学而思行程问题第6讲
2017二年级学而思秋季数学超常班讲义第六讲

课时安排
2
序号
NO
教学内容
春夜宴从弟桃花园序 李白
教
学
目
标
1、知识与技能:了解李白及其生活的社会,掌握文中的一些词语,了解“序”的特点和类别。
2、过程与方法:速读课文,组内交流探究、归纳展示。
3、情感态度与价值观:培养学生热爱祖国语言的情感。
重
点
难
点
背诵课文,理解文章内容,积累文言实词。
体会课文结构的严谨性。
2、文中抒发了作者怎样的心情?
3、“浮生若梦,为欢几何”的情绪是受什么的影响?
4、文中用凝练的语言叙写了夜宴之欢娱,拿句话能够揭示全文的主旨?为什么?
5、“不有佳咏,何伸雅怀?”,从全文看,“雅”在哪里?“怀”又表现在哪里?
6、文中如何引出“夜宴”“春”来照应题目的?
预习
反馈
1、检查字词。
2、小品文的写作特点
预习小结
学生利用手中的资料理解课文,潜心投入,感受文中人物。
课
后
反
思
课型:展示课 课时:1
展 示环 节
具体内容
教法学法
知识
回顾
背诵课文
展示
目标
理解文章内容,积累文言实词。
展示
内容
第一展示任务:
第二展示任务:
第三展示任务:
第四展示任务:
展示
总结
学生从学习中总。
课型:预习课 课时:1
预习
目标
了解李白及其生活的社会,掌握文中的一些词语,了解“序”的特点和类别。
导
学
提
纲
导学提纲内容
教法学法
预 习
一、熟读课文
1、注意字音
学而思-六年级奥数-第七讲.行程问题(一).刘--用-教师版综述

第一讲行程问题学习目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨:发车问题(1)、一般间隔发车问题。
用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。
(3)当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
时钟问题:时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
学而思-六年级奥数-第七讲.行程问题(一).刘--用-教师版综述

第一讲行程问题学习目标:1、比例的基本性质2、熟练掌握比例式的恒等变形及连比问题3、能够进行各种条件下比例的转化,有目的的转化;4、单位“1”变化的比例问题5、方程解比例应用题知识点拨:发车问题(1)、一般间隔发车问题。
用3个公式迅速作答;汽车间距=(汽车速度+行人速度)×相遇事件时间间隔汽车间距=(汽车速度-行人速度)×追及事件时间间隔汽车间距=汽车速度×汽车发车时间间隔(2)、求到达目的地后相遇和追及的公共汽车的辆数。
标准方法是:画图——尽可能多的列3个好使公式——结合s全程=v×t-结合植树问题数数。
(3)当出现多次相遇和追及问题——柳卡火车过桥火车过桥问题常用方法⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此火车的路程是桥长与车身长度之和.⑵火车与人错身时,忽略人本身的长度,两者路程和为火车本身长度;火车与火车错身时,两者路程和则为两车身长度之和.⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度.对于火车过桥、火车和人相遇、火车追及人、以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行.接送问题根据校车速度(来回不同)、班级速度(不同班不同速)、班数是否变化分类为四种常见题型:(1)车速不变-班速不变-班数2个(最常见)(2)车速不变-班速不变-班数多个(3)车速不变-班速变-班数2个(4)车速变-班速不变-班数2个标准解法:画图+列3个式子1、总时间=一个队伍坐车的时间+这个队伍步行的时间;2、班车走的总路程;3、一个队伍步行的时间=班车同时出发后回来接它的时间。
时钟问题:时钟问题可以看做是一个特殊的圆形轨道上2人追及问题,不过这里的两个“人”分别是时钟的分针和时针。
时钟问题有别于其他行程问题是因为它的速度和总路程的度量方式不再是常规的米每秒或者千米每小时,而是2个指针“每分钟走多少角度”或者“每分钟走多少小格”。
学而思奥数模块之行程问题

学而思奥数模块之行程问题1、基本行程问题:基本概念:行程问题是研究物体运动的,它研究的是物体速度、时间、行程三者之间的关系。
基本公式:路程=速度×时间;路程÷时间=速度;路程÷速度=时间关键问题:确定行程过程中的位置2、简单的相遇、追及问题:相遇问题:速度和×相遇时间=相遇路程追击问题:追击时间=路程差÷速度差简单的相遇与追及问题各自解题时的入手点及需要注意的地方1.相遇问题:与速度和、路程和有关⑴是否同时出发⑵是否有返回条件⑶是否和中点有关:判断相遇点位置⑷是否是多次返回:按倍数关系走。
⑸一般条件下,入手点从"和"入手,但当条件与"差"有关时,就从差入手,再分析出时间,由此再得所需结果2.追及问题:与速度差、路程差有关⑴速度差与路程差的本质含义⑵是否同时出发,是否同地出发。
⑶方向是否有改变⑷环形时:慢者落快者整一圈(1) 甲、乙两列火车同时从相距700千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?(2) 两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过2.5小时两车相遇。
两个车站之间的铁路长多少千米?(3) 甲、乙两列火车同时从相距988千米的两地相向而行,经过5.2小时两车相遇。
甲列车每小时行93千米,乙列车每小时行多少千米?(1)师徒两人合作加工520个零件,师傅每小时加工30个,徒弟每小时加工20个,几小时以后还有70个零件没有加工?(2)甲、乙两队合挖一条水渠,甲队从东往西挖,每天挖75米;乙队从西往东挖,每天比甲队少挖5米,两队合作8天挖好,这条水渠一共长多少米?(3) 甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米。
已知乙船每小时行42千米,甲船每小时行多少千米?(4)一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇。
行程问题6变速问题

变速变道问题属于行程中的综合题,用到了比例、分步、分段处理等多种处理问题等解题方法。
对于这种分段变速问题,利用算术方法、折线图法和方程方法解题各有特点。
算术方法对于运动过程的把握非常细致,但必须一步一步来;折线图则显得非常直观,每一次相遇点的位置也易于确定;方程的优点在于无需考虑得非常仔细,只需要知道变速点就可以列出等量关系式,把大量的推理过程转化成了计算.行程问题常用的解题方法有⑴公式法即根据常用的行程问题的公式进行求解,这种方法看似简单,其实也有很多技巧,使用公式不仅包括公式的原形,也包括公式的各种变形形式;有时条件不是直接给出的,这就需要对公式非常熟悉,可以推知需要的条件;⑵图示法在一些复杂的行程问题中,为了明确过程,常用示意图作为辅助工具.示意图包括线段图和折线图.图示法即画出行程的大概过程,重点在折返、相遇、追及的地点.另外在多次相遇、追及问题中,画图分析往往也是最有效的解题方法;⑶比例法行程问题中有很多比例关系,在只知道和差、比例时,用比例法可求得具体数值.更重要的是,在一些较复杂的题目中,有些条件(如路程、速度、时间等)往往是不确定的,在没有具体数值的情况下,只能用比例解题;⑷分段法在非匀速即分段变速的行程问题中,公式不能直接适用.这时通常把不匀速的运动分为匀速的几段,在每一段中用匀速问题的方法去分析,然后再把结果结合起来;⑸方程法在关系复杂、条件分散的题目中,直接用公式或比例都很难求解时,设条件关系最多的未知量为未知数,抓住重要的等量关系列方程常常可以顺利求解.模块一、变速问题【例1】小红和小强同时从家里出发相向而行。
小红每分走 52 米,小强每分走 70 米,二人在途中的 A 处相遇。
若小红提前 4 分出发,且速度不变,小强每分走 90 米,则两人仍在 A 处相遇。
小红和小强两人的家相距多少米?【例2】甲、乙两人沿 400 米环形跑道练习跑步,两人同时从跑道的同一地点向相反方向跑去。
学而思奥数网奥数专题 (行程问题)

学而思奥数网奥数专题 (行程问题)1、六年级行程问题:多人行程难度:中难度甲、乙、丙三人同时从A向B跑,当甲跑到B时,乙离B还有20米,丙离B还有40米;当乙跑到B时,丙离B还有24米。
问:(1) A, B相距多少米?(2)如果丙从A跑到B用24秒,那么甲的速度是多少?2、五年级行程问题:多人行程难度:高难度甲乙丙三人同时从东村去西村,甲骑自行车每小时比乙快12公里,比丙快15公里,甲行3.5小时到达西村后立刻返回.在距西村30公里处和乙相聚,问:丙行了多长时间和甲相遇?3、五年级行程问题:多人行程难度:中难度甲、乙、丙三辆车同时从A地出发到B地去,出发后6分甲车超过了一名长跑运动员,2分后乙车也超过去了,又过了2分丙车也超了过去。
已知甲车每分走1000米,乙车每分走800米,丙车每分钟走多少米?4、五年级行程问题:多人行程难度:中难度甲、乙、丙三辆车先后从A地开往B地,乙比丙晚出发5分,出发后45分追上丙;甲比乙晚出发15分,出发后1时追上乙。
甲和丙的速度比是多少?5、五年级行程问题:多人行程难度:高难度张、李、赵3人都从甲地到乙地.上午6时,张、李两人一起从甲地出发,张每小时走5千米,李每小时走4千米.赵上午8时从甲地出发.傍晚6时,赵、张同时达到乙地.那么赵追上李的时间是几时?学而思奥数网奥数专题 (行程问题) 多人行程1. 五年级行程问题:多人行程难度:高难度甲、乙、丙三辆车同时从A地出发到B地去,甲、乙两车的速度分别为60千米/时和48千米/时。
有一辆迎面开来的卡车分别在他们出发后 6时、7时、8时先后与甲、乙、丙三辆车相遇。
求丙车的速度。
解答:解题思路:(多人相遇问题要转化成两两之间的问题,咱们的相遇和追击公式也是研究的两者。
另外ST图也是很关键)第一步:当甲经过6小时与卡车相遇时,乙也走了6小时,甲比乙多走了6 60-48 6=72千米;(这也是现在乙车与卡车的距离)第二步:接上一步,乙与卡车接着走1小时相遇,所以卡车的速度为72-48 1=24第三步:综上整体看问题可以求出全程为:(60+24) 6=504或(48+24) 7=504第四步:收官之战:504 8-24=39(千米)注意事项:画图时,要标上时间,并且多人要同时标,以防思路错乱!2. 五年级行程问题:多人行程难度:高难度李华步行以每小时4千米的速度从学校出发到20.4千米外的冬令营报到。
四年级奥数行程问题及火车过桥问题的例题讲解练习答案

火车过桥问题的例题讲解1学而思奥数网奥数专题 (行程问题) 火车过桥1、四年级行程问题:火车过桥难度:中难度:一人每分钟60米的速度沿铁路步行,一列长144米的客车对面而来,从他身边通过用了8秒,求列车的速度?答:2、四年级行程问题:火车过桥难度:中难度:两列火车,一列长120米,每秒钟行20米;另一列长160米,每秒行15米,两车相向而行,从车头相遇到车尾分开须要几秒钟?答:3、四年级行程问题:火车过桥难度:中难度:某人步行的速度为每秒钟2米,一列火车从后面开来,越过他用了10秒钟,已知火车的长为90米,求列车的速度。
答:四年级行程问题:火车过桥难度:中难度:一辆长60米的火车以每秒钟50米的速度行驶,在它的前面有一辆长40米的火车以每秒钟30米的速度行驶.当快车车头及慢车车尾相遇到车尾分开车头须要几秒钟?答:4、四年级行程问题:火车过桥难度:中难度:两列火车相向而行,甲车每小时行36千米,乙车每小时行54千米。
两车错车时,甲车上一乘客发觉:从乙车车头经过他的车窗时开场到乙车车尾经过他的车窗共用了14秒,求乙车的车长。
答:学而思奥数网奥数专题(行程问题)1、四年级火车过桥问题答案:解答:【可以看成一个相遇问题,总路程就是车身长度,所以火车及人的速度之和是144÷8=18米,而人的速度是每分钟60米,也就是每秒钟1米,所以火车的速度是每秒钟18-1=17米.2、四年级火车过桥问题答案:解答:如图:从车头相遇到车尾分开,两列火车一共走的路程就是两辆火车的车身长度之和,即120+160=280米,所以从车头相遇到车尾分开所用时间为280÷(20+15)=8秒.3、四年级火车过桥问题答案:解答:【分析】此题是火车的追及问题。
火车越过人时,车比人多行驶的路程是车长90米,追刚好间是10秒,所以速度差是90÷10=9米/秒,因此车速是2+9=11米/秒。
4、四年级火车过桥问题答案:解答:此题是一个追及问题,要求追刚好间,须要求出速度差和路程差.快车车头及慢车车尾相遇到车尾分开车头,快车要比慢车多行60+40=100米,即100米是路程差,因此追刚好间为:100÷(50-30)=5秒.5、四年级火车过桥问题答案:解答:此题是两列火车的相遇问题,路程和正好是乙车的长度,速度和是36+54=90千米/时,时间是14秒,乙车长是90×1000×14÷3600=350米。
学而思行程问题-火车过桥

为追及问题,找路程差和速度差,题目中路程差为两车的车长之和。
5
咨询电话:85513391 10、 ★★★有两列同方向行驶的火车,快车每秒行 30 米,慢车每秒行 22 米。 如果从两车头对齐开始算,则行 24 秒后快车超过慢车;如果从两车尾对齐开始 算,则行 28 秒后快车超过慢车,那么,两车长分别是多少?如果两车相对行驶, 两车从车头重叠起到车尾相离需要经过多少时间?
100
车的路程
人和车同向而行,人和车头相遇,画图时人和车头对齐(红色部分),
车完全超过人,人和车尾相遇,画图时人和车尾对齐(绿色部分)
ቤተ መጻሕፍቲ ባይዱ
车比人多走一个车长,走的时间都为 10 秒,
解法一:人走的路程:2×10=20(米)
车走的路程:20+100=120(米)
火车的速度:120÷10=12(米/秒)
解法二:车比人共多走一个车长,即多走 100 米,走了 10 秒钟
?
180
先求出第 1 棵树到第 61 棵树之间的路程,
车的路程
第 1 棵树到第 61 棵树之间的间隔共 61-1=60(个)
每两棵树间隔 2 米,路程为 60×2=120(米)
火车走的路程:120+180=300(米)
火车的速度: 300÷15=20(米/秒)
单位转换:20 米/秒=20×60=1200 米/分钟
7
咨询电话:85513391 如图所示。火车与甲同向,经过甲时火车比甲多走一个车长,时间为 8 秒,火车
的速度用 车 表示,甲乙速度相同,都用 人 表示,火车长用 L 表示
火车超过甲时,火车比人多走的路程:
L=8× 车 -8× 人
火车经过乙时,火车与乙相向而行,人共走一个车长:L=7× 车 +7× 人
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
速度变化的行程'问题
【例1】甲、乙两车分别从A、B两地同时出
发相向而行,6小时后相遇在C点,如果甲
车速度不变,乙'车每小时多行5千米,且两
车还从A、B两地同时出发相向而行,则相
遇地点距C点12千米,如果乙车速度不变,
甲车每小时多行5千米,且两车还从A、B 两地同时出发相向而行,而相遇地点距C点16千米,甲车原来每小时行多少千米?
【例2】甲、乙二人分别从A、B两地同时出发相向而行,5小时后相遇在C点,如果甲速度不变,乙每小时多行4千米,且甲、乙还从A、B两地同时出发相向而行,则相遇点D距C点10千米,如果乙速度不变,甲每小时多行3千米,且甲、乙还从A、B两地同时出发相向而行,则相遇点B距C点5千米,间:甲原来的速度是每小时多少千米?
【例3】小红和小强同时从家里出发相向而行,小红每分走52米,小强每分走70米,二人在途中的A处相遇,若小红提前4分出发,且速度不变,小强每分走90米,则两人仍在A处相遇,小红和小强两人的家相距多少米?
【例4】甲、乙两车分别从A、B两地同时出发,相向而行,6小时相遇,如果甲早出发2小时,甲乙相遇时,甲已经走过AB 的中点后还走了144千米,如果乙早出发2 小时,甲乙相遇时,甲还差48千米才到AB的中点,求甲、乙两人的速度差。
【例5】甲、乙二人在同一条椭圆形跑道上作特殊训练,他们同时以同一地出发,沿相反方向跑,每人跑完第一圈到达出发点后立即回头加速跑第二圈,跑第一圈时,乙的速度是甲的速度
的2
3
,甲跑第二圈的速度比第一圈提高了
1
3
,乙跑第二圈的速度提高了
1
5
,已知沿跑道看从甲
乙两人第二次相遇点到第一次相遇点的最短路程是190米,问这条跑道长多少米?
与数论有关的行程问题与行程杂题(上)
【例1】甲乙二人从相距60千米的两地同时相向而行,6时后相遇,如果两人的速度各增加1千米/时,那么相遇的地点距前一次相遇的地点1 千米,问:甲乙二人的速度各是多少?
【例2】甲、乙两车分别从A、B两地同时相向开出,4时后两车相遇,然后各自继续行驶3小时,此时甲车距B地10千米,乙车距A地80千米。
问:甲车到达B地时,乙车还要经过多少时间才能到达A地?
【例3】环形跑道长为400米,甲的速度为3米/秒,乙的速度为4米/秒,丙的速度为5米/秒,三人同时从A点顺时针跑动,问再过多长时间三人第一次同时到达同一地点。
【例4】环形跑道长400米,甲的速度为3米/秒,乙的速度为4米/秒,丙的速度为5米/秒,三人同时从A点顺时针跑动,问再过多久时间三人第一次同时到达A点。
【例5】甲乙二人分别从A、B两地同时出发相向而行,第一次在距A地40千米处相遇,二人到达目的地后立即返回,在距B地20千米处第二次相遇,间第2008次相遇地点距A地有多远?
与数论有关的行程问题与行程杂题(下)
【例1】 甲、乙两名运动员在周长 400米的环形跑道上进行10000米长跑比赛,两人从同一起跑线同时起跑,甲每分跑400米,乙每分跑360米,当甲比乙领先整整一圈时,两人同时加速,乙的速度比原来快
1
4
,甲每分比原来多跑 18米,并且都以这样的速度保持到终点. 问:甲、乙两人谁先到达终点?
【例2】如图,正方形ABCD 是一条环形公路。
已知汽车在AB 上时速是90千米,在BC 上的时速是 120千米,在 CD 上的时速是60千米,在DA 上的时速是80千米。
从CD 上一点P ,同时反向各发出一辆汽车,它们将在AB 中点相遇。
如果从PC 的中点M ,同时反向各发出一辆汽车,它们将在AB 上一点N 相遇,问A 至N 的距离除以N 至B 的距离所得到的商是多少?
【例3】如图,8时10分,有甲、乙两人以相同的速度分别从相距60米的A、B两地顺时针方向沿长方形ABCD的边走向D点。
甲8时20分到D点后,丙、丁两人立即以相同速度从D点出发,丙由D向A走去,8时24分与乙在B点相遇;丁由D向C走去,8时30分在F点被
乙追上。
问三角形BEF 的面积为多少平方米?
【例4】在一个沙漠地带,汽车每天行驶200千米,每辆汽车载运可行驶24天的汽油,现有甲、乙两辆汽车同时从某地出发,并在完成任务后,沿原路返回,为了让甲车尽可能开出更远的距离,乙车在行驶一段路程后,仅留下自己返回出发地的汽油,将其他的油给甲车,求甲车所能开行的最远距离.
【例5】沙漠中A、B两地相距800千米。
甲、乙、丙三入同时从A地出发前往B地,每人携带了12天的给养(食物和水),每人每天可以行进50千米。
为了让甲顺利到达B地,乙、丙可将给养给甲,但甲所带给养不能超过12天,且乙、丙还必须返回到A地。
现规定不允许在途中放给养。
问甲是否能顺利到达B地?。