用为c〔c>3〕千元.设该容器的建造费用为y千元.〔Ⅰ〕写出y关于r的函数表达式,并求该函数的定义域;〔Ⅱ〕求该容器的建造费用最小时的r.题型 三 面积、体积最值问题例 3如图在二次函数2()4f x x x =-的图像与x 轴所围成的图形中有一个接矩形ABCD ,求这个接矩形的最大面积.变式训练:请您设计一个帐篷.它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥〔如下列图〕.试问当帐篷的顶点O 到底面中心O 1的距离为多少时,帐篷的体积最大?x y1.5 定积分的概念【知识点归纳】定积分的概念:定积分的性质:【典型例题】题型一利用定义计算积分例1利用定积分定义,计算21(32) x dx+⎰题型二求曲边梯形的面积例2利用定积分的定义求出直线x=1,x=2和y=0及曲线3y x=围成的图形的面积.1.6 微积分根本定理【知识点归纳】1.牛顿—莱布尼茨公式:2.定积分的取值:3.定积分的一些性质:【典型例题】题型一求简单函数的定积分例1 求以下函数的定积分:〔1〕2211()x dxx+⎰;〔2〕22sin xdxππ-⎰;〔3〕4dx+⎰;题型二求分段函数的定积分例2 求函数32,[0,1](),[1,2]2,[2,3]xx xf x x xx⎧∈⎪=∈⎨⎪∈⎩在区间[0,3]上的定积分.变式训练:求定积分:〔1〕2201x dx -⎰; 〔2〕题型 三 定积分的实际应用例 3 汽车以每小时36 km 的速度行驶,到某处需要减速停车,设汽车的减速度为21.8 /a m s =刹车,求从开场停车到停车,汽车的走过的距离.变式训练:等比数列{}n a 中,36a =,前三项和3304s xdx =⎰,那么公比q 的值是多少?1.7 定积分的简单应用【知识点归纳】1.常见的平面图形的面积求法:2.定积分在物理公式中的应用:【典型例题】题型 一 用定积分求平面图形的面积例 1 求曲线2y x =与y x =所围成的图形的面积.变式训练:求由抛物线22,15xy y x ==-所围成的图形的面积例2 求正弦曲线3sin,[0,]2y x xπ=∈和直线32xπ=及x轴所围成的平面图形的面积.变式训练:求由曲线222,24y x x y x x=-=-所围成的图形的面积题型二用定积分求变速直线运动的距离例3 有一两汽车以每小时36km的速度形式,在B出以22 /m s的加速度减速停车,问从开场刹车到停车一共行驶多少的路程.题型三用定积分解决变力作功问题例4 有一个长为25cm的弹簧,假设以100N的力,那么弹簧伸长到30cm,求弹簧由25cm 伸长到40所做的功.。
高中数学选修2-2(人教B版)第一章导数及其应用1.2知识点总结含同步练习题及答案

′
解:(1)y ′ = (e3x+2 ) = e3x+2 ⋅ (3x + 2)′ = 3e3x+2 ; (2)y ′ = (ln(2x − 1))′ =
1 2 . ⋅ (2x − 1)′ = 2x − 1 2x − 1
2.利用导数求函数的切线方程 描述: 利用导数求函数的切线方程 步骤一:求出函数 y = f (x) 在点 x0 处的导数 f ′ (x0 ) ; 步骤二:根据直线方程的点斜式,得到切线方程为 y − f (x0 ) = f ′ (x0 )(x − x0 ). 例题: 求曲线 y = ex + 1 在 (0, 2) 处的切线方程. 解:因为 y = ex + 1,所以 y ′ = ex ,故曲线 y = ex + 1在 (0, 2)处的切线斜率为
解:(1)因为 y =
所以在点 P 处的切线的斜率等于 4 .所以在点 P 处的切线方程是
y−
即
8 = 4(x − 2), 3
12x − 3y − 16 = 0.
(2)设切点为 (x 0 , y 0 ),则由(1)知切线的斜率 k = x2 ,切线方程为 y − y 0 = x2 (x − x 0 ) . 0 0 又切线过点 P (2,
8 1 ) 且 (x0 , y 0 ) 在曲线 y = x3 上,所以 3 3 ⎧ ⎪ 8 − y = x2 (2 − x0 ), 0 0 ⎨3 1 ⎪ ⎩ y = x3 , ⎪ 0 3 0 − 3x2 + 4 = 0, x3 0 0
整理得
即
(x0 − 2)2 (x0 + 1) = 0.
第一讲选修2—2导数及其应用(答案解析)

第一讲选修2—2导数及其应用基础典型题归类解析对基础典型题进行归类解析,并辅之以同类变式题目进行巩固练习,是老师教学笔记的核心内容与教学精华所在,也是提高学生好题本含金量的试题秘集.当学生会总结数学题,会对所做的题目分类,知道自己能够解决哪些题型,掌握了哪些常见的解题方法,还有哪些类型题不会做时,他才真正掌握了学数学的窍门,才能真正的做到然不动".一、题型1:导数及导函数的概念题1、利用极限求导1 2例1 •已知s=- gt,求t=3秒时的瞬时速度.2"任它千变万化,我自岿A s解析:由题意可知某段时间内的平均速度亠随i t变化而变化,A t越小,A tA s极限定义可知,这个值就是加T O时,」的极限.A t A s—越接近于一个定值,由A t1 2 1 2 A s —(3 + A t) g3,竽r s(3 + At)-s(3) 「2g 2 V= l)m A t = ljm = lim -- --------------- 為◎A t A t1=—g lim (6+A t)2 S=3g=29.4(米/ 秒).4变式练习:求函数y=—f的导数-x4 4 解析:0 = 2 - 2 =(X + A x) x 4ix(2x + A x)2 2X(X + A x)A y 2x+心XA F 2A x X(X + A x)2= 4X2(X +M2」二、题型2:导数的几何意义的深刻领会导数的几何意义要深刻把握:导数值对应函数在该点处的切线斜率1已知曲线上的点求此点切线斜率例2.已知曲线y= 2x2上一点A(2,8),则A处的切线斜率为( )A. 4B. 16C. 8D. 2解析:选C.1 2 3变式训练(1):已知曲线y= 2x2—2上一点P(1, - 2),则过点P的切线的倾斜角为解析:切线的倾斜角为45°变式训练(2):求过点P(— 1,2)且与曲线y = 3x 2-4x + 2在点M(1,1)处的切线平行的直线.(所求 直线方程为2x - y + 4= 0)2、已知切线斜率求相关点坐标 例3函数y = x 2 + 4x 在x = X 0处的切线斜率为 2,则 血= .解析:2 = 2x 0 + 4,•- X o =— 1.变式训练:下列点中,在曲线y = x 2上,且在该点处的切线倾斜角为 n的是( )=xlnV2 = xln2 ■f(x)= log a X , f ,(1) = - 1,贝y a =解析:••• f ,(x) = £,xl na1 •f,(1)=斎-1.1 •••Ina =— 1, a = 一 e'(2)、已知直线y = kx 是曲线y = Inx 的切线,贝U k 的值等于 ___________ .1 1 1解析:因为y ,= (Inx),= -,设切点为(X 0, y 0), 则切线方程为y — y 0= —(x — X 0),即y = —x +Inx 0X X 0 X 01—1.由 lnX 0— 1= 0,得 X 0= e..・. k =-e 2、指数函数求导—x例 5 f(x)= 2 .解••• 2-x = (2)x ,•- f ,(x)= [g x ],=(挤^一 (『In2.3、幕函数求导例6 .已知f(x)= x a ,贝U f ,(- 1) =- 4,贝U a 的值等于(A . 4B . - 4C . 5D . - 5 解析:选 A.f ,(x) = ax a -1, f ,(- 1) = a(- 1)a -1 = - 4,变式练习.求与曲线 y =暫X 2在点P(8,4)处的切线垂直于点 解:••• y =饭2,•- y ,=(晴), 即在点P(8,4)的切线的斜率为 从而适合题意的直线方程为四、题型4:复合函数的导数1、用和差积商求导法则求基本函数导数例7求下列函数的导数:A . (0,0)B . (2,4) 解析:选D三、题型3:常见函数导数的运算及基本应用 1、对数函数求导 例 4. f(x) = log J 2x ; 解:f ,(x) = (log 证X),C .(扌,点D- (2, 4)变式练习:(1)、设函数a = 4.故选A. P 的直线方程.2•-y ,l x = 8=2X 82 , 2 -1=(X 3)= 3x 3,-L1 3= 3.1-适合题意的切线的斜率为-3. y —4=- 3(x — 8),即 3x + y — 28= 0.2—x(1)y =3x +xcosx;(2)y =市;(3)y =lgx — e;解:(1)y'= 6x+ cosx — xsinx; (2)y'=:::子=(〔農丫; (3)y'= (lgx)'— (ej’L :xn^^ — e X2、例8 •求下列复合函数的导数:(2)f(x)= (g 1)(士 - 1);(3)y = 5log 2(2X + 1) • (4)y = si n2x — cos2x.解:(1)因为 f(x)= ln(8x)= In8 +lnx ,1 所以 f ' (x) = (ln8)'+ (Inx)'=-x1 1 1 1 ——(2)因为 f(x)=(心+ 1)(頁-1)= 1 —谄+灵-1 = ^^—+不=^—, -w —C —x必所以f ' (x)= ----------------x⑶设 y = 5log 2u , u = 2x + 1, 则 y '= 5(log 2u)' (2x + 1)'(4)法一:10 = uln2 =(2x + 1 Jn2'y '= (si n2x — cos2x) '= (sin2x)' — (cos2x)'= 2cos2- + 2si n2x = ^2si n( 2x +^). 10法二:y =*sin(2x —》,••• y '= ^cos(2x -^) 2= 2迈sin(2x +3、求导的应用例9、已知 f(x) = ax 3 + 3x 2+ 2,若 f ' (— 1) = 4,贝U a 的值是()19 A. 513 Cl 310 D.§ 解析: 选 D. •••f ' 变式练习( 1 )•若函数 16 B.!62 10 (x) = 3ax + 6x ,.・.f ' (— 1) = 3a — 6= 4.• a^ —.3xe 解析: x••• f(X)=ex ,f(x)=二在x = c 处的导数值与函数值互为相反数,则 c 的值为_—c=ef ' (c)=X ' ', c 1 c = 2 ) xc •- f(c) = e,又 c- -、 e x — e f (x)= x 2c c. 八 ••• e + 半M L 0, • 2c — 1 = 0 得 c c 依题意知 f(c) + f ' (c)= 0,2) 若函数 f(x)= ax 4 + bx 2+ c 满足 f ' (1) = 2,贝U f ' (— 1)=( A • — 1 B • — 2 C • 2 D • 0解析:选 B.由题意知 f ' (x) = 4ax 3 + 2bx ,若 f ' (1) = 2,即f ' (1) = 4a + 2b = 2,从题中可知f ' (x)为奇函数,故f ' (— 1) = — f ' 4、导数中利用待定系数法求解析式例10、已知f ' (x)是一次函数,x 2f ' (x) — (2x — 1)f(x)= 1.求f(x)的解析式. 解:由f ' (x)为一次函数可知f(x)为二次函数.设 f(x) = ax 2 + bx + c(a 丰 0), 则 f ' (x)= 2ax + b.把 f(x), f ' (x)代入方程 x 2f ' (x) — (2x — 1)f(x) = 1 得:x 2(2ax + b) — (2x — 1)(ax 2 + bx + c) = 1,即(a — b)x 2 + (b — 2c)x + c — 1= 0. 要使方程对任意 x 恒成立,则需有a = b , b = 2c , c — 1 = 0, 解得 a = 2, b = 2, c = 1,所以 f(x)= Zx 2 + 2x + 1.小结:(1)求导之前,应利用代数、三角恒等式等变形对函数进行化简,然后求导,这样可以减少 运算量,提高运算速度,减少差错;如:例 8中1、2 (2)有的函数虽然表面形式为函数的商的形式,但在求导前利用代数或三角恒等变形将函数先化简,然后进行求导•有时可以避免使用商的求导法则,减少运算量.变式练习( (1)=- 4a — 2b =— 2五、题型5:借助导数处理单调区间、极值和最值问题1、已知函数解析式求其单调区间 例11•求下列函数的单调区间.1(1)y = x -1 nx ;(2)y =衣解:(1)函数的定义域为(0 ,+s ).其导数为y ,=令1 — x>0,解得x>1 ;再令1 — -<0,解得入入因此,函数的单调增区间为 (1 ,+s ),函数的单调减区间为(0,1). ⑵函数的定义域为(一s, 0) U(0 ,+s ).1 1y '=— 27,所以当 xM0时,y '=— 27<0,而当x = 0时,函数无意义,所以y= ■在(—s, 0), (0 ,+s )内都是减函数,厶入即y= 2-的单调减区间是(一s, 0), (0 ,+s ).2x变式练习:函数f(x) = (x — 3)e x 的单调递增区间是( A. (— s, 2) B. (0,3) C. (1,4) 解析:选 D.f ' (x) = (x — 3)' e x + (x — 3)(e x )' 令f ' (x)>0,解得x>2,故选D. 2、已知函数单调区间求解析式中的参数值例12、若函数f(x)= X 3+ bx 2 + cx + d 的单调减区间为[—1,2],贝U b = _ 解析:••• y '= 3/+ 2bx + C, 由题意知[—1,2]是不等式3x 2 + 2bx + c<0的解集, •.— 1,2是方程3x 2 + 2bx + c = 0的根,由根与系数的关系得b =—多,c =— 6.变式练习:若函数 y = — |x 3 + ax 有三个单调区间,则 a 的取值范围是 解析:••• y '=— 4x 2+ a ,且y 有三个单调区间,方程y '=— 4x 2+ a = 0有两个不等的实根,2 △= 0 — 4 X (— 4) X a>0,. a>0.3、用导数解复杂函数中的恒成立问题 例13.函数y = ax 3— x 在R 上是减函数,则( ) 1A . a >3B .解析:选D.因为y '=3ax ; 所以y '= 3ax 2— K 0恒成立, 即3ax 2w 1恒成立. 当x = 0时,3ax 2w 1恒成立,此时 a € R ;变式练习.已知函数 f(x)= ax — -— 21 nx(a 》0),若函数f(x)在其定义域内为单调函数,求a 的取x值范围.解:F (x)= a + 負—2,要使函数f(x)在定义域(0 ,+s )内为单调函数, 只需f ‘(X)在(0,+s )内恒大于0或恒小于0.当a= 0时,f' (x)=— 2<0在(0 ,+s )内恒成立;x当a>0时,要使f ' (x)= a(1—丄)2 + a — - >0恒成立,二a —0,解得a > 1.x a aa综上,a 的取值范围为a > 1或a = 0.4、通过导数解决函数极值问题例14、函数f(x)= x 3— 6x 2— 15x + 2的极大值是0<x<1.)D. (2 ,+s ) =(x- 2)e x , a= 1C. a= 2D. aw 0:2- 1,函数y = ax 3-x 在(— s,+s )上是减函数,,极小值是解析:f '(X)= 3x 2— 12x — 15= 3(x — 5)(x + 1),在( — 8, — 1), (5 ,+s )上 f' (x)>0,在(—1,5)上 f' (x)<0, ••• f(x)极大值=f(— 1) = 10,f(x) 极小值 =f(5) =— 98.变式练习:函数f(x) = — 3x 3 + 2x 2+ 2x 取极小值时,x 的值是()322,— 1 C . — 1 D . — 32选 C f (x) = — X +x + 2=— (x — 2) (• + 1),f ’(x)<0,右侧f ' (x)>0,.・.x =— 1时取极小值.已知f(x)在x =— 3时取得极值,则a =( ) C . 4 D . 5••• f(x)在 x =— 3 处取得极值,••• f ' (— 3) = 0,即 27 — 6a + 3= 0^a = 5.已知函数f(x) = X 3— ax 2— bx + a 2在x = 1处有极值10,则a 、b 的值为( )a =— 4,b = 11B . a =— 4, b = 1 或 a = — 4, b = 11 a =— 1, b = 5 D .以上都不正确 f ' (x)= 3X 2— 2ax — b ,'••在 x = 1 处 f ' (x)有极值, ••• f ' (1)= 0,即 3— 2a — b = 0.① 又 f(1) = 1 — a — b+ a 2= 10,1 卩 a 2— a — b — 9 = 0.② 由①②得 a 2 + a —12 = 0,• a = 3 或 a = — 4. f a =— 4,f a = 3 2 2或{ 当{ 时,f ' (X) = 3X 2— 6x + 3= 3(x —1)2>0,(b = 11. 也=—3X (0, n) n 3 n (n—)3 n T 3 n _ 、("2,2n)f ' (X)+ 0 一+f(x)n+ 2\T因此,由上表知f(x)(0n 2n)(n f(3n=3^,极大值为f( n = n+ 2.•••在x =— 1的附近左侧 例 15、函数 f(x)= X 3 + ax 2 + 3x — 9, A . 2 B . 3解析:选 D.f ' (x)= 3x 2 + 2ax + 3, 变式练习(1):A . C .解析:选A.a= 3, b=— 3,a = 3a =— 4,舍去.••• 1 b =— 3 L b =11.变式练习(2):若函数y =— X 3 + 6x 2 + m 的极大值等于13,则实数m 等于 _________________ . 解析:y '=— 3/+ 12x ,由 y '= 0,得 x = 0 或 x = 4,容易得出当x = 4时函数取得极大值,所以— 43+ 6X42+ m = 13,解得m =— 19. 例16、设a € R ,若函数y = e x + ax , x € R ,有大于零的极值点,则 解析:y '= e X + a ,由 y '= 0 得 x = ln( —a).由题意知 ln( — a)>0 ,• a<— 1. • (— s, — 1) 已知函数 y = X — ln(1 + X 2),则y 的极值情况是() 有极小值 B .有极大值 C .既有极大值又有极小值 D . f ' (X) = 1 -(X — y > 0,•函数 f(x)在定义域1 + X 1 + X(2010年高考安徽卷)设函数f(x)= sinx — cosx +x + 1 (0<x<2n),求函数f(x)的单调区间故f(x)在R 上单调递增,不可能在x = 1处取得极值,所以a 的取值范围为 变式练习: D .无极值解析:选R 上为增函数. 综合练习: 与极值.解:由 f(x)= sin x — cosx + x + 1,0<x<2n,知 f ' (x) = cos x +sin x + 1,于是 f ' (x) = 1 + 灵sin(x + 令 f' (x)= 0,从而 sin(x + 4)=—警, 得 x= n 或 x=竽 当x 变化时,f '(X)、f(x)的变化情况如下表:5、通过导数解决最值问题例17、(06浙江卷)f(x) =X 3 —3x 2 +2在区间[—1,1]上的最大值是( ) 即当x = 3时,f(x)的极小值f(3)= — 9.又 f(1) = — 1, f(5) = 15, (A) - 2(B)0(C)2(D)4解析:f (x) =3x 2 —6x =3x(x —2),令 f'(X)=0 可得 x = 0 或 2 (2 舍去),当一1空<0 时,f'(x)>0,当时,f'(X)<;0,变式练习( 解析:由 所以当x = 0时,f (X )取得最大值为 2选C ;1 ):函数y = 4x 2(x -2)在x € [ — 2,2]上的最小值为 y '= 12x 2- 16x = 0,得 x = 0 或 x =-.34128x = 0 时,y = 0 ;当 x =-时,y =— -278;x =- 2 时,y =— 64;当 x = 2 时,y = 0.比较可知 y max = 0, y min =— 64.,最大值为例18.A . - 10 C . - 15解析:选变式练习 范围是 ____当变式练习(2):函数y = xe X 的最小值为 _____________ . 解析:令 y '= (x + 1)e x = 0,得 x =- 1.1 当 x< — 1 时,y ' <0;当 x> —1 时,y ' >0..・. y min = f( — 1)=-丄 e函数f(x) = X 3- 3X 2- 9x + k 在区间[—4,4]上的最大值为10,则其最小值为( ) B .- 71D .- 22f (X) = 3x 2- 6x - 9= 3(x - 3)(x + 1).由 f ' (X) = 0 得 X = 3,- 1.又 f( - 4) = k - 76, f(3) = k -27, f(- 1)= k + 5, f(4) = k - 20.由 f(x)max = k + 5 = 10,得 k = 5, • f(x)min = k - 76=- 71.(1):已知f(x) = - x 2+mx + 1在区间[—2, - 1]上的最大值就是函数f(x)的极大值,贝U m 的取值解析:f ‘ (x)= m -2x ,令 F(X)= 0,得 x =岁由题设得 m€ [ - 2,- 1],故 m € [ - 4,- 2].变式练习 ⑵.函数f(x) = ax 4- 4ax 2 + b(a>0,1 <x < 2)的最大值为3,最小值为一5,贝U a = 解析:y '= 4ax 3— 8ax = 4ax(x 2- 2) = 0, X 1 = 0, X 2=J 2 , X 3=—返,又 f(1) = a - 4a + b = b - 3a , f(2) = 16a - 16a + b = b , f(V 2) = b -4a , f(0) = b , f(-V 2) = b -4a. j b -4a =- 5,• • 5…a = 2. b=3b = 3,例 19.已知函数 f(x)= X 3- ax 2 + 3x.(1)若f(x)在 x € [1 ,+s )上是增函数,求实数 a 的取值范围; ⑵若x = 3是f(x)的极值点,求f(x)在 x € [1 , a]上的最大值和最小值. 解:(1)令 f ' (X) = 3x 2- 2ax + 3 > 0,;(x + X h = 3(当x = 1时取最小值). ••• a <•/ x > 1, • a < 3, a = 3 时亦符合题意,二 a < 3. (2)f ' (3) = 0,即 27-6a + 3= 0,•• a = 5, f(x)= X 3— 5x 2 + 3x , f ' (x)= 3X 2— 10x + 3.令 f ' (x) = 0,得 X 1 =3, x2=;(舍去).3当 1<x <3 时,f ' (x)< 0,当 3< x < 5 时,f ' (X) >0,••• f(x)在[1,5]上的最小值是f(3) = — 9,最大值是f(5) = 15.变式练习(06 山东卷):设函数f(x)= 2x 3-3(a-1)x 2 +1,其中a>1. (I)求f(x)的单调区间;(n) 讨论f(x)的极值.解:由已知得 f '(x) =6x[x-(a-1)],令 f '(x)=O ,解得x,=0,X2=a-1.(I)当a=1时,f '(x)=6x 2 , f (x)在(亠,畑)上单调递增;当 a :>1 时,f '(X)=6x [x -(a -1 , f '(x), f (x)随 x 的变化情况如下表:从上表可知,函数 f(x)在(虫,0)上单调递增;在(0,a-1)上单调递减;在(a -1,xc )上单调递增.f(x)没有极值;当a>1时,函数f(x)在x=0处取得极大值,在x=a-1处取得极小值i_(a-1)3.六、题型6:定积分问题1、计算定积分的值2、求定积分中的参数值1 32 例21 M = J (x 3-ax+b) dx ,若使M 最小,贝U a,b 需为何值?(n)由(I)知,当a =1时,函数 例 20.( 1)『(X —1)5dx ;(2) 『(X + sin x)dx ;1 6 解析:(1)因为[一(X -1)6]6 = (x-1)5,- 1 1 所以 I (X -1)5dx = -(X -1)6|2 =-; 勺 6 6(2)]sinx)dH = I —— COSS71 cos ——-(0-1)=¥+12 故込3、应用定积分处理平面区域内的面积__2 -变式练习(2).:由抛物线y= _x +4X-3及其在点A(0-3), B(3,0)处两切线所围成的图形的面积解;I 切A : y=4x —3,l 切B : y=—2x+6s =育[(4x-3) —(-X 2 +4x-3)]dx+ ^[(-Zx + G) -(-X 2 +4x-3)]dx = m4解:M = J/x 3 —ax + b) dx7 5 3 3 517583 当 a = —'b =0 时,M min51变式练习: 已知0 (3ax+1)(x+b)dx = 0 , a, b 忘R ,试求a b 的取值范围.1解: L(3ax+1)(x+b)dx =0= 2(a +b)+3ab +1 = 0175 3t +1 令 a ,b=t ,贝y a + b=- ----- 22 3t +1,故a,b 为方程X +x +t =0的两根例22.求抛物线y 2=x 与直线x-2y-3=0所围成的图形的面积.解:2y=x =X -2y -3 = 0[y = -1Xi 或. X =9变式练习 解:由 1 L9L X — 3S =2 0 J xdx + 1 (J x - 2)dx2X Z X 210+(2X 3 3+ |x)32(1).y 2求由抛物线2y =x-1所围成图形的面积.15l y 2 =x-141P(1,0)S=2[『{5dx —CGidx]=彳3 二 P(2,3)。
高二数学选修2-2导数及其应用测试题(含答案)

高二数学选修2-2导数及其应用测试题一、 选择题(本大题共12小题,每小题5分,共60分)1.设xx y sin 12-=,则='y ( ). A .x x x x x 22sin cos )1(sin 2--- B .xx x x x 22sin cos )1(sin 2-+- C .x x x x sin )1(sin 22-+- D .xx x x sin )1(sin 22--- 2.设1ln)(2+=x x f ,则=)2('f ( ). A .54 B .52 C .51 D .53 3.已知2)3(',2)3(-==f f ,则3)(32lim3--→x x f x x 的值为( ). A .4- B .0 C .8 D .不存在4.曲线3x y =在点)8,2(处的切线方程为( ).A .126-=x yB .1612-=x yC .108+=x yD .322-=x y 5.已知函数d cx bx ax x f +++=23)(的图象与x 轴有三个不同交点)0,(),0,0(1x ,)0,(2x ,且)(x f 在1=x ,2=x 时取得极值,则21x x ⋅的值为( )A .4B .5C .6D .不确定6.在R 上的可导函数c bx ax x x f +++=22131)(23,当)1,0(∈x 取得极大值,当)2,1(∈x 取得极小值,则12--a b 的取值范围是( ). A .)1,41( B .)1,21( C .)41,21(- D .)21,21(-7.函数)cos (sin 21)(x x e x f x +=在区间]2,0[π的值域为( ). A .]21,21[2πe B .)21,21(2πe C .],1[2πe D .),1(2πe 8.076223=+-x x 在区间)2,0(内根的个数为 ( )A .0B .1C .2D .39.1. 已知函数)(x f y =在0x x =处可导,则hh x f h x f h )()(lim 000--+→等于 ( )A .)(0/x fB .2)(0/x fC .-2)(0/x fD .010.如图是导函数/()y f x =的图象,那么函数()y f x =在下面哪个区间是减函数( )A. 13(,)x xB. 24(,)x xC.46(,)x xD.56(,)x x第Ⅱ卷(非选择题,共90分)二、填空题(每小题4分,共16分。
(典型题)高中数学高中数学选修2-2第三章《导数应用》测试卷(含答案解析)

一、选择题1.已知函数()3f x x ax =-在(1,1)-上单调递减,则实数a 的取值范围为( )A .()1,+∞B .[)3,+∞C .(],1-∞D .(],3-∞2.已知定义在()1,+∞上的函数()f x ,()f x '为其导函数,满足()()1ln 20f x f x x x x++=′,且()2f e e =-,若不等式()f x ax ≤对任意()1,x ∈+∞恒成立,则实数a 的取值范围是( )A .[),e +∞B .()2,2e -C .(),2e -D .[),e -+∞3.若函数()22ln 45f x x x bx =+++的图象上的任意一点的切线斜率都大于0,则b 的取值范围是( ) A .(),8-∞- B .()8,-+∞ C .(),8-∞D .()8,+∞4.若曲线21:(0)C y ax a =>与曲线2:x C y e =存在公共切线,则a 的取值范围为( )A .2[,)8e +∞B .2(0,]8eC .2[4e ,)+∞D .2(0,]4e5.设()f x 在定义域内可导,其图象如图所示,则导函()'f x 的图象可能是( )A .B .C .D .6.若函数21()ln 2f x kx x x =-在区间(0,]e 上单调递增,则实数k 的取值范围是( ) A .2(,]e -∞B .(,1]-∞C .[1,)+∞D .2[,)e+∞7.在半径为r 的半圆内作一内接梯形,使其底为直径,其他三边为圆的弦,则梯形面积最大时,其梯形的上底为A .r 2B 3C 3D .r8.已知函数21()43ln 2f x x x x =-+-在[,1]t t +上不单调,则t 的取值范围是( ) A .(0,1)(2,3)⋃B .(0,2)C .(0,3)D .(0,1][2,3)⋃9.已知函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,若()()F x f x kx =-有3个零点,则k 的取值范围为( ) A .(21e -,0) B .(12e-,0) C .(0,12e) D .(0,21e) 10.已知函数21()sin cos 2f x x x x x =++,则不等式(23)(1)0f x f +-<的解集为( ) A .(2,)-+∞B .(1,)-+∞C .(2,1)--D .(,1)-∞-11.若对于任意的120x x a <<<,都有211212ln ln 1x x x x x x ->-,则a 的最大值为( ) A .2eB .eC .1D .1212.设动直线x m =与函数2()f x x =,()ln g x x =的图像分别交于,M N ,则MN 的最小值为( ) A .11ln 222+ B .11ln 222- C .1ln2+ D .ln21-二、填空题13.已知函数()()21,0e ,0x x x f x x ⎧+≤⎪=⎨>⎪⎩,若函数()()g x f x x m =--恰好有2个零点,则实数m 的取值范围为______.14.函数()f x 定义在0,2π⎛⎫⎪⎝⎭上,26f π⎛⎫= ⎪⎝⎭()f x ',且()()cos sinx f x x f x '⋅<⋅恒成立,则不等式()22sinx f x >的解集为_____________.15.已知函数()211020x e x x x ef x lnx x x⎧--+≤⎪⎪=⎨⎪⎪⎩,,>,若方程f (x )﹣m =0恰有两个实根,则实数m 的取值范围是_____.16.如图所示,ABCD 是边长为30cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个底面是正方形的长方体包装盒,若要包装盒容积3()V cm 最大,则EF 的长为________cm .17.函数()()21xf x x =-的最小值是______.18.已知函数21ln ,0()log ,0xx f x x x x +⎧>⎪=⎨⎪<⎩方程2()2()0()f x mf x m R -=∈有五个不相等的实数根,则实数m 的取值范围是______.19.已知函数()1ln 2f x x x ax ⎛⎫=-⎪⎝⎭有两个极值点,则实数a 的取值范围是_________. 20.若函数()21ln f x x x a x =-++在()0,∞+上单调递增,则实数a 的取值范围是________.三、解答题21.已知函数()212f x x =,()ln g x a x =.设()()()h x f x g x =+ (1)试讨论函数()h x 的单调性. (2)若对任意两个不等的正数12,x x ,都有()()12122h x h x x x ->-恒成立,求实数a 的取值范围;22.在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v(米/单位时间),每单位时间的用氧量为+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为 (米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y(升). (1)求y 关于v 的函数关系式;(2)若c≤v≤15(c>0),求当下潜速度v 取什么值时,总用氧量最少. 23.已知函数()2xf x eax b =-+(0a >,b R ∈,其中e 为自然对数的底数).(1)求函数()f x 的单调递增区间;(2)若函数()f x 有两个不同的零点12,x x ,当a b =时,求实数a 的取值范围.24.设函数21()2x f x x e =. (1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.25.一件要在展览馆展出的文物类似于圆柱体,底面直径为0.8米,高1.2米,体积约为0.5立方米,为了保护文物需要设计各面是玻璃平面的正四棱柱形无底保护罩,保护罩底面边长不少于1.2米,高是底面边长的2倍,保护罩内充满保护文物的无色气体,气体每立方米500元,为防止文物发生意外,展览馆向保险公司进行了投保,保险费用和保护罩的占地面积成反比例,当占地面积为1平方米时,保险费用为48000元. (1)若保护罩的底面边长为2.5米,求气体费用和保险费用之和; (2)为使气体费用和保险费用之和最低,保护罩该如何设计? 26.已知函数2()2ln f x x mx x =-+ (m R ∈).(1)若()f x 在其定义域内单调递增,求实数m 的取值范围; (2)若45m <<,且()f x 有两个极值点12,x x ,其中12x x <,求12()()f x f x -的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】根据'()0f x ≤在(1,1)-上恒成立求解. 【详解】∵3()f x x ax =-,∴2'()3f x x a =-.又函数()f x 在()1,1-上单调递减,∴2'()30f x x a =-≤在(1,1)-上恒成立,即23a x ≥在(1,1)-上恒成立.∵当(1,1)x ∈-时,3033x ≤<,∴3a ≥. 所以实数a 的取值范围是[3,)+∞. 故选:B . 【点睛】本题考查根据导函数研究函数的单调性,以及不等式的恒成立问题,注意当'()0()f x x D <∈时,则函数()f x 在区间D 上单调递减;而当函数()f x 在区间D 上单调递减时,则有'()0f x ≤在区间D 上恒成立.解题时要注意不等式是否含有等号,属于中档题.2.D解析:D 【分析】利用导数的运算法则,求出函数()f x 的解析式,然后参数分离,将不等式的恒成立问题转化为ln xa x≥-对任意()1,x ∈+∞恒成立,构造函数,利用导数研究函数的单调性,进而求出函数的最大值,从而得解. 【详解】()()1ln 20f x f x x xx++=′, ()2ln f x x x C ∴+=, ()2ln f e e e C ∴+=,()2f e e =-,∴22e e C -+=,解得0C =,()2ln 0f x x x ∴+=,()2ln x f x x∴=-()1x >,不等式()f x ax ≤对任意()1,x ∈+∞恒成立,∴2ln x ax x-≤对任意()1,x ∈+∞恒成立,即ln xa x≥-对任意()1,x ∈+∞恒成立, 令()ln x g x x=-,则()()21ln ln x g x x -=′, 令()()21ln 0ln xg x x -==′,解得x e =,∴1x e <<时,()0g x '>,()g x 在()1,e 上单调递增;x e >时,()0g x '<,()g x 在(),e +∞上单调递减, ∴当x e =时,()g x 取得极大值,也是最大值,()()max ln eg x g e e e==-=-, a e ∴≥-,∴实数a 的取值范围是[),e -+∞.故选:D. 【点睛】本题考查利用导数研究不等式的恒成立问题,具体考查导数的运算法则及利用导数研究函数的最值问题,求出函数()f x 的解析式是本题的解题关键,属于中档题.不等式恒成立问题关键在于利用转化思想,常见的有:()f x a >恒成立⇔()min f x a >;()f x a <恒成立⇔()max f x a <;()f x a >有解⇔()max f x a >;()f x a <有解⇔()min f x a <;()f x a >无解⇔()max f x a ≤;()f x a <无解⇔()min f x a ≥. 3.B解析:B 【分析】对函数()f x 求导,得到()f x ',然后根据题意得到()0f x '>恒成立,得到 【详解】因为函数()22ln 45f x x x bx =+++,定义域()0,∞+所以()28f x x b x'=++, 因为()f x 图象上的任意一点的切线斜率都大于0, 所以()280f x x b x'=++>对任意的()0,x ∈+∞恒成立, 所以28b x x>--, 设()28g x x x=--,则()max b g x > ()228g x x'=- 令()0g x '=,得到12x =,舍去负根, 所以当10,2x ⎛⎫∈ ⎪⎝⎭时,()0g x '>,()g x 单调递增, 当1,2x ⎛⎫∈+∞⎪⎝⎭时,()0g x '<,()g x 单调递减, 所以12x =时,()g x 取最大值,为()max182g x g ⎛⎫==- ⎪⎝⎭,所以8b >-, 故选B. 【点睛】本题考查利用导数求函数图像切线的斜率,不等式恒成立,利用导数研究函数的单调性、极值、最值,属于中档题.4.C解析:C 【分析】求出两个函数的导函数,由导函数相等列方程,再由方程有根转化为求最值,求得a 的范围. 【详解】 由2(0)y axa =>,得2y ax '=,由xy e =,得x y e '=,曲线21:(0)C y ax a =>与曲线2:x C y e =存在公共切线, 则设公切线与曲线1C 切于点211(,)x ax ,与曲线2C 切于点22(,)xx e ,则22211212x x e ax ax e x x -==-,将212x e ax =代入2211212x e ax ax x x -=-,可得2122=+x x ,11212+∴=x e a x ,记12()2+=x e f x x,则122(2)()4xex f x x +-'=,当(0,2)x ∈时,()0f x '<,当(2,)x ∈+∞时,()0f x '>. ∴当2x =时,2()4mine f x =. a ∴的范围是2[,)4e +∞. 故选:C 【点睛】本题主要考查了利用导数研究过曲线上某点处的切线方程,考查了方程有根的条件,意在考查学生对这些知识的理解掌握水平.5.B解析:B 【详解】试题分析:函数的递减区间对应的()0f x '<,函数的递增区间对应()0f x '>,可知B 选项符合题意.考点:函数的单调性与导数的关系.6.C解析:C 【分析】求出函数导数,由题意知()0f x '≥即ln 1x k x+≥在(0,]e 上恒成立,利用导数求出函数ln 1()x g x x+=在(0,]e 上的最大值即可求得k 的范围. 【详解】()ln 1f x kx x '=--,由题意知()0f x '≥在(0,]e 上恒成立, 即ln 1x k x +≥在(0,]e 上恒成立,令ln 1()x g x x+=,则2ln ()x g x x -'=, 当(0,1)x ∈时,()0g x '>,()g x 单调递增;当(1,]x e ∈时,()0g x '<,()g x 单调递减,所以max ()(1)1g x g ==,故1k .故选C 【点睛】本题考查导数在研究函数中的应用,涉及已知函数的单调区间求参数的取值范围、利用导数求函数的最值,属于基础题.7.D解析:D 【解析】设=COB θ∠,则上底为2cos r θ,高为sin r θ, 因此梯形面积为21(2cos 2)sin (1cos )sin 022S r r r r πθθθθθ=+=+∈,(,) 因为由22222=(sin cos cos )(1cos 2cos )0S r r θθθθθ'-++=-++=,得1cos 2θ=,根据实际意义得1cos 2θ=时,梯形面积取最大值,此时上底为2cos =r r θ,选D.点睛:利用导数解答函数最值的一般步骤:第一步:利用()0f x '=得可疑最值点;第二步:比较极值同端点值的大小.在应用题中若极值点唯一,则极值点为开区间的最值点.8.A解析:A 【详解】试题分析:此题考查导数的应用;2343(1)(3)()4x x x x f x x x x x-+--=-+-'=-=-,所以当(0,1),(3,)x ∈+∞时,原函数递减,当(1,3)x ∈原函数递增;因为在[],1t t +上不单调,所以在[],1t t +上即有减又有增,所以01{113t t <<<+<或13{31t t <<<+,01t ∴<<或23t <<,故选A.考点:函数的单调性与导数.9.C解析:C 【分析】由函数()()F x f x kx =-在R 上有3个零点,当0x >时,令()0F x =,可得y k =和()2ln x g x x=有两个交点;当0x <时,y k =和()1g x x =有一个交点,求得0k >,即可求解,得到答案. 【详解】 由题意,函数10()ln ,0x xf x x x x⎧⎪⎪=⎨⎪⎪⎩,<>,要使得函数()()F x f x kx =-在R 上有3个零点, 当0x >时,令()()0F x f x kx =-=, 可得2ln xk x =, 要使得()0F x =有两个实数解, 即y k =和()2ln xg x x=有两个交点, 又由()312ln xg x x-'=, 令12ln 0x -=,可得x =当x ∈时,()0g x '>,则()g x 单调递增;当)x ∈+∞时,()0g x '<,则()g x 单调递减,所以当x =()max 12g x e=, 若直线y k =和()2ln xg x x =有两个交点, 则1(0,)2k e∈,当0x <时,y k =和()21g x x =有一个交点, 则0k >,综上可得,实数k 的取值范围是1(0,)2e. 故选:C. 【点睛】本题主要考查了函数与方程的综合应用,以及利用导数研究函数的单调性与最值的综合应用,着重考查了转化思想以及推理与运算能力.属于中档题.10.C解析:C 【分析】根据条件先判断函数是偶函数,然后求函数的导数,判断函数在[0,)+∞上的单调性,结合函数的奇偶性和单调性的关系进行转化求解即可. 【详解】解:2211()sin()cos()sin cos ()22f x x x x x x x x x f x -=--+-+=++=,则()f x 是偶函数,()sin cos sin cos (1cos )f x x x x x x x x x x x '=+-+=+=+,当0x 时,()0f x ',即函数在[0,)+∞上为增函数,则不等式(23)(1)0f x f +-<得()()231f x f +<,即()()|23|1f x f +<, 则|23|1x +<,得1231x -<+<,得21x -<<-, 即不等式的解集为(2,1)--, 故选:C . 【点睛】本题主要考查不等式的求解,结合条件判断函数的奇偶性和单调性,利用函数奇偶性和单调性的关系进行转化是解决本题的关键.属于中档题.11.C解析:C【分析】整理所给的不等式,构造新函数,结合导函数研究函数的单调性,即可求得结果.【详解】解:由已知可得,211212ln ln x x x x x x -<-,两边同时除以12x x , 则121221ln ln 11x x x x x x -<-,化简有1212ln 1ln 1x x x x ++<, 而120x x <<,构造函数()ln 1x f x x+=,()2ln x f x x -'=, 令()0f x '>,则01x <<;令()0f x '<,则1x > ,所以函数()f x 在()0,1上为增函数,在()1,+∞上为减函数, 由1212ln 1ln 1x x x x ++<对于120x x a <<<恒成立, 即()f x 在()0,a 为增函数,则01a <≤,故a 的最大值为1.故选:C.【点睛】本题考查导数研究函数的单调性,考查分析问题能力,属于中档题.12.A解析:A【分析】将两个函数作差,得到函数()()y f x g x =-,利用导数再求此函数的最小值,即可得到结论.【详解】设函数()()()2ln 0=-=->y f x g x x x x , ()212120-'∴=-=>x y x x x x, 令0y '<,0x,02∴<<x,函数在2⎛⎫ ⎪⎝⎭上为单调减函数; 令0y '>,0x,∴>x,函数在⎫+∞⎪⎪⎝⎭上为单调增函数.2x ∴=时,函数取得极小值,也是最小值为111ln ln 22222-=+. 故所求MN 的最小值即为函数2ln y x x =-的最小值11ln 222+.故选:A.【点睛】本题主要考查利用导数研究函数的最值,属于中档题.二、填空题13.【分析】转化为函数的图象与直线恰有2个交点作出函数的图象利用图象可得结果【详解】因为函数恰好有2个零点所以函数的图象与直线恰有2个交点当时当时所以函数在上为增函数函数的图象如图:由图可知故答案为:【 解析:34m > 【分析】 转化为函数()y f x x =-的图象与直线y m =恰有2个交点,作出函数的图象,利用图象可得结果.【详解】因为函数()()g x f x x m =--恰好有2个零点,所以函数()y f x x =-的图象与直线y m =恰有2个交点,当0x ≤时,22133()1()244y f x x x x ==++=++≥, 当0x >时,()x y f x x e x =-=-,10x y e '=->,所以函数()x y f x x e x =-=-在(0,)+∞上为增函数,函数()y f x x =-的图象如图:由图可知,34m >. 故答案为:34m >【点睛】 方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.14.【分析】构造函数再利用函数的单调性解不等式即可【详解】解:构造函数则当时在单调递增不等式即即故不等式的解集为故答案为:【点睛】关键点点睛:本题解题的关键是根据题目的特点构造一个适当的函数利用它的单调 解析:,62ππ⎛⎫ ⎪⎝⎭【分析】构造函数()()sin f x g x x =,再利用函数的单调性解不等式即可. 【详解】解:()()cos sin f x x f x x '<()()sin cos 0f x x x f x '∴->,构造函数()()sin f x g x x =, 则()()()2sin cos f x x f x x g x sin x'-'=, 当0,2x π⎛⎫∈ ⎪⎝⎭时,()0g x '>, ()g x ∴在0,2π⎛⎫ ⎪⎝⎭单调递增, ∴不等式()f x x >,即()6sin sin 26f f x x ππ⎛⎫ ⎪⎝⎭>== 即()6xg g π⎛>⎫ ⎪⎝⎭, 26x ππ∴<< 故不等式的解集为,62ππ⎛⎫⎪⎝⎭. 故答案为:,62ππ⎛⎫ ⎪⎝⎭. 【点睛】关键点点睛:本题解题的关键是根据题目的特点,构造一个适当的函数,利用它的单调性进行解题.15.【分析】通过求导得出分段函数各段上的单调性从而画出图像若要方程f (x )﹣m=0恰有两个实根只需y=m 与y=f (x )恰有两个交点即可从而得出的取值范围【详解】(1)x≤0时f′(x )=ex ﹣x ﹣1易知解析:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭, 【分析】通过求导,得出分段函数各段上的单调性,从而画出图像.若要方程f (x )﹣m =0恰有两个实根,只需y =m 与y =f (x )恰有两个交点即可,从而得出m 的取值范围.【详解】(1)x ≤0时,f ′(x )=e x ﹣x ﹣1,易知f ′(0)=0,而f ″(x )=e x ﹣1<0,所以f ′(x )在(﹣∞,0]上递减,故f ′(x )≥f ′(0)=0,故f (x )在(﹣∞,0]上递增, 且f (x )≤f (0)11e=+,当x →﹣∞时,f (x )→﹣∞. (2)x >0时,()21'lnx f x x-=,令f ′(x )>0,得0<x <e ;f ′(x )<0得x >e ; 故f (x )在(0,e )上递增,在(e ,+∞)递减, 故x >0时,()1()max f x f e e==;x →0时,f (x )→﹣∞;x →+∞时,f (x )→0. 由题意,若方程f (x )﹣m =0恰有两个实根,只需y =m 与y =f (x )恰有两个交点,同一坐标系画出它们的图象如下:如图所示,当直线y =m 在图示①,②位置时,与y =f (x )有两个交点,所以m 的范围是:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,. 故答案为:(]10e ⎧⎫-∞⋃⎨⎬⎩⎭,. 【点睛】本题考查了方程根的问题转化为函数图像交点问题,以及利用导数求函数单调性.考查了转化思想和数形结合,属于中档题.16.【分析】设cm 根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式利用导数研究体积的最大值即可【详解】设cm 则cm 包装盒的高为cm 因为cm 所以包装盒的底面边长为cm 所以包装盒的体积 解析:10【分析】设EF x =cm ,根据已知条件求出包装盒的底面边长及高从而求得包装盒体积的关于x 的表达式,利用导数研究体积(x)V 的最大值即可.【详解】设EF x =cm ,则302x AE BF -== cm ,包装盒的高为22GE x = cm , 因为302x AE AH -== cm ,2A π∠=,所以包装盒的底面边长为2=(30)2HE x - cm , 所以包装盒的体积为232222()[(30)](60900)224V x x x x x x =-⋅=-+,030x <<, 则22()(3120900)4V x x x '=-+,令()0V x '=解得10x =, 当(0,10)x ∈时,()0V x '>,函数(x)V 单调递增;当(10,30)x ∈时,()0V x '<,函数(x)V 单调递减,所以3max 2()(10)(100060009000)10002()4V x V cm ==-+=,即当10EF cm =时包装盒容积3()V cm 取得最大值310002()cm .故答案为:10【点睛】本题考查柱体的体积,利用导数解决面积、体积最大值问题,属于中档题.17.【分析】对求导利用导数即可求得函数单调性和最小值【详解】因为故可得令解得;故当时单调递减;当时单调递增;当时单调递减且当趋近于1时趋近于正无穷;当趋近于正无穷时趋近于零函数图像如下所示:故的最小值为解析:14- 【分析】对()f x 求导,利用导数即可求得函数单调性和最小值,【详解】因为()()21xf xx=-,故可得()()311xf xx---'=,令()0f x'=,解得1x=-;故当(),1x∈-∞-时,()f x单调递减;当()1,1x∈-时,()f x单调递增;当()1,x∈+∞时,()f x单调递减.且()114f-=-,当x趋近于1时()f x趋近于正无穷;当x趋近于正无穷时,()f x趋近于零.函数图像如下所示:故()f x的最小值为14-.故答案为:14-.【点睛】本题考查利用导数研究函数的最值,属综合基础题.18.【分析】作出函数的图象结合图象可求实数的取值范围【详解】当时当时函数为增函数;当时函数为减函数;极大值为且;作出函数的图象如图方程则或由图可知时有2个解所以有五个不相等的实数根只需要即;故答案为:【解析:1(0,)2【分析】作出函数21ln,0()log,0xxf x xx x+⎧>⎪=⎨⎪<⎩的图象,结合图象可求实数m的取值范围.【详解】当0x >时,2ln ()x f x x'=-,当01x <<时,()0f x '>,函数为增函数; 当1x >时,()0f x '<,函数为减函数;极大值为(1)1f =,且x →+∞,()0f x →; 作出函数21ln ,0()log ,0x x f x x x x +⎧>⎪=⎨⎪<⎩的图象,如图,方程2()2()0()f x mf x m R -=∈,则()0f x =或()2f x m =,由图可知()0f x =时,有2个解,所以2()2()0f x mf x -=有五个不相等的实数根,只需要021m <<,即102m <<; 故答案为:1(0,)2.【点睛】 本题主要考查导数的应用,利用研究方程根的问题,作出函数的简图是求解的关键,侧重考查数学抽象的核心素养.19.【分析】对函数进行求导得则方程在时有两个根利用导数研究函数的值域即可得答案;【详解】在时有两个根令令当时当时在单调递增在单调递减且当时当时与要有两个交点故答案为:【点睛】本题考查利用导数研究函数的值 解析:01a <<【分析】对函数进行求导得()1f x lnx ax '=+-,则方程ln 1x a x +=在0x >时有两个根,利用导数研究函数ln 1()x g x x+=的值域,即可得答案; 【详解】 ()1ln 2f x x x ax ⎛⎫=- ⎪⎝⎭,()1f x lnx ax '=+-. ∴ln 1x a x+=在0x >时有两个根,令ln 1()x g x x+=, 令()1g x lnx ax =+-,'221(ln 1)ln ()x x x x g x x x ⋅-+==- 当01x <<时,'()0g x >,当1x >时,'()0g x <, ∴()g x 在(0,1)单调递增,在(1,)+∞单调递减,且(1)1g =,当x →+∞时,()0g x →,当0x →时,()g x →-∞,y a =与()y g x =要有两个交点,∴01a <<故答案为:01a <<.【点睛】本题考查利用导数研究函数的值域,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意参变分离法的运用.20.【分析】依题意可得在上恒成立参变分离得到在上恒成立令求出的最大值即可求出参数的取值范围;【详解】解:因为的定义域为且函数在上单调递增在上恒成立即在上恒成立令当时所以即故答案为:【点睛】本题考查利用导 解析:18a ≥ 【分析】依题意可得()210a f x x x'=-+≥在()0,x ∈+∞上恒成立,参变分离得到22a x x ≥-在()0,x ∈+∞上恒成立,令()22g x x x =-,求出()g x 的最大值即可求出参数的取值范围;【详解】解:因为()21ln f x x x a x =-++的定义域为()0,x ∈+∞,且函数()21ln f x x x a x =-++在()0,∞+上单调递增,()210a f x x x'∴=-+≥在()0,x ∈+∞上恒成立, 即22a x x ≥-在()0,x ∈+∞上恒成立,令()22112248g x x x x ⎛⎫=-=--+ ⎪⎝⎭ 当14x =时()max 18g x = 所以18a ≥即1,8a ⎡⎫∈+∞⎪⎢⎣⎭故答案为:1,8⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查利用导数研究函数的单调性,不等式恒成立问题,属于中档题. 三、解答题21.(1)答案见解析;(2)[)1,+∞.【分析】(1)求导后,分别在0a ≥和0a <两种情况下讨论导函数的正负即可得到结果; (2)将恒成立的不等式转化为()()112222h x x h x x ->-对于任意的12x x >恒成立,从而只需构造函数()()2t x h x x =-,证明()t x 在()0,∞+上单调递增即可,从而将问题进一步转化为()0t x '≥在()0,∞+上恒成立,进而利用分离变量的方法可求得结果.【详解】(1)()()21ln 02h x x a x x =+>,则()()20a x a h x x x x x+'=+=>, 当0a ≥时,()0h x '>恒成立,()h x ∴在()0,∞+上单调递增;当0a <时,若(x ∈,()0h x '<;若)x ∈+∞,()0h x '>; ()h x ∴在(上单调递减,在)+∞上单调递增. (2)设12x x >,则()()12122h x h x x x ->-等价于()()112222h x x h x x ->-, 即()()112222h x x h x x ->-对于任意的12x x >恒成立. 令()()212ln 22t x h x x x a x x =-=+-,则只需()t x 在()0,∞+上单调递增, ()2a t x x x '=+-,∴只需()0t x '≥在()0,∞+上恒成立即可. 令()200a x x x+-≥>,则()220a x x x ≥-+>, 当1x =时,()2max 21x x-+=,1a ∴≥,即实数a 的取值范围为[)1,+∞.【点睛】 关键点点睛:本题主要考查导数在函数中的应用,以及不等式的证明,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.22.(1)见解析;(2)若c<3102,则当v =3102时,总用氧量最少;若c≥3102,则当v =c 时,总用氧量最少.【分析】(1)结合题意可得y 关于v 的函数关系式.(2)由(1)中的函数关系,求导后得到当0<v<3102时,函数单调递减;当v>3102时,函数单调递增.然后再根据c 的取值情况得到所求的速度. 【详解】(1)由题意,下潜用时 (单位时间),用氧量为×=+ (升),水底作业时的用氧量为10×0.9=9(升),返回水面用时= (单位时间),用氧量为×1.5= (升), 因此总用氧量232409,(0)50v y v v=++>. (2)由(1)得232409,(0)50v y v v=++>, ∴y′=-=,令y′=0得v =32当0<v<3102y′<0,函数单调递减;当v>32y′>0,函数单调递增.①若c<32 ,则函数在(c ,32上单调递减,在(310215)上单调递增, ∴ 当v =32②若c≥32,则y 在[c ,15]上单调递增,∴ 当v =c 时,总用氧量最少.【点睛】(1)在求实际问题中的最大值或最小值时,一般先设自变量、因变量、建立函数关系式,并确定其定义域,利用求函数最值的方法求解,注意结果应与实际情况相符合.(2)用导数求实际问题中的最大(小)值,如果函数在区间内只有一个极值点,那么根据实际意义可知该极值点就是最值点.23.(1)1ln ,22a ⎛⎫+∞⎪⎝⎭(2)32a e > 【分析】(1)直接求出函数的导函数,令()0f x '>,解不等式即可;(2)由题意容易知道2102222a ln a a a f ln e ln a ⎛⎫=-+< ⎪⎝⎭,解出即可求得实数a 的取值范围; 【详解】解:(1)因为()2x f x e ax b =-+所以()()220x f x e a a '=->,令()0f x '>,得1ln 22a x >,∴函数()f x 的单调递增区间为1ln ,22a ⎛⎫+∞ ⎪⎝⎭(2)由(1)知,函数()f x 在1,ln 22a ⎛⎫-∞ ⎪⎝⎭递减,在1ln ,22a ⎛⎫+∞ ⎪⎝⎭递增, ∴x →-∞时,()f x →+∞;x →+∞,()f x →+∞,∵函数()f x 有两个零点12,x x ,∴1ln 022a f ⎛⎫< ⎪⎝⎭,又a b =, ∴ln 21ln ln 02222a a a a f e a ⎛⎫=-+< ⎪⎝⎭, 即ln 0222a a a a -+< 所以3ln02a -< 所以32a e >【点睛】本题考查利用导数研究函数的单调性及最值问题,考查导数中零点问题,考查转化思想及运算求解能力,属于中档题.24.(1)(,2)(0,)()f x -∞-+∞和为的增区间,(2,0)()f x -为的减区间.(2)m <0 .【详解】解:(1)21()(2)22xxx e f x xe x e x x '=+=+ 令(2)0,02,(,2)(0,)()2xe x x x xf x +>><-∴-∞-+∞或和为的增区间, (2)0,20,(2,0)()2xe x x xf x +<-<<∴-为的减区间. (2)x ∈[-2,2]时,不等式f (x )>m 恒成立等价于min ()f x >m, 令:21()(2)022xxx e f x xe x e x x =+'=+= ∴x=0和x=-2,由(1)知x=-2是极大值点,x=0为极小值点2222(2),(2)2,(0)0,()[0,2]f f e f f x e e-===∴∈, ∴m <0 25.(1)23055元;(2)保护罩为底面边长为2米,高为4米的正四棱柱【分析】(1)根据定义先求保险费用,再计算正四棱柱体积,进而求气体费用,最后求和得结果; (2)先列出气体费用和保险费用之和函数关系式,再利用导数求最值,即得结果.【详解】(1)保险费用为24800076802.5= 正四棱柱体积为22.5(2 2.5)⨯⨯所以气体费用为2500[2.5(2 2.5)0.5]15375⨯⨯⨯-=因此气体费用和保险费用之和为76801537523055+=(元);(2)设正四棱柱底面边长为a 米,则 1.2a ≥因此气体费用和保险费用之和23224800048000500[(2)0.5]1000250y a a a a a=+⨯⨯-=+- 因为2396000300002y a a a'=-+=∴= 当2a >时,0y '>,当1.22a ≤<时,0y '<, 因此当2a =时,y 取最小值,保护罩为底面边长为2米,高为4米的正四棱柱时,气体费用和保险费用之和最低.【点睛】本题考查利用导数求函数最值、列函数解析式,考查基本分析求解能力,属中档题. 26.(1)4m ≤;(2)1504ln 24⎛⎫- ⎪⎝⎭,.【分析】(1)由题意结合导数与函数单调性的关系可转化条件为22m x x ≤+在(0,)+∞上恒成立,利用基本不等式求得22x x+的最小值即可得解; (2)由题意结合函数极值点的概念可得122m x x +=,121x x ⋅=,进而可得1112x <<,转化条件为21211211()()4ln f x f x x x x -=-+,令221()4ln g x x x x =-+(112x <<),利用导数求得函数()g x 的值域即可得解.【详解】(1)()f x 的定义域为(0,)+∞,∵()f x 在(0,)+∞上单调递增, ∴2()20f x x m x '=-+≥在(0,)+∞上恒成立,即22m x x≤+在(0,)+∞上恒成立,又224x x +≥=,当且仅当1x =时等号成立, ∴4m ≤;(2)由题意2222()2x mx f x x m x x-+'=-+=, ∵()f x 有两个极值点12,x x ,∴12,x x 为方程2220x mx -+=的两个不相等的实数根, 由韦达定理得122m x x +=,121x x ⋅=, ∵120x x <<,∴1201x x <<<, 又121112()2()(4,5)m x x x x =+=+∈,解得1112x <<, ∴()()2212111222()()2ln 2ln f x f x x mx x x mx x -=-+--+ ()()()()22121212122ln ln 2x x x x x x x x =-+--+-()()2221122ln ln x x x x =-+- 2112114ln x x x =-+, 设221()4ln g x x x x =-+(112x <<), 则4222333242(21)2(1)()20x x x g x x x x x x ---+--=-+='=<, ∴()g x 在1,12⎛⎫ ⎪⎝⎭上为减函数, 又1111544ln 4ln 22424g ⎛⎫=-+=- ⎪⎝⎭,(1)1100g =-+=, ∴150()4ln 24g x <<-, 即12()()f x f x -的取值范围为1504ln 24⎛⎫- ⎪⎝⎭,.【点睛】本题考查了导数的综合应用,考查了运算求解能力与逻辑推理能力,牢记函数单调性与导数的关系、合理转化条件是解题关键,属于中档题.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 导数及其应用1.1 变化率与导数【知识点归纳】1.平均变化率:2.瞬时速度:3.导数及导函数的概念:4.导数的几何意义:拓展知识:5.平均变化率的几何意义:6.导数与切线的关系:【典型例题】题型一 求平均变化率:例 1.已知函数2()21y f x x ==-的图像上一点(1,1)及其邻近一点(1,1)x y +∆+∆,则y x∆∆=_______.变式训练:1.以00(0)v v >速度竖直向上抛出一物体,t 秒时的高度为201()2s t v t gt =-,求物体在0t 到0t t +∆这段时间的平均速度v .2.求正弦函数sin y x =在0x =和2x π=附近的平均变化率,并比较他们的大小.题型二 实际问题中的瞬时速度例 2 已知质点M 按规律223s t =+做直线运动(位移单位:cm ,时间单位:s )(1)当2,0.01t t =∆=时,求s t ∆∆;(2)当2,0.001t t =∆=时,求s t∆∆; (3)求质点M 在t=2时的瞬时速度.题型三 求函数的导数及导函数的值例 3求函数1y x x=-在1x =处的导数.题型四 曲线的切线问题例 4 (1)已知曲线22y x =上一点A (1,2),求点A 处的切线方程.(2)求过点(-1,-2)且与曲线32y x x =-想切的直线方程.(3)求曲线321()53f x x x =-+在x=1处的切线的倾斜角. (4)曲线3y x =在点P 处的切线斜率为3,求点P 的坐标.1.2 导数的计算【知识点归纳】1.常见函数的导数:2.基本初等函数的导数公式:3.导数的运算法则:4.复合函数的导数:【典型例题】题型 一 基本初等函数导数公式运用例1 给出下列结论: ①1(cos )sin 662ππ'=-=-;②若21y x=,则32y x -'=-;③若()3f x x =,则[(1)]3f ''=;④.若y =y '= 其中正确的是_________________.题型 二 导数运算法则的应用例 2 求下列函数的导数:(1)531253y x x =+;(2)lg x y x e =-;(3cos x ;(4)sin cos 22x x y x =-.变式训练:判断下面的求导是否正确,如果不正确,加以改正.2221cos 2(1cos )sin ()x x x x x x x +++'=题型 三 复合函数求导的应用例 7 求下列函数的导数.(1)3(1cos 2)y x =+;(2)21siny x=.变式训练:求函数2(2y x =-题型 四 切线方程及应用例4 曲线sin x y x e =+在点(0,1)处的切线方程是?变式训练:曲线32y x x =+-在P 处的切线平行于直线41y x =-,则点P 的坐标为_________.题型 五 利用导数求参数问题例5 若曲线3y x ax =+在坐标原点处的切线方程是20x y -=,则实数a=_________变式训练:若函数()xe f x x=在x=a 处的导数值为函数值互为相反数,求a 的值题型 六 对数求导数的应用(选讲)例6 求下列函数的导数(1)(1)(2)(3)(3)y x x x x =--->;(2)(1)(2)(3)1()212x x x y x x +++=>-+;题型 七 求导数的实际应用1.3 导数在研究函数中的应用1.3.1 函数的单调性与导数【知识点归纳】1.函数的单调性与其导数的关系:2.利用导数求函数的单调区间:3.导数的绝对值的大小与图像的关系(选讲):【典型例题】题型 一 里用导数的信息确定函数大致图像例1 已知导函数()f x '的下列信息:当23x <<时,()0f x '<; 当3x >或2x <时,()0f x '>;当3x =或2x =时,()0f x '=;试画出函数f (x )图像的大致形状.题型 二 判断或者证明函数的单调性例2 试判断函数()ln f x x x =+在其定义域上的单调性.变式训练:证明:函数ln ()x f x x=在区间(0,2)上是单调递增函数.题型 三 求函数的单调性例3 确定函数32()267f x x x =-+的单调区间.变式训练:求函数3y x x =-的单调性.题型 四 含有参数的函数的单调性例4 已知函数2()ln (2)f x x ax a x =-+-,讨论f (x )的单调性.变式训练:已知函数1()2ax f x x +=+在(2,)-+∞内单调递增,求实数a 的取值范围.1.3.2 导数的极值与导数【知识点归纳】1.导数的极值的概念:2.导数的极值的判断和求法:【典型例题】题型 一 求函数的极值例1 求下列函数的极值:(1)276y x x =-+; (2)2ln y x x =.变式训练:设32()1f x x ax bx =+++的导数()f x '满足(1)2,(2)f a f b ''==-,其中常数,a b R ∈.(1)求曲线()y f x =在点(1,(1))f 处的切线方程.(2)设()()xg x f x e -'=,求函数()g x 的极值.题型 二 判断函数极值点的情况例2 判断下列函数有无极值,若有极值,请求出极值;如果没有极值,请说明理由.(1)31()43f x x =+; (2)321()43f x x x x =++; (3)23()1(2)f x x =--.变式训练:设函数2()ln f x ax b x =+,其中0ab ≠.证明:当0ab >时,函数f (x )没有极值点,当0ab <时,函数f (x )有且只有一个极值点,并求出极值.题型 三导函数的图像与函数极值的关系 例3 函数f (x )的定义域为开区间(a ,b ),导函数f′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点的个数为( )A 1个 B.2个 C.3个 D.4个题型 四 极值的逆向问题例4 已知函数44()ln (0)f x ax x bx c x =+->在x=1处取得极值-3-c ,其中a ,b 为常数.(1)试确定a ,b 的值.(2)讨论函数f (x )的单调区间.综上:若说明函数没有极值,一般不讨论有无导数,而是在区间上只有一个单调性,没有“拐点”.1.3.3 函数的最大小值与导数【知识点归纳】1.最大小值与极值的关系:2.求最大小值的步骤:3.开区间的最值问题:【典型例题】题型 一 利用导数求函数最值问题例1 求函数543()551f x x x x =+++在区间[1,4]-上的最大值和最小值.变式训练:设函数3()(0)f x ax bx c a =++≠为奇函数,其图像在(1,(1))f 处的切线与直线670x y --=垂直,导数的最小值为-12.(1)求a ,b ,c 的值.(2)求函数f (x )的单调递增区间,并求函数f (x )在[-1,3]上的最大小值.题型 二 含参数最值问题例 2 设a 为常数,求函数3()3(01)f x x ax x =-+≤≤的最大值.变式训练:1.设3211()232f x x x ax =-++ (1)若f (x )在2(,)3+∞上存在单调递增区间,求a 的取值范围. (2)当02a <<时,f (x )在[1,4]上的最小值为163-,求f (x )在该区间上的最大值.题型 三 由函数的最值求参数的值例3 设213a <<,函数323()(11)2f x x ax b x =-+-≤≤的最大值为1,最小值为2-,求a ,b 的值.1.4 生活中的优化问题【知识点归纳】利用求函数的最大小值的方法求实际应用中的最优化问题函数的极值与端点值的比较【典型例题】题型 一 利润最大问题例 1 某商品每件成本9元,售价为30元,每星期卖出432件,如果降低价格,销售量可以增加,且每星期多卖出商品件数与商品单价的降低值x (单位:元, 021x ≤≤)的平方成正比,已知商品单价降低2元时,一星期多卖出24件.(1)将一星期的商品销售利润表示成x 的函数(2)如何定价才能使一个星期的商品销售利润最大变式训练:某分公司经销某种品牌的产品,每件产品的成本为3元,并且每件产品需向总公司交m (3≤m ≤5)元的管理费,预计当每件产品的售价为x (9≤x≤11)元时,一年的销售量为(12-x)2万件.(1)求分公司一年的利润L (万元)与每件产品的售价x 的函数关系式;(2)当每件产品的售价为多少元时,分公司一年的利润L 最大,并求出L 的最大值Q (m ).题型二用料最省、费用最低问题例2如图,某单位用木料制作如图所示的框架,框架的下部是边长分别为x,y(单位:米)的矩形,上部是斜边长为x的等腰直角三角形,要求框架围成的总面积为8平方米.(Ⅰ)求x,y的关系式,并求x的取值范围;(Ⅱ)问x,y分别为多少时用料最省?变式训练:某企业拟建造如图所示的容器(不计厚度,长度单位:米),其中容器的中间为圆柱形,左右两端均为半球形,按照设计要求容器的体积为803π立方米,且2l r≥.假设该容器的建造费用仅与其表面积有关.已知圆柱形部分每平方米建造费用为3千元,半球形部分每平方米建造费用为c(c>3)千元.设该容器的建造费用为y千元.(Ⅰ)写出y关于r的函数表达式,并求该函数的定义域;(Ⅱ)求该容器的建造费用最小时的r.题型 三 面积、体积最值问题例 3如图在二次函数2()4f x x x =-的图像与x 轴所围成的图形中有一个内接矩形ABCD ,求这个内接矩形的最大面积.变式训练:请您设计一个帐篷.它下部的形状是高为1m 的正六棱柱,上部的形状是侧棱长为3m 的正六棱锥(如图所示).试问当帐篷的顶点O 到底面中心O 1的距离为多少时,帐篷的体积最大?x y1.5 定积分的概念【知识点归纳】定积分的概念:定积分的性质:【典型例题】题型 一 利用定义计算积分例 1利用定积分定义,计算21(32)x dx +⎰题型 二 求曲边梯形的面积例 2利用定积分的定义求出直线x=1,x=2和y=0及曲线3y x =围成的图形的面积.1.6 微积分基本定理【知识点归纳】1.牛顿—莱布尼茨公式:2.定积分的取值:3.定积分的一些性质:【典型例题】题型一求简单函数的定积分例1 求下列函数的定积分:(1)2211()x dxx+⎰;(2)22sin xdxππ-⎰;(3)4dx⎰;题型二求分段函数的定积分例2 求函数32,[0,1](),[1,2]2,[2,3]xx xf x x xx⎧∈⎪=∈⎨⎪∈⎩在区间[0,3]上的定积分.变式训练:求定积分:(1)2201x dx -⎰; (2)题型 三 定积分的实际应用例 3 汽车以每小时36 km 的速度行驶,到某处需要减速停车,设汽车的减速度为21.8 /a m s =刹车,求从开始停车到停车,汽车的走过的距离.变式训练:等比数列{}n a 中,36a =,前三项和3304s xdx =⎰,则公比q 的值是多少?1.7 定积分的简单应用【知识点归纳】1.常见的平面图形的面积求法:2.定积分在物理公式中的应用:【典型例题】题型 一 用定积分求平面图形的面积例 1 求曲线2y x =与y x =所围成的图形的面积.变式训练:求由抛物线22,15x y y x ==-所围成的图形的面积例 2 求正弦曲线3sin ,[0,]2y x x π=∈和直线32x π=及x 轴所围成的平面图形的面积.变式训练:求由曲线222,24y x x y x x =-=-所围成的图形的面积题型 二 用定积分求变速直线运动的距离例 3 有一两汽车以每小时36km 的速度形式,在B 出以22 /m s 的加速度减速停车,问从开始刹车到停车一共行驶多少的路程.题型 三 用定积分解决变力作功问题例 4 有一个长为25cm 的弹簧,若以100N 的力,则弹簧伸长到30cm ,求弹簧由25cm 伸长到40所做的功.。