基因工程 、
什么是基因工程

什么是基因工程
一、什么是基因工程
基因工程(Gene Engineering)是一种技术,它可以改变物质基础的构造,使其形成新的基因组合,从而获得有意义的生物。
基因工程可以
让完全不同的物种合成出新物种,或者将不同物种的基因强行混合,
成功地让一些被认为在自然过程中不可能出现的新物种出现。
二、基因工程的基本原理
基因工程的基本原理是人工合成、改造、替换或者删除染色体的基因,在生物体的内部,精心操控它们来改变特质。
比如,可以用基因工程
在生物体内引入新基因,从而改变它们的某些性状,从而形成新物种、新性状或新能力。
同样,也能改变基因中某种成分,形成新物种。
三、基因工程在实践中的应用
(1)改性个体:基因工程可以调整体内基因水平,以便让体内特定的
特质性状得到发挥。
(2)编辑特质:基因工程可以根据所需改变,精确定位到特定的基因
的特定位点,再改变基因位置,最终让细胞发生变化。
(3)基因治疗:基因治疗是改变患有基因性疾病的患者的基因的技术,以改善疾病情况。
(4)转基因:转基因技术指的是将一种物种中的基因流入到另一种物
种中,从而改变或添加某种性质,如抗病性等。
四、基因工程的好处与弊端
(1)好处:基因工程可以帮助改变鉴定动物和植物的性能,用来生产
食物、药物、精馏植物等产品,帮助解决营养、病症,使物种在极端
环境发展。
(2)弊端:大量的基因重组可能引发不可预料的问题,产生致命的疾病,甚至影响人类基因。
有时,新基因对导入到一个物种中的其他生
命细胞产生负面影响。
什么是基因工程

什么是基因工程基因工程:改变生命的未来引言:人类一直在不断探索、改造和利用自然的力量,以满足我们的需求和向前迈进。
基因工程作为生物技术的一个重要分支,具有巨大的潜力,可以为人类带来许多福祉和进步。
本文将深入探讨什么是基因工程,它的原理和应用,以及相关的伦理和道德问题。
一、基因工程的定义和原理:基因工程,又称遗传工程,是一种利用重组DNA技术改变生物基因组的过程。
它主要包括三个步骤:选取目标基因、将目标基因导入目标生物体的基因组中、使导入基因能够在生物体中正常表达。
基因工程的原理主要包括DNA分子的切割、连接和重组。
科学家通过具有特定功能的限制酶将DNA切割成片段,然后将这些片段重新组合,以获得具有所需特性的DNA序列。
最后,将重组的DNA导入目标生物体中,通过细胞的自然复制过程使其在细胞和整个生物体中被表达。
二、基因工程的应用:1. 农业领域:基因工程在农业领域的应用非常广泛。
通过转基因技术,科学家们可以改良农作物,使其具有抗虫、抗病、耐旱等特性,提高产量和抗逆性,有力地支持全球粮食安全。
例如,转基因玉米可以抵抗玉米螟的侵袭,转基因水稻可以抗盐碱、耐旱。
2. 医学领域:基因工程在医学领域的应用正逐渐发展。
通过基因工程技术,科学家可以将外源基因导入体内,用于治疗一些遗传病、免疫系统疾病和癌症等疾病。
例如,基因工程药物可以治疗某些带有缺陷基因的遗传性疾病,如血友病和囊性纤维化等。
3. 环境保护:基因工程还可以用于环境保护。
通过改良某些细菌或植物的基因,可以使其具有降解有害化学物质的能力,从而清理油污和其他污染物。
基因工程在生物修复、环境治理中的潜力巨大,为解决环境问题提供了新的思路和方法。
三、伦理道德问题:虽然基因工程有着广阔的应用前景,但也涉及一些伦理和道德问题需要慎重考虑。
1. 遗传多样性:转基因作物的广泛种植可能导致农作物遗传多样性的丧失,降低农作物的抵抗能力。
我们应该保留自然界的遗传资源,同时加强监管和管理,确保基因工程的可持续发展。
什么是基因工程

什么是基因工程
基因工程是一种通过改变生物体的遗传物质(DNA)来实现对其性状的改变的技术和方法。
这包括插入、删除或修改基因,以产生具有特定性状或功能的生物体。
基因工程可以应用于微生物、植物、动物和人类等各个领域。
主要的基因工程技术和方法包括:
1. 基因克隆:将感兴趣的基因从一个生物体中复制并插入到另一个生物体中。
这包括DNA的复制、切割和连接等操作,常用于制造重组蛋白、疫苗等。
2. 重组DNA技术:制造重组DNA,即将来自不同来源的DNA 片段组合在一起。
这包括PCR(聚合酶链式反应)、限制酶切割、DNA 连接酶等技术。
3. 基因编辑:利用特定的酶(如CRISPR-Cas9系统)精确地修改生物体的基因。
这使得科学家能够精准地添加、删除或替换基因序列,以改变目标生物体的性状。
4. 转基因:将外源基因导入到一个生物体中,使其表达这个基因。
转基因技术在植物、动物等领域广泛应用,以改善农作物产量、提高抗病性、研究基础科学等。
5. 合成生物学:利用化学合成的方法设计和构建新的生物体,以实现特定的功能。
这包括人工合成基因、合成生物通路等。
应用基因工程的领域包括医学、农业、环境保护、工业等,其应用范围涉及疾病治疗、农作物改良、生物能源生产等方面。
然而,基因工程也引发了一些伦理、安全和法规方面的讨论和关注。
基因工程

作用: 将外源基因送入受体细胞。 利用载体在受体细胞内,对外源基因 进行大量复制。
条件: 能够在宿主细胞中复制并稳定地保存。 具多个限制酶切点,以便与外源基因连接。 具有某些标记基因,便于进行筛选。 如抗菌素的抗性基因、产物具有颜色反应的基 因等。 种类:质粒、噬菌体和动植物病毒。
质
DNA诊断
DNA点杂交 寡聚核苷酸探针杂交分析法
PCR/单链构象多态性分析(SSCP)
(single strand conformation polymorphism, SSCP) 限制性内切酶谱分析法 DNA限制性长度多态性 (restriction fragment length polymorphism, RLFP) 分析
2.基因诊断
基因诊断:采用分子生物学的技术方法来分 析受检者的某一特定基因的结构(DNA水平) 或功能(RNA水平)是否异常,以此来对相应 的疾病进行诊断。是病因的诊断。
基因诊断的原理
DNA诊断----检测相关基因的结构及其 表达功能是否正常。 RNA诊断----对表达产物mRNA的质 和量进行分析。
基因工程为人类开辟新的食物来源。 1)鸡蛋白基因在大肠杆菌和酵母菌中表达获得 成功。这表明,未来能用发酵罐培养的大肠杆菌 或酵母菌来生产人类所需要的卵清蛋白。 2)用基因工程的方法从微生物中获得人们所需 要的糖类、脂肪和维生素等产品。
(三)基因工程与环境保护
基因工程在环保方面有什么应用?
1)用于环境监测。 2)用于被污染环境的净化。
基因治疗就是把基因直接导入人体或先导入人的 细胞然后再输入人体,让这种基因达到治疗目的。 首先是治疗基因的选择。
生物学 什么是基因工程

生物学什么是基因工程?
基因工程是一种利用基因技术对生物体的遗传物质进行操作和改变的科学和技术领域。
它涉及到对基因的分离、合成、修饰和转移等操作,以实现对生物体的遗传特征和功能的改变和控制。
基因工程的主要目标是通过改变生物体的基因组,来实现对其性状和功能的精确控制。
这可以通过多种手段来实现,包括基因的克隆、基因的突变、基因的插入和基因的删除等。
基因工程可以用于改良农作物和畜牧业、生物制药、环境修复、疾病治疗等多个领域。
基因工程的基本步骤包括基因的克隆、构建重组DNA、转化和表达等。
首先,需要从目标生物体中分离出所需的基因,这可以通过PCR扩增、限制酶切和DNA测序等技术来实现。
然后,将克隆的基因与载体DNA进行连接,形成重组DNA。
接下来,将重组DNA转移到宿主细胞中,这可以通过细胞转化、病毒介导转染等方法来实现。
最后,基因在宿主细胞中被表达,从而实现对目标性状或功能的控制。
基因工程的应用非常广泛。
在农业领域,基因工程可以用于改良作物的抗病性、耐逆性和产量等性状,以提高农作物的品质和产量。
在畜牧业领域,基因工程可以用于改良家畜的生长性能、抗病性以及产品质量等。
在医学领域,基因工程可以用于生产重组蛋白药物、基因治疗和细胞治疗等。
此外,基因工程还可以用于环境修复、生物能源开发和基础研究等领域。
然而,基因工程也面临着一些道德、法律和安全等方面的问题和挑战。
例如,基因工程可能引发对生物多样性和生态系统的影响,可能引发基因污染和生物安全风险。
因此,在进行基因工程研究和应用时,需要遵守相关法律法规和伦理准则,并进行风险评估和管理。
基因工程名词解释

基因工程名词解释1.基因工程:指将一种或多种生物体(供体)的基因或基因组提取出来,或者人工合成的基因,按照人们的愿望进行严密的设计,经过体外加工重组,转移到另一种生物体(受体)的细胞内,使之能在受体细胞遗传并获得新的遗传性状的技术。
2.复制子:DNA复制时从一个DNA复制起点开始最终由这个起点起始的复制叉完成的片段。
DNA中发生复制的独立单位称为复制子。
3.半保留复制:即DNA复制时亲代DNA的两条链解开,每条链作为新链的模板,从而形成两个子代DNA分子,每一个子代DNA分子包含一条亲代链和一条新合成的链。
4.一个单位的限制性核酸内切酶:在合适的温度和缓冲液中,在50ul反应体系中,1h完全降解1ug底物DNA所需要的酶量。
5.星号活性:指限制性内切酶的识别位点测定时,当改变测定条件时,有些酶的识别位点也随之改变,可能切割一些与特异识别序列相类似序列的现象。
6.一个韦氏单位:指在37度,20分钟内催化1nmol 32P从磷酸根置换到y,B-32P-ATP所需要的酶量。
7.载体:指基因工程中携带外源基因进入受体细胞的“运载工具”。
8.质粒的不亲和性:也称不相容性,是指在没有选择压力的情况下,两种不同质粒不能够在同一个宿主细胞系中稳定地共存的现象。
9.多克隆位点(MCS):指载体上人工合成的含有紧密排列的多种限制性和酸内切酶酶切位点的DNA片段。
10.阅读框架:指RNA或DNA中,一组连续且不重复的3核苷酸密码子11.T-DNA:能转移到植物细胞内的DNA片段质粒拷贝数:是指生长在标准的培养基下每个细菌细胞中所含有的质粒DNA分子的数目。
12.探针:是指经放射性或非放射性等物质标记的已知或特定的DNA或RNA序列。
13.DNA的变性:通过加热或变性作用可使DNA双螺旋的氢键断裂,双链解离,形成单链DNA。
14.DNA复性:解除变性条件之后,变性的单链可以重新结合起来,形成双链。
15.平台效应:是指PCR循环的后期,合成的产物到达0.3~1pmol的水平,由于产物积累,使原来以指数增加的速率变成平坦曲线,扩曾产物不在循环次数而明显上升。
基因工程

1、基因工程,是指将一种生物体(供体)的基因与载体在体外进行拼接重组,然后转入另一种生物体(受体)内,使之按照人们的意愿稳定遗传并表达出新产物或新性状的DNA体外操作程序,也称为分子克隆技术。
(供体基因、受体细胞、载体是重组DNA技术的三大基本元件。
)2、同尾酶:识别的靶序列也各不相同,但切割DNA后,产生相同的粘性末端,这一类限制酶特称为同尾酶。
这两个相同的粘性末端称为配伍未端。
3、同裂酶:有一些来源不同的限制酶识别的是同样的核苷酸靶子序列,这类酶特称为同裂酶。
同裂酶的切点位置可相同或不同。
4、1酶活性单位(U):某种限制性核酸内切酶在最适反应条件下,60 min内完全切割1μg λDNA所需的酶活性5、星号(*)活性:如果改变反应条件就会影响酶的专一性和切割效率,称星号(*)活性。
6、停滞效应:PCR中后期,随着目的DNA扩展产物逐渐积累,酶的催化反应趋于饱和,DNA扩增产物的增加减慢,进入相对稳定状态,即为停滞效应,又称平台期。
7、PCR扩增引物:是指与待扩增互补的人工合成的寡核苷酸短片段,其长度通常在15~30个核苷酸之间。
8、linker:是指用化学方法合成的一段由8~12个核苷酸组成,具有一个或数个限制酶识别位点的平末端的双链寡核苷酸片段。
9、衔接头:它是一类人工合成的一头具有某种限制酶切的粘性末端另一头为平末端的特殊的双链寡核苷酸短片段。
10、粘性末端:因酶切位点在两条DNA单链上不同(对称),酶切后形成得具有互补碱基的单链末端结构。
酶切后产生两个粘性末端很容易通过互补碱基的配对而重新连接起来。
11、平末端:因酶切位点在两条DNA单链上相同,酶切后形成的平齐的末端结构,这种末端不易重新连接起来。
12、基因克隆载体:通过不同途径将承载的外源DNA片段(基因)带入受体细胞且能在其中维持的DNA分子。
也称DNA克隆载体。
13、cos位点:λDNA两端各有12bp的粘性末端,粘性末端形成的书暗恋区域称为~~14、受体细胞:又称为宿主细胞或寄主细胞(host cell)等,从实验技术上讲是能摄取外源DNA并使其稳定维持的细胞;从实验目的上讲是有应用价值和理论研究价值的细胞。
基因工程的名词解释

基因工程的名词解释
基因工程是一种利用生物技术手段改变生物体内遗传信息的技术,包括利用DNA分子作为工具来切割、重组、连接和修饰DNA分子,从而改变生物的性状和功能。
在基因工程中,通常会使用一些特定的工具和技术来操作DNA分子。
这些工具和技术包括:基因编辑技术,如CRISPR/Cas9、Taq酶、文库筛选等;DNA片段的制备,如扩增、剪切、合成等;DNA连接技术,如基因连接酶、基因转化技术等;以及基因转化材料,如植物、细菌、酵母等。
基因工程的应用范围非常广泛,包括生物医学研究、农业改良、食品加工、药物开发等。
在生物医学研究中,基因工程可以用于治疗疾病、开发新药物和改变生物体的性状。
在农业改良中,基因工程可以用于提高作物产量、改善作物品质、降低生产成本等。
在食品加工中,基因工程可以用于改变食品的口感、味道和营养价值等。
除了传统的生物学方法外,基因工程还采用了一些现代技术手段,如基因芯片、基因组学、蛋白质结构预测等。
这些技术的发展使得基因工程的研究和应用更加高效和精准。
基因工程也有一些伦理和法律问题需要解决,如基因隐私、基因歧视、遗传信息保护等。
因此,在基因工程的研究和应用中,需要遵循伦理和法律规定,确保其安全性和合法性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基因工程1.下列与微生物有关的叙述,错误的是( )A.在生态系统中,细菌既可以担当生产者,也可以担当消费者和分解者B.与细菌抗生素抗性有关的物质由拟核中的基因编码C.硝化细菌等自养型细菌属于生产者,通过化能合成作用将无机物合成为有机物D.R型肺炎双球菌转化为S型肺炎双球菌的实质是基因重组2.蛋白质工程中,要对蛋白质结构进行设计改造,必须通过基因修饰或基因合成来完成,而不直接改造蛋白质的原因是A.缺乏改造蛋白质所必需的工具酶B.改造基因易于操作且改造后能够遗传C.人类对大多数蛋白质高级结构知之甚少D.蛋白质中氨基酸的排列顺序千变万化,操作难度大3.有关基因工程的成果及应用的说法不.正确的是①用基因工程方法可培育出抗虫植物和抗病毒植物②基因工程在畜牧业上应用的主要目的是培育体型巨大的动物③任何一种假单孢杆菌都能分解四种石油成分,所以假单孢杆菌是“超级菌”④基因工程在农业上的应用主要是培育高产、稳产、品质优良和具有抗逆性的农作物A.①②B.③④C.②③D.②④4.如图所示限制酶切割基因分子的过程,从图中可知,该限制酶能识别的碱基序列和切点是A.CTTAAG,切点在C和T之间B.CTTAAG,切点在T和A之间C.GAATTC,切点在G和A之间D.GAATTC,切点在C和T之间5.基因工程技术引起的生物变异属于A.染色体变异B.基因突变C.基因重组D.不可遗传的变异6.下列实践活动包含基因工程技术的是( )A.水稻F1花药经培养和染色体加倍,获得基因型纯合新品种B.将含抗病基因的重组DNA导入玉米细胞,经组织培养获得抗病植株C.抗虫小麦与矮秆小麦杂交,通过基因重组获得抗虫矮秆小麦D.用射线照射大豆使其基因结构发生改变,获得种子性状发生变异的大豆7.通过转基因技术或细胞工程技术将胡萝卜素转化酶系统转入到大米胚乳中可获得外表为金黄色的转基因大米,如图所示,下列相关叙述中不正确的是()A.两方案中都运用到了植物体细胞具有全能性的这一原理B.两方案都能克服远缘杂交不亲和的障碍C.甲方案所用技术的核心是基因表达载体的构建D.乙方案诱导细胞杂交的方法和诱导动物细胞融合的方法完全相同8.下列一般不作为基因工程中的标记基因的是( )A.四环素抗性基因B.绿色荧光蛋白基因C.产物具有颜色反应的基因D.贮藏蛋白的基因9.已知某一限制性内切酶在一线性DNA分子上有两个酶切位点,如下图箭头所示。
如果该DNA分子两个位点均被酶切断,则会产生a、b、c三种不同长度的DNA片段。
现在有多个上述DNA分子,若每个DNA分子至少有一个位点被酶切断,从理论上分析,这些DNA分子最多能产生长度不同DNA片段的种类是A.3 B.5 C.6 D.910.基因工程的正确操作步骤是()①使目的基因与运载体结合②将目的基因导入受体细胞③检测目的基因的表达是否符合特定性状要求④提取目的基因A.③②④①B.②④①③C.④①②③D.③④①②11.在基因工程中用来修饰改造生物基因的工具是A.限制酶和DNA连接酶B.限制酶和水解酶C.限制酶和运载体D.DNA连接酶和运载体12.北极比目鱼中有抗冻基因,其编码的抗冻蛋白具有11个氨基酸的重复序列,该序列重复次数越多,抗冻能力越强。
下图是获取转基因抗冻番茄植株的过程示意图,有关叙述正确的是A.应用DNA探针技术,可以检测转基因抗冻番茄植株中目的基因的存在及其完全表达B.将多个抗冻基因编码蛋白质的核苷酸序列依次相连成能表达的新基因,不能得到抗冻性增强的抗冻蛋白C.过程②构成的重组质粒缺乏标记基因,需要转入农杆菌才能进行筛选D.过程①获取的目的基因,可用于基因工程和比目鱼基因组测序13.SOD是一种抗氧化酶,它能将02-转化成H2O2,增强植物的抗逆性。
下图为培育农作物新品种的一种方式,与此有关的叙述,正确的是A.①过程常用的工具酶有限制性内切酶、DNA连接酶和运载体B.②、③分别表示脱分化、再分化,培养基中需添加植物激素C.SOD可能为02-转化成H2O2的过程提供能量D.培育过程中需根据基因型的不同进行人工选择14.基因工程中,提取目的基因通常使用的工具是A.质粒B.限制性核酸内切酶C.DNA连接酶D.DNA聚合酶15.利用外源基因在受体细胞中表达,可生产人类所需要的产品。
下列选项中能说明目的基因完成了在受体细胞中表达的是( )A.棉花二倍体细胞中检测到细菌的抗虫基因B.大肠杆菌中检测到人胰岛素基因及其mRNAC.山羊乳腺细胞中检测到人生长激素D.酵母菌细胞中提取到人干扰素蛋白基因16.在用基因工程技术构建抗除草剂的转基因烟草的过程中,下列操作错误的是( )A.用DNA连接酶连接经切割的抗除草剂基因和载体B.用限制性核酸内切酶切割烟草花叶病毒的核酸C.将重组DNA分子导入烟草体细胞D.用含除草剂的培养基筛选转基因烟草细胞17.关于现代生物技术应用的叙述,正确的是A.蛋白质工程可合成自然界中不存在的蛋白质B.DNA连接酶与DNA聚合酶作用的原理和条件都一样C.受精卵发育到原肠胚阶段之后才能进行胚胎移植D.植物组织培养技术要经过脱分化形成愈伤组织18.要想让目的基因与运载体连接起来,在基因操作中应选用()A.DNA连接酶 B.同一种限制酶和DNA连接酶C.限制酶D.不同的限制酶和DNA连接酶19.下列生物工程技术中,不.属于细胞工程的是A.通过试管动物大量繁殖优良动物B.通过花药离体培养获得单倍体植株C.含有人胰岛素基因的大肠杆菌生产胰岛素D.将某人的肝癌细胞在实验室中大量培20.利用基因工程技术生产羧酸酯酶(CarE)制剂的流程如图14所示,下列叙述正确A.过程①需使用逆转录酶B.过程②需使用解旋酶和PCR获取目的基因C.过程③使用的感受态细胞可用NaCl溶液制备D.过程④可利用DNA分子杂交鉴定目的基因是否已经表达21.下列物质中,具有特异性识别作用的是A.质粒 B.抗体C.DNA连接酶 D.限制酶22.下列物质中,具有特异性识别作用的是A.质粒 B.抗体C.DNA连接酶 D.限制酶23.既可用于基因重组技术又可用于细胞融合技术的是( )A.病毒 B.纤维素酶C.聚乙二醇 D.质粒24.下列关于蛋白质工程说法不正确的是A.蛋白质工程能将人抗体某些区段替代鼠单克隆抗体的区段,降低鼠单克隆抗体免疫原性B.蛋白质工程可对酶的催化活性、底物专一性、抗氧化性、热变性等加以改变C.理论上通过对关键氨基酸的置换与增删是进行蛋白质工程的唯一方法D.蛋白质工程的崛起主要是工业生产和基础理论研究的需要25.下面是四种不同质粒的示意图,其中ori为复制必需的序列,amp为氨苄青霉素抗性基因,tet为四环素抗性基因,箭头表示一种限制性核酸内切酶的酶切位点。
若要得到一个能在四环素培养基上生长而不能在氨苄青霉素培养基上生长的含重组DNA的细胞,应选用的质粒是26.土壤农杆菌能将自身Ti质粒的T-DNA整合到植物染色体DNA上,诱发植物形成肿瘤。
T-DNA中含有植物生长素合成酶基因(S)和细胞分裂素合成酶基因(R),它们的表达与否能影响相应植物激素的含量,进而调节肿瘤组织的生长与分化。
据图分析,下列叙述错误..的是A.当细胞分裂素与生长素的比值升高时,诱发肿瘤生芽B.清除肿瘤组织中的土壤农杆菌后,肿瘤不再生长与分化C.图中肿瘤组织可在不含细胞分裂素与生长素的培养基中生长D.基因通过控制酶的合成控制代谢,进而控制肿瘤组织生长与分化27.下列实例与所利用的技术或原理不相符合的是A.转基因抗虫棉的培育需要利用植物组织培养技术B.植物组织培养过程依据的原理是植物细胞具有全能性C.原生质体融合和动物细胞融合利用了细胞膜的选择透过性D.植物愈伤组织的形成和杂交瘤细胞的培养都与细胞分裂有关28.基因敲除主要是应用DNA同源重组原理。
将同源DNA片段导入受体细胞,使同源DNA片段在原有位置替代了靶基因片段,从而达到基因敲除的目的。
基因敲除既可以是用突变基因或其它基因敲除相应的正常基因,也可以用正常基因敲除相应的突变基因。
下列有关基因敲除说法正确的是A.基因敲除实际上是删除某个基因,从而达到使该基因“沉默”的目的B.利用基因敲除技术,不能修复细胞中的病变基因C.基因敲除可定向改变生物体的某一基因D.从理论上分析,利用基因敲除技术可治疗先天性愚型29.为达到相应目的,必须..通过分子检测的是A.携带链霉素抗性基因受体菌的筛选B.产生抗人白细胞介素-8抗体的杂交瘤细胞的筛选C.转基因抗虫棉植株抗虫效果的鉴定D.21三体综合征的诊断30.下列关于基因工程技术的叙述,正确..的是A.切割质粒的限制性核酸内切酶均特异性地识别6个核苷酸序列B.PCR反应中温度的周期性改变是为了DNA聚合酶催化不同的反应C.载体质粒通常采用抗生素合成基因作为筛选标记基因D.抗虫基因即使成功地插入到植物细胞染色体上也未必能正常表达31.基因工程的操作步骤包括以下几步,正确的操作顺序是①目的基因与运载体结合;②将目的基因导入受体细胞;③目的基因的检测与鉴定;④提取目的基因。
A.④①②③ B.②④①③ C.③②④① D.③④①②32.如图,有关工具酶功能的叙述中,不正确的....是()A.切断a处的酶是限制性内切酶B.切断b处的酶是解旋酶C.连接b处的酶为DNA连接酶D.限制性内切酶和DNA连接酶均作用于a处33.基因工程的操作步骤包括以下几步,正确的操作顺序是①目的基因与运载体结合;②将目的基因导入受体细胞;③目的基因的检测与鉴定;④提取目的基因。
A.④①②③ B.②④①③ C.③②④① D.③④①②34.以下有关基因工程的叙述,不正确的是A.基因工程是分子水平上的生物工程B.基因工程的产物对人类都是有益的C.基因工程产生的变异属于基因重组D.基因工程育种的优点之一是目的性强35.切取牛的生长激素和人的生长激素基因,用显微注射技术将它们分别注入小鼠的受精卵中,从而获得了“超级鼠”,此项技术遵循的原理是A.基因突变:DNA→RNA→蛋白质B.基因工程:RNA→RNA→蛋白质C.细胞工程:DNA→RNA→蛋白质D.基因工程:DNA→RNA→蛋白质37.下列有关基因工程技术的正确叙述是A.重组DNA技术所用的工具酶是限制酶、连接酶和运载体B.所有的限制酶都只能识别同一种特定的核苷酸序列C.选用细菌作为重组质粒的受体细胞是因为细菌繁殖快D.只要目的基因进入了受体细胞就能成功实现表达38.不属于基因工程方法生产的药物是A.干扰素 B.白细胞介素C.青霉素 D.乙肝疫苗39.科学家将β干扰素基因进行定点突变导入大肠杆菌表达,使干扰素第17位的半胱氨酸改变成丝氨酸,结果大大提高β-干扰素的抗病性活性,并且提高了储存稳定性,该生物技术为()A、基因工程B、蛋白质工程C、基因突变D、细胞工程40.蛋白质工程中直接需要进行操作的对象是()A、氨基酸结构B、蛋白质空间结构C、肽链结构D、基因结构41.下列有关生物工程的说法错误的是A.基因工程能打破物种界限,定向地改造生物性状B.蛋自质工程是利用已有的蛋自质组装成新的蛋白质C.利用植物体细胞杂交技术可培育出“番茄一马铃薯”D.单克隆抗体制备用到了动物细胞培养技术42.在基因工程操作的基本步骤中,没有进行碱基互补配对的是A.人工合成目的基因 B.目的基因与运载体结合C.将目的基因导入受体细胞 D.目的基因的检测表达43.能有效打破物种界限,定向改造生物的遗传性状,培育新的优良品种的生物技术是A.基因工程技术 B.诱变育种技术C.杂交育种技术 D.组织培养技术44.下列不可作为基因工程中的标记基因的是A.抗性基因B.发光基因C.产物具有颜色反应的基因D.贮藏蛋白的基因45.除下列哪一项外,转基因工程的运载体必须具备的条件是A.能在宿主细胞中复制并保存B.具有多个限制酶切点,以便与外源基因连接C.具有标记基因,便于进行筛选D.是环状形态的DNA分子46.限制性内切酶的作用实际上就是把DNA上某些化学键打断,一种能对GAATTC专一识别的限制酶,打断的化学键是A.G与A之间的键 B.G与C之间的键C.A与T之间的键 D.磷酸与脱氧核糖之间的键47.基因工程中所用的“剪刀”、“针线”和“运载体”分别是指A.大肠杆菌病毒、质粒、DNA连接酶B.噬菌体、质粒、DNA连接酶C.DNA限制酶、RNA连接酶、质粒D.限制酶、DNA连接酶、细菌质粒等48.在生物工程中需要用到多种工具酶,有关它们的作用,不.正确的叙述是A.果胶酶和纤维素酶用于获取植物细胞的原生质体B.在基因工程中用限制酶和解旋酶来提取目的基因C.胰蛋白酶或胶原蛋白酶可用来分散动物组织细胞D.DNA连接酶和DNA聚合酶均可用来拼接DNA片段49.用基因工程技术可使大肠杆菌合成人的蛋白质,下列叙述不正确的是A.常用相同的限制性核酸内切酶处理目的基因和质粒B.DNA连接酶和RNA聚合酶是构建重组质粒必需的工具酶C.可用含抗生素的培养基检测大肠杆菌中是否导入了重组质粒D.导入大肠杆菌的目的基因一定能成功表达50.下列关于基因工程的叙述,正确的是A.基因表达载体的构建是核心步骤B.常用的工具酶是限制酶和DNA连接酶C.基因治疗现已被广泛使用、D.常用显微注射法将目的基因导入大肠杆菌51.请回答下列有关胚胎工程和基因工程方面的问题:(1)目前,科学家通过细胞核移植实验,培育出多种哺乳动物新类型。