知识讲解_抛物线的简单性质_基础
抛物线知识点与性质大全

抛物线与方程【知识讲解】 1、定义平面内,到定点的距离与到定直线距离相等的点的轨迹(定点不在定直线上).其中定点称为抛物线的焦点,定直线称为抛物线的准线.【注】若定点在直线上,则轨迹为过该点垂直于直线的一条直线.2、抛物线的方程及其简单性质3、通径过抛物线的焦点F 作直线⊥l x 轴,交抛物线22y px =于,A B 两点,弦长2=AB p ,此时的弦长称为通径,此为所有的焦点弦中最短的弦.4、焦点弦的性质(1)过抛物线()220y px p =>的焦点F 的直线交抛物线于()()1122,,,A x y B x y 两点,则①12p AF x =+,22p BF x =+;②12x x ⋅=定值24p ,12y y ⋅=定值2p -;③11||||FA FB +=定值2p ;④()1221122p x y x y y y +=-+. (2)过抛物线()220y px p =>的焦点F 作倾斜角为θ(斜率为k )的直线交抛物线于,A B (A 在B 上方)两点,则 ①1cos p A F θ=-上;②1cos p B F θ=+下;③2222s 1i 1n p k AB p θ⎛⎫+ =⎪⎝⎭=. (3)过抛物线()220y px p =>的焦点F 作直线1l 交抛物线于,A B 两点,分别过,A B 作准线l 的垂线,垂足分别为,P Q ,设AB 中点为M ,过M 作准线的垂线,垂足为N ,则①AN BN ⊥;②PF QF ⊥;③NF AB ⊥;④PF AN ⊥;⑤QF BN ⊥;⑥以AB 为直径的圆与准线相切,切点即为N ; ⑦以()AF BF 为直径的圆与y 轴相切;⑧24PQ AF BF =; 24PQF APF BQF S S S ∆∆∆=⋅;⑨232sin ABQPp S θ=四边形. (4)过抛物线()220y px p =>的焦点F 作直线1l 交抛物线于,A B 两点,分别过,A B 作准线l 的垂线,垂足分别为,P Q ,准线l 与x 轴交于H 点,O①AHF BHF ∠=∠; ②,,A O Q 三点共线; ③,,B O P 三点共线;(5)过抛物线()220y px p =>的焦点F 作直线1l 交抛物 线于,A B 两点,线段AB 的垂直平分线交x 轴于E 点,则12EF AB =. (6)过抛物线()220y px p =>的焦点F 作直线1l 交抛物线于,A B 两点,G 为准线上的一动点,且直线GA 、GF 、GB 的斜率均存在,则直线GA 、GF 、GB 的斜率成等差数列,即2GA GB GF k k k +=.5、过点()(),00M m m >的直线交抛物线()220y px p =>于()()1122,,,A x y B x y 两点,则 ①12x x ⋅=定值2m ;②12y y ⋅=定值2pm -; ③2OA OB m p ⊥⇔=;④m p =时,2211||||MA MB +=定值21p . 6、设点是抛物线()220y px p =>的焦点,12,,,n P P P 是抛物线上的n 个不同的点,若120n FP FP FP +++=,则12n FP FP FP np +++=.【典型例题】例1、已知动点M 的坐标满足方程3412x y +-,则动点M 的轨迹是( ) A .椭圆 B. 双曲线 C. 抛物线 D. 圆【变式】已知动点M 的坐标满足方程3412x y =+-,则动点M 的轨迹是( ) A .椭圆 B. 双曲线 C. 抛物线 D. 直线例2、点P 与点()20F ,的距离比它到直线40x +=的距离小2,则P 的轨迹方程为_______.【变式】动圆M 与定直线2y =相切且与定圆C :22(3)1x y ++=相外切,则动圆圆心M 的轨迹方程为_______.【变式2】到y 轴的距离比到点()2,0F 的距离小2的动点P 的轨迹方程为_______.例3、抛物线24y x =的焦点坐标为_______.【变式】1【2014上海】若抛物线22y px =的焦点与椭圆22195x y +=的右焦点重合,则该抛物线的准线方程为_______.【变式2】抛物线C 恒过定点()0,2A ,C 的准线为轴,则C 的顶点M 的轨迹方程为_______.例4、在抛物线24y x =上一点P ,使它到定点()2,2M 和焦点F 的距离之和最小,并求出距离之和的最小值.【变式1】设P 是抛物线28y x =上的一个动点,则点P 到直线4360x y -+=与点P 到y 轴的距离之和的最小值为________.【变式2】设P 是抛物线24y x =上的一个动点.(1)求点P 到点()1,1A -的距离与点P 到直线1x =-的距离之和的最小值; (2)求点P 到直线220x y ++=的距离d 与点P 到抛物线焦点F 距离之和的最小值.【变式3】已知FAB ∆,点F 的坐标为(1,0),点A 、B 分别在图中抛物线24y x =及圆22(1)4x y -+=的实线部分上运动,且AB 总是平行于x 轴,那么FAB ∆的周长的取值范围为 .例5、已知抛物线26y x =上存在三点,,A B C ,且ABC ∆的重心为抛物线的焦点为F ,则=FA FB FC ++_______.【变式】已知抛物线26y x =的焦点为F ,若该抛物线上存在四点123P P P 、、、4P ,满足1234=0FP FP FP FP +++,则1234=FP FP FP FP +++_______.例6、直线l 过()1,2A ,且与抛物线212y x =交于,M N 两点,且MA AN =,则直线l 的方程为_________;MN =_______.例7、抛物线24y x =的焦点为F ,若过F 点的直线与抛物线相交于,M N 两点,若4FM FN =-,则直线MN 的斜率为_______.【变式】【2014新课标】已知抛物线2:8C y x =的焦点为F ,准线为l ,P 是l 上一点,Q 是直线PF 与C 的一个交点,若4FP FQ =, 则QF =_______.例8、过抛物线x y 82=的焦点作弦AB ,点()11,A x y 、()22,B x y ,且1021=+x x ,则=AB _____.【变式1】已知抛物线关于x 轴对称,它的顶点在坐标原点O ,并且经过点()02,M y ,若点M 到该抛物线焦点的距离为3,则OM =_____.【变式2】过抛物线x y 82=的焦点作弦AB ,点()11,A x y 、()22,B x y ,且10AB =,则ABO ∆重心的横坐标为_____.【变式3】过抛物线x y 82=的焦点作弦AB ,点()11,A x y 、()22,B x y ,且128y y +=,则=AB _____.例9、抛物线()220y px p =>的动弦AB 长为()2a a p ≥,求弦中点M 到y 轴的最短距离.【变式】抛物线()220y px p =>的动弦AB 长为()02a a p <<,求弦中点M 到y 轴的最短距离.例10、若抛物线2:1C y ax =-上存在关于直线20x y -=对称两点A 和B ,求实数a 的取值范围.例11、【2014四川】已知F 是抛物线2y x =的焦点,点A ,B 在该抛物线上且位于x 轴的两侧,2OA OB ⋅=(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是____.例12、已知抛物线()220y px p =>,过定点(),0p 作两条互相垂直的直线12l l 、,1l 与抛物线交于,P Q 两点,2l 与抛物线交于,M N 两点,设1l 的斜率为k ,若已知弦PQ 的中垂线在y 轴上的截距为32p pk k+,则弦MN 的中垂线在y 轴上的截距为__________.例13、设M 为抛物线2:4(0)C x py p =>准线上的任意一点,过点M 作曲线C 的两条切线,设切点为,A B .直线AB 是否过定点?如果是,求出该定点,如果不是,请说明理由.例14、过抛物线()220y px p =>的焦点F 作相互垂直的两条直线12,l l ,抛物线与1l 交于点12,,P P 与2l 交于点12,Q Q .证明:无论如何取直线12,l l ,都有121211PP Q Q +为一常数.例15、抛物线()2:20C y px p =>的焦点恰是椭圆22143x y +=的一个焦点,过点,02p F ⎛⎫⎪⎝⎭的直线与抛物线C 交于点,A B . (1)求抛物线C 的方程;(2)O 是坐标原点,求AOB ∆的面积的最小值; (3)O 是坐标原点,证明:OA OB ⋅为定值.【变式1】已知定点(2,0)F ,直线:2l x =-,点P 为坐标平面上的动点,过点P 作直线l 的垂线,垂足为点Q ,且FQ PF PQ ⊥+().设动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)过点F 的直线1l 与曲线C 有两个不同的交点A 、B ,求证:111||||2AF BF +=; (3)记OA 与OB 的夹角为θ(O 为坐标原点,A 、B 为(2)中的两点),求cos θ的取值范围.11()22,B x y ,且OA OB ⊥.(1)证明21y y ⋅和12x x ⋅均为定值; (2)证明直线l 恒过定点P ; (3)求AB 的中点M 的轨迹方程;(4)过原点作AB 的垂线,垂足为N ,求N 的轨迹方程.(5)对于C 上除原点外的任意一定点()00,Q x y ,若仍有PA PB ⊥,请问是否还有直线l 恒过定点,若是,请求出定点'P ;若否,请说明理由.【变式3】设抛物线2:2(0)C y px p =>的焦点为F ,经过点F 的动直线交抛物线C 于点11(,)A x y ,22(,)B x y 且124y y =-.(1)求抛物线C 的方程;(2)若()2OE OA OB =+(O 为坐标原点),且点E 在抛物线C 上,求直线倾斜角. (3)若点M 是抛物线C 的准线上的一点,直线,,MF MA MB 的斜率分别为012,,k k k .求证: 当0k 为定值时,12k k +也为定值.例16、在平面直角坐标系xOy 中,点M 到点()1,0F 的距离比它到y 轴的距离多1,记点M 的轨迹为C .(1)求轨迹为C 的方程(2)设斜率为k 的直线过定点()2,1P -,求直线与轨迹C 恰好有一个公共点,两个公共点,三个公共点时k 的相应取值范围.11(1)当直线过点(),0M p 时,证明21y y ⋅为定值;(2)如果直线过点(),0M p ,过点M 再作一条与直线垂直的直线l '交抛物线C 于两个不同点D 、E .设线段AB 的中点为P ,线段DE 的中点为Q ,记线段PQ 的中点为N .问是否存在一条直线和一个定点,使得点N 到它们的距离相等?若存在,求出这条直线和这个定点;若不存在,请说明理由.例18、动圆C 过定点F ,02p ⎛⎫⎪⎝⎭,且与直线2p x =-相切,其中0p >.设圆心C 的轨迹Γ的程为()0,=y x F (1)求()0,=y x F ;(2)曲线Γ上的一定点()00,y x P (0y ≠0) ,方向向量()p y d -=,0的直线(不过P 点)与曲线Γ交与A 、B 两点,设直线PA 与PB 的斜率分别为PA k ,PB k ,计算PB PA k k +;(3)曲线Γ上的两个定点()000,y x P 、⎪⎭⎫ ⎝⎛''000,y x Q ,分别过点00,Q P 作倾斜角互补的两条直线N Q M P 00,分别与曲线Γ交于N M ,两点,求证直线MN 的斜率为定值.例19、已知抛物线()2:20C y px p =>和:M 228120x y x +-+=,过抛物线C 上一点()()000,0P x y y ≥作两条直线与M 相切与,A B 两点,圆心M 到抛物线准线的距离为92. (1)求抛物线C 的方程;(2)当P 点坐标为()2,2时,求直线AB 的方程;(3)设切线PA 与PB 的斜率分别为12,k k ,且1212k k ⋅=,求点()00,P x y 的坐标.例20、过抛物线()220y px p =>的对称轴上一点()(),00A a a >的直线与抛物线交于,M N 两点,自,M N 向直线:l x a =-作垂线,垂足分别为1M 、1N . (1)当2pa =时,求证:11AM AN ⊥; (2)记1AMM ∆、11AM N ∆、1ANN ∆的面积分别为123,,S S S ,是否存在实数λ,使得对任意的,都有2213S S S λ=成立,若存在,求出λ的值;若不存在,说明理由.。
抛物线的性质与识别

抛物线的性质与识别抛物线是一种重要的曲线形状,在数学和物理学中有广泛的应用。
本文将重点讨论抛物线的性质以及如何识别抛物线。
一、抛物线的定义与性质抛物线是平面上一组点的集合,满足以下定义:对于一个给定的焦点F和直线L,到焦点F和直线L距离之差相等于给定的常数。
这个常数称为焦距,常用字母p表示。
抛物线的主要性质如下:1. 对称性:抛物线关于对称轴对称。
对称轴是通过焦点F与抛物线顶点的直线。
2. 焦点位置:焦点在对称轴上方或下方,距离对称轴的距离等于焦距p。
3. 平准性:抛物线的焦点到抛物线上任意一点的距离等于焦距p。
4. 切线性:抛物线上任一点的切线与焦点到该点的线段垂直。
5. 抛物线开口方向:焦点在抛物线顶点上方,抛物线开口向上;焦点在抛物线顶点下方,抛物线开口向下。
二、抛物线的标准方程与一般方程抛物线可以通过标准方程和一般方程来表示。
标准方程为:y = ax^2 + bx + c,其中a、b、c为实数且a不等于0。
该方程中,a决定了抛物线的开口方向,正值为开口向上,负值为开口向下。
一般方程为:Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0,其中A、B、C、D、E、F为实数且至少有一个不等于零。
通过特定的系数组合可以识别出抛物线、椭圆、双曲线或者直线。
三、识别抛物线的方法1. 方程判断法:对于给定的方程,判断其是否为抛物线方程。
如果方程满足抛物线的一般方程,则可以判断为抛物线。
2. 观察焦点与直线:通过观察焦点位置和直线的关系,可以初步判断曲线是否为抛物线。
如果焦点在对称轴上方或下方,且距离对称轴等于焦距,那么可以确定为抛物线。
3. 判断开口方向:根据方程中二次项系数的符号,即a的正负,可以判断抛物线的开口方向。
4. 同轨与异轨:如果两个抛物线的方程相差一个常数,则这两个抛物线为同轨抛物线;如果两个抛物线的方程相差两个不同的常数,则这两个抛物线为异轨抛物线。
总结:抛物线作为一种特殊的曲线形状,在数学和物理学中具有重要的应用价值。
初中抛物线知识点

初中抛物线知识点在初中数学的学习中,抛物线是一个重要的知识点。
它不仅在数学领域有着广泛的应用,还为我们解决实际问题提供了有力的工具。
接下来,让我们一起深入了解抛物线的相关知识。
一、抛物线的定义抛物线是指平面内到一个定点 F 和一条定直线 l 距离相等的点的轨迹。
其中,定点 F 叫做抛物线的焦点,定直线 l 叫做抛物线的准线。
二、抛物线的标准方程初中阶段,我们主要学习两种常见的抛物线标准方程:1、当抛物线的焦点在 x 轴正半轴上时,标准方程为 y²= 2px(p > 0),其中 p 为焦点到准线的距离。
2、当抛物线的焦点在 y 轴正半轴上时,标准方程为 x²= 2py(p > 0)。
以 y²= 2px 为例,焦点坐标为(p/2,0),准线方程为 x = p/2。
三、抛物线的图像特征1、对称性抛物线关于其对称轴呈轴对称。
对于 y²= 2px,对称轴为 x 轴;对于 x²= 2py,对称轴为 y 轴。
2、开口方向当 p > 0 时,y²= 2px 开口向右,x²= 2py 开口向上;当 p < 0 时,y²= 2px 开口向左,x²= 2py 开口向下。
3、顶点抛物线的顶点位于对称轴与抛物线的交点处。
对于 y²= 2px,顶点为(0,0);对于 x²= 2py,顶点也为(0,0)。
四、抛物线的性质1、焦半径抛物线上一点到焦点的距离叫做焦半径。
对于抛物线 y²= 2px 上一点(x₀,y₀),其焦半径为 x₀+ p/2 。
2、通径通过焦点且垂直于对称轴的弦叫做通径。
对于 y²= 2px,通径长为2p 。
3、抛物线的平移抛物线的平移遵循“上加下减,左加右减”的原则。
例如,将抛物线y = x²向上平移 2 个单位得到 y = x²+ 2 ;向左平移 3 个单位得到 y=(x + 3)²。
抛物线的性质与计算

抛物线的性质与计算抛物线是一种常见的数学曲线,具有独特的性质和特点。
在数学中对于抛物线的研究,不仅帮助我们深入了解曲线的性质,还能应用于实际问题的计算中。
本文将介绍抛物线的基本定义及其性质,并探讨如何进行抛物线的计算。
一、抛物线的定义与基本性质抛物线可由以下二次函数的方程表示:y = ax^2 + bx + c。
其中,a、b、c为常数,a ≠ 0。
抛物线的形状与参数a的正负有关。
当a > 0时,抛物线开口向上;当a < 0时,抛物线开口向下。
抛物线具有以下基本性质:1. 对称性抛物线关于其顶点的纵轴对称。
即,若(x, y)在抛物线上,则(-x, y)也在抛物线上。
2. 零点抛物线与x轴的交点称为零点,也称为根。
对于一般二次方程,可以通过求根公式来计算抛物线的零点。
3. 零点的判别式抛物线的零点个数与判别式的正负相关。
当判别式大于零时,抛物线与x轴有两个不相等的交点,即有两个实数根;当判别式等于零时,抛物线与x轴有两个相等的交点,即有一个实数根;当判别式小于零时,抛物线与x轴无交点,即无实数根。
4. 顶点抛物线的顶点是曲线最高/最低点,也是抛物线的对称中心。
顶点坐标可通过求导或利用平方完成平方法求得。
5. 单调性抛物线的单调性由参数a的正负决定。
当a > 0时,抛物线开口向上,曲线从左到右逐渐上升;当a < 0时,抛物线开口向下,曲线从左到右逐渐下降。
二、抛物线的计算方法1. 求零点计算抛物线的零点,即求解二次方程。
可以通过以下步骤进行计算:a) 计算判别式D = b^2 - 4ac;b) 若D > 0,使用求根公式x = (-b ± √D) / (2a)计算抛物线的两个实数根;c) 若D = 0,使用求根公式x = -b / (2a)计算抛物线的一个实数根;d) 若D < 0,抛物线无实数根。
2. 求顶点抛物线的顶点可以使用求导或平方完成平方法求得。
《抛物线的简单性质》 知识清单

《抛物线的简单性质》知识清单一、抛物线的定义平面内与一定点 F 和一条定直线 l 的距离相等的点的轨迹叫做抛物线。
点 F 叫做抛物线的焦点,定直线 l 叫做抛物线的准线。
二、抛物线的标准方程1、焦点在 x 轴正半轴上:\(y^2 = 2px (p > 0)\),焦点坐标为\((\frac{p}{2}, 0)\),准线方程为\(x =\frac{p}{2}\)。
2、焦点在 x 轴负半轴上:\(y^2 =-2px (p > 0)\),焦点坐标为\((\frac{p}{2}, 0)\),准线方程为\(x =\frac{p}{2}\)。
3、焦点在 y 轴正半轴上:\(x^2 = 2py (p > 0)\),焦点坐标为\((0, \frac{p}{2})\),准线方程为\(y =\frac{p}{2}\)。
4、焦点在 y 轴负半轴上:\(x^2 =-2py (p > 0)\),焦点坐标为\((0, \frac{p}{2})\),准线方程为\(y =\frac{p}{2}\)。
三、抛物线的性质1、范围对于抛物线\(y^2 = 2px (p > 0)\),\(x\geqslant 0\),\(y\in R\);对于抛物线\(y^2 =-2px (p > 0)\),\(x\leqslant 0\),\(y\in R\);对于抛物线\(x^2 = 2py (p > 0)\),\(y\geqslant 0\),\(x\in R\);对于抛物线\(x^2 =-2py (p > 0)\),\(y\leqslant 0\),\(x\in R\)。
2、对称性抛物线都是轴对称图形,对称轴为坐标轴。
3、顶点抛物线的顶点为坐标原点。
4、离心率抛物线的离心率\(e = 1\)。
5、焦半径(1)对于抛物线\(y^2 = 2px (p > 0)\),抛物线上一点\(P(x_0, y_0)\)到焦点的距离称为焦半径,\(|PF| = x_0 +\frac{p}{2}\)。
初三下册数学第27章知识点抛物线的性质

初三下册数学第27章知识点抛物线的性质
细心的朋友会发现,老师在讲解基础内容之后,总是给我们补充一些课外例、习题,这是大有裨益的,查字典数学网初中频道为大家准备了初三下册数学第27章知识点,欢迎阅读与选择!
1.抛物线是轴对称图形。
对称轴为直线x=-b/2a。
对称轴与抛物线唯一的交点为抛物线的顶点P。
特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
2.抛物线有一个顶点P,坐标为:P(-b/2a,(4ac-b^2)/4a)当-b/2a=0时,P在y轴上;当=b^2-4ac=0时,P在x轴上。
3.二次项系数a决定抛物线的开口方向和大小。
当a0时,抛物线向上开口;当a0时,抛物线向下开口。
|a|越大,那么抛物线的开口越小。
4.一次项系数b和二次项系数a共同决定对称轴的位置。
当a与b同号时(即ab0),对称轴在y轴左;
当a与b异号时(即ab0),对称轴在y轴右。
5.常数项c决定抛物线与y轴交点。
抛物线与y轴交于(0,c)
6.抛物线与x轴交点个数
=b^2-4ac0时,抛物线与x轴有2个交点。
=b^2-4ac=0时,抛物线与x轴有1个交点。
=b^2-4ac0时,抛物线与x轴没有交点。
X的取值是虚数
(x=-bb^2-4ac的值的相反数,乘上虚数i,整个式子除以2a) 精品小编为大家提供的初三下册数学第27章知识点大家仔细阅读了吗?最后祝同学们学习进步。
高一数学复习考点知识专题讲解23---抛物线的简单几何性质

高一数学复习考点知识专题讲解抛物线的简单几何性质学习目标 1.掌握抛物线的几何性质.2.掌握直线与抛物线的位置关系的判断及相关问题.知识点一 抛物线的简单几何性质标准方程y 2=2px (p >0)y 2=-2px (p >0)x 2=2py (p >0)x 2=-2py (p >0)图形范围 x ≥0,y ∈Rx ≤0,y ∈Ry ≥0,x ∈Ry ≤0,x ∈R对称轴 x 轴 x 轴 y 轴 y 轴 焦点坐标F ⎝⎛⎭⎫p 2,0 F ⎝⎛⎭⎫-p2,0 F ⎝⎛⎭⎫0,p 2 F ⎝⎛⎭⎫0,-p 2 准线方程 x =-p 2x =p 2y =-p 2y =p 2顶点坐标 O (0,0) 离心率 e =1 通径长2p知识点二 直线与抛物线的位置关系直线y =kx +b 与抛物线y 2=2px (p >0)的交点个数决定于关于x 的方程组⎩⎪⎨⎪⎧y =kx +b ,y 2=2px 解的个数,即二次方程k 2x 2+2(kb -p )x +b 2=0解的个数.当k ≠0时,若Δ>0,则直线与抛物线有两个不同的公共点;若Δ=0,直线与抛物线有一个公共点;若Δ<0,直线与抛物线没有公共点.当k =0时,直线与抛物线的轴平行或重合,此时直线与抛物线有1个公共点.1.抛物线关于顶点对称.( × )2.抛物线只有一个焦点,一条对称轴,无对称中心.( √ ) 3.抛物线的标准方程虽然各不相同,但是其离心率都相同.( √ )4.抛物线x 2=4y ,y 2=4x 的x ,y 的范围是不同的,但是其焦点到准线的距离是相同的,离心率也相同.( √ )5.“直线与抛物线有一个交点”是“直线与抛物线相切”的必要不充分条件.( √ )一、抛物线的几何性质的应用例1 (1)等腰直角三角形AOB 内接于抛物线y 2=2px (p >0),O 为抛物线的顶点,OA ⊥OB ,则△AOB 的面积是( )A .8p 2B .4p 2C .2p 2D .p 2 答案 B解析 因为抛物线的对称轴为x 轴,内接△AOB 为等腰直角三角形,所以由抛物线的对称性知,直线AB 与抛物线的对称轴垂直,从而直线OA 与x 轴的夹角为45°.由方程组⎩⎪⎨⎪⎧y =x ,y 2=2px得⎩⎪⎨⎪⎧ x =0,y =0或⎩⎪⎨⎪⎧x =2p ,y =2p ,不妨设A ,B 两点的坐标分别为(2p ,2p )和(2p ,-2p ). 所以|AB |=4p ,所以S △AOB =12×4p ×2p =4p 2.(2)已知抛物线的顶点在坐标原点,对称轴为x 轴,且与圆x 2+y 2=4相交于A ,B 两点,|AB |=23,求抛物线方程.解 由已知,抛物线的焦点可能在x 轴正半轴上,也可能在负半轴上. 故可设抛物线方程为y 2=ax (a ≠0).设抛物线与圆x 2+y 2=4的交点A (x 1,y 1),B (x 2,y 2). ∵抛物线y 2=ax (a ≠0)与圆x 2+y 2=4都关于x 轴对称, ∴点A 与B 关于x 轴对称, ∴|y 1|=|y 2|且|y 1|+|y 2|=23, ∴|y 1|=|y 2|=3,代入圆x 2+y 2=4, 得x 2+3=4,∴x =±1,∴A (±1,3)或A (±1,-3),代入抛物线方程, 得(3)2=±a ,∴a =±3.∴所求抛物线方程是y 2=3x 或y 2=-3x .反思感悟 把握三个要点确定抛物线的简单几何性质(1)开口:由抛物线标准方程看图象开口,关键是看准二次项是x 还是y ,一次项的系数是正还是负. (2)关系:顶点位于焦点与准线中间,准线垂直于对称轴.(3)定值:焦点到准线的距离为p ;过焦点垂直于对称轴的弦(又称为通径)长为2p ;离心率恒等于1. 跟踪训练1 (1)边长为1的等边三角形AOB ,O 为坐标原点,AB ⊥x 轴,以O 为顶点且过A ,B 的抛物线方程是( ) A .y 2=36x B .y 2=-33x C .y 2=±36x D .y 2=±33x答案 C解析 设抛物线方程为y 2=ax (a ≠0).又A ⎝⎛⎭⎫±32,12(取点A 在x 轴上方),则有14=±32a ,解得a =±36,所以抛物线方程为y 2=±36x .故选C.(2)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线与抛物线y 2=2px (p >0)的准线分别交于A ,B 两点,O 为坐标原点,若双曲线的离心率为2,△AOB 的面积为3,则抛物线的焦点坐标为( ) A .(2,0) B .(1,0) C .(8,0) D .(4,0) 答案 B解析 因为c a =2,所以c 2a 2=a 2+b 2a 2=4,于是b 2=3a 2,则ba =3,故双曲线的两条渐近线方程为y =±3x . 而抛物线y 2=2px (p >0)的准线方程为x =-p2,不妨设A ⎝⎛⎭⎫-p 2,3p 2,B ⎝⎛⎭⎫-p 2,-3p 2,则|AB |=3p ,又三角形的高为p2,则S △AOB =12·p2·3p =3,即p 2=4.因为p >0,所以p =2,故抛物线焦点坐标为(1,0). 二、直线与抛物线的位置关系命题角度1 直线与抛物线位置关系的判断例2 已知直线l :y =kx +1,抛物线C :y 2=4x ,当k 为何值时,l 与C :只有一个公共点;有两个公共点;没有公共点.解 联立⎩⎪⎨⎪⎧y =kx +1,y 2=4x ,消去y ,得k 2x 2+(2k -4)x +1=0.(*)当k =0时,(*)式只有一个解x =14,∴y =1,∴直线l 与C 只有一个公共点⎝⎛⎭⎫14,1, 此时直线l 平行于x 轴.当k ≠0时,(*)式是一个一元二次方程, Δ=(2k -4)2-4k 2=16(1-k ). ①当Δ>0,即k <1,且k ≠0时,l 与C 有两个公共点,此时直线l 与C 相交;②当Δ=0,即k =1时,l 与C 有一个公共点,此时直线l 与C 相切; ③当Δ<0,即k >1时,l 与C 没有公共点,此时直线l 与C 相离. 综上所述,当k =1或0时,l 与C 有一个公共点; 当k <1,且k ≠0时,l 与C 有两个公共点; 当k >1时,l 与C 没有公共点. 命题角度2 直线与抛物线的相交问题例3 已知抛物线方程为y 2=2px (p >0),过此抛物线的焦点的直线与抛物线交于A ,B 两点,且|AB |=52p ,求AB 所在的直线方程. 解 由题意知焦点F ⎝⎛⎭⎫p 2,0,设A (x 1,y 1),B (x 2,y 2), 若AB ⊥x 轴,则|AB |=2p ≠52p ,不满足题意.所以直线AB 的斜率存在,设为k , 则直线AB 的方程为y =k ⎝⎛⎭⎫x -p2,k ≠0. 由⎩⎪⎨⎪⎧y =k ⎝⎛⎭⎫x -p 2,y 2=2px ,消去x ,整理得ky 2-2py -kp 2=0.由根与系数的关系得y 1+y 2=2pk ,y 1y 2=-p 2.所以|AB |=⎝⎛⎭⎫1+1k 2·(y 1-y 2)2=1+1k2·(y 1+y 2)2-4y 1y 2=2p ⎝⎛⎭⎫1+1k 2=52p ,解得k =±2.所以AB 所在的直线方程为2x -y -p =0 或2x +y -p =0. 延伸探究本例条件不变,求弦AB 的中点M 到y 轴的距离.解 如图,过A ,B ,M 分别作准线x =-p2的垂线交准线于点C ,D ,E .由定义知|AC |+|BD |=52p ,则梯形ABDC 的中位线|ME |=54p ,∴M 点到y 轴的距离为54p -p 2=34p .反思感悟 直线与抛物线的位置关系(1)设直线方程时要特别注意斜率不存在的直线应单独讨论,求解交点时不要忽略二次项系数为0的情况.(2)一般弦长:|AB |=1+k 2|x 1-x 2|=1+1k2|y 1-y 2|. (3)焦点弦长:设焦点的弦的端点为A (x 1,y 1),B (x 2,y 2),则|AB |=x 1+x 2+p . 跟踪训练2 (1)过点P (0,1)与抛物线y 2=x 有且只有一个交点的直线有( ) A .4条 B .3条 C .2条 D .1条 答案 B解析 如图,过P 可作抛物线的两条切线,即y 轴和l 1均与抛物线只有一个公共点,过P 可作一条与x 轴平行的直线l 2与抛物线只有一个公共点.故过点P 与抛物线只有一个公共点的直线共3条,故选B.(2)设抛物线C :x 2=4y 焦点为F ,直线y =kx +2与C 交于A ,B 两点,且||AF ·||BF =25,则k 的值为( )A .±2B .-1C .±1D .-2 答案 A解析 设A (x 1,y 1),B (x 2,y 2),将直线y =kx +2代入x 2=4y , 消去x 得y 2-(4+4k 2)y +4=0, 所以y 1·y 2=4,y 1+y 2=4+4k 2,抛物线C :x 2=4y 的准线方程为y =-1, 因为||AF =y 1+1,||BF =y 2+1,所以||AF ·||BF =y 1·y 2+(y 1+y 2)+1=4+4+4k 2+1=25⇒k =±2.1.已知点A (-2,3)在抛物线C :y 2=2px (p >0)的准线上,记C 的焦点为F ,则直线AF 的斜率为( ) A .-43 B .-1 C .-34 D .-12答案 C解析 因为抛物线C :y 2=2px 的准线为x =-p2,且点A (-2,3)在准线上,所以-p 2=-2,解得p =4,所以y 2=8x ,所以焦点F 的坐标为(2,0),故直线AF 的斜率k =3-0-2-2=-34.2.(多选)以y 轴为对称轴的抛物线的通径(过焦点且与对称轴垂直的弦)长为8,若抛物线的顶点在坐标原点,则其方程为( ) A .y 2=8x B .y 2=-8x C .x 2=8y D. x 2=-8y答案 CD解析 设抛物线方程为x 2=2py 或x 2=-2py (p >0), 依题意得y =p2,代入x 2=2py 或x 2=-2py 得|x |=p ,∴2|x |=2p =8,p =4.∴抛物线方程为x 2=8y 或x 2=-8y .3.设O 为坐标原点,F 为抛物线y 2=4x 的焦点,A 是抛物线上一点,若OA →·AF →=-4,则点A 的坐标是( )A .(2,±22)B .(1,±2)C .(1,2)D .(2,22) 答案 B解析 由题意知F (1,0),设A ⎝⎛⎭⎫y 204,y 0,则OA →=⎝⎛⎭⎫y 204,y 0,AF →=⎝⎛⎭⎫1-y 204,-y 0. 由OA →·AF →=-4得y 0=±2,∴点A 的坐标为(1,±2),故选B.4.抛物线y 2=4x 的弦AB ⊥x 轴,若|AB |=43,则焦点F 到直线AB 的距离为________. 答案 2解析 由抛物线的方程可知F (1,0),由|AB |=43且AB ⊥x 轴得y 2A =(23)2=12,∴x A =y 2A4=3,∴所求距离为3-1=2.5.直线y =kx +2与抛物线y 2=8x 有且只有一个公共点,则k =________. 答案 0或1解析 当k =0时,直线与抛物线有唯一交点, 当k ≠0时,联立方程消去y ,得 k 2x 2+4(k -2)x +4=0, 由题意Δ=16(k -2)2-16k 2=0, ∴k =1.1.知识清单:(1)抛物线的几何性质.(2)直线与抛物线的位置关系.2.方法归纳:待定系数法、数形结合法、代数法.3.常见误区:四种形式的抛物线性质混淆;忽略直线的特殊情况.1.若抛物线y2=4x上一点P到x轴的距离为23,则点P到抛物线的焦点F的距离为()A.4 B.5 C.6 D.7答案 A解析由题意,知抛物线y2=4x的准线方程为x=-1,∵抛物线y2=4x上一点P到x轴的距离为23,则P(3,±23),∴点P到抛物线的准线的距离为3+1=4,∴点P到抛物线的焦点F的距离为4.故选A.2.过抛物线y2=4x的焦点作一条直线与抛物线相交于A,B两点,它们的横坐标之和等于5,则这样的直线()A.有且仅有一条B.有且仅有两条C.有无穷多条D.不存在答案 B解析当斜率不存在时,x1+x2=2不符合题意.当斜率存在时,由焦点坐标为(1,0),可设直线方程为y=k(x-1),k≠0,由⎩⎪⎨⎪⎧y =k (x -1),y 2=4x 得k 2x 2-(2k 2+4)x +k 2=0, ∴x 1+x 2=2k 2+4k 2=5,∴k 2=43,即k =±233.因而这样的直线有且仅有两条.3.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足.如果直线AF 的斜率为-3,那么|PF |等于( ) A .4 3 B .8 C .8 3 D .16 答案 B解析 由抛物线方程y 2=8x ,可得准线l :x =-2,焦点F (2,0),设点A (-2,n ), ∴-3=n -0-2-2,∴n =4 3.∴P 点纵坐标为4 3. 由(43)2=8x ,得x =6, ∴P 点坐标为(6,43),∴|PF |=|P A |=|6-(-2)|=8,故选B.4.抛物线y 2=4x 与直线2x +y -4=0交于两点A 与B ,F 是抛物线的焦点,则|F A |+|FB |等于( ) A .2 B .3 C .5 D .7 答案 D解析 设A (x 1,y 1),B (x 2,y 2), 则|F A |+|FB |=x 1+x 2+2.由⎩⎪⎨⎪⎧y 2=4x ,2x +y -4=0得x 2-5x +4=0,∴x 1+x 2=5,x 1+x 2+2=7.5.已知直线l 过抛物线C 的焦点,且与C 的对称轴垂直,l 与C 交于A ,B 两点,|AB |=12,P 为C 的准线上的一点,则△ABP 的面积为( )A .18B .24C .36D .48答案 C解析 不妨设抛物线方程为y 2=2px (p >0),依题意,l ⊥x 轴,且焦点F ⎝⎛⎭⎫p 2,0, ∵当x =p 2时,|y |=p , ∴|AB |=2p =12,∴p =6,又点P 到直线AB 的距离为p 2+p 2=p =6, 故S △ABP =12|AB |·p =12×12×6=36. 6.抛物线y 2=x 上到其准线和顶点距离相等的点的坐标为__________.答案 ⎝⎛⎭⎫18,±24 解析 设抛物线上点的坐标为(x ,±x ),此点到准线的距离为x +14,到顶点的距离为x 2+(x )2,由题意有x +14=x 2+(x )2,∴x =18,∴y =±24,∴此点坐标为⎝⎛⎭⎫18,±24. 7.已知F 是抛物线C :y 2=8x 的焦点,M 是C 上一点,FM 的延长线交y 轴于点N .若M 是FN 的中点,则|FN |=________.答案 6解析 如图,过点M 作MM ′⊥y 轴,垂足为M ′,|OF |=2,∵M 为FN 的中点,|MM ′|=1,∴M 到准线距离d =|MM ′|+p 2=3, ∴|MF |=3,∴|FN |=68.已知点A 到点F (1,0)的距离和到直线x =-1的距离相等,点A 的轨迹与过点P (-1,0)且斜率为k 的直线没有交点,则k 的取值范围是________.答案 (-∞,-1)∪(1,+∞)解析 设点(x ,y ),依题意得点A 在以y 2=4x .过点P (-1,0)且斜率为k 的直线方程为y =k (x +1),由⎩⎪⎨⎪⎧y 2=4x ,y =kx +k ,得ky 2-4y +4k =0,当k =0时,显然不符合题意; 当k ≠0时,依题意得Δ=(-4)2-4k ·4k <0,化简得k 2-1>0,解得k >1或k <-1,因此k 的取值范围为(-∞,-1)∪(1,+∞).9.若抛物线的顶点在原点,开口向上,F 为焦点,M 为准线与y 轴的交点,A 为抛物线上一点,且|AM |=17,|AF |=3,求此抛物线的标准方程.解 设所求抛物线的标准方程为x 2=2py (p >0),设A (x 0,y 0),由题意知M ⎝⎛⎭⎫0,-p 2, ∵|AF |=3,∴y 0+p 2=3, ∵|AM |=17,∴x 20+⎝⎛⎭⎫y 0+p 22=17, ∴x 20=8,代入方程x 20=2py 0得, 8=2p ⎝⎛⎭⎫3-p 2,解得p =2或p =4. ∴所求抛物线的标准方程为x 2=4y 或x 2=8y .10.已知抛物线C :y =2x 2和直线l :y =kx +1,O 为坐标原点.(1)求证:l 与C 必有两交点.(2)设l 与C 交于A ,B 两点,且直线OA 和OB 斜率之和为1,求k 的值.(1)证明 联立抛物线C :y =2x 2和直线l :y =kx +1,可得2x 2-kx -1=0,所以Δ=k 2+8>0,所以l 与C 必有两交点.(2)解 设A (x 1,y 1),B (x 2,y 2), 则y 1x 1+y 2x 2=1,① 因为y 1=kx 1+1,y 2=kx 2+1,代入①,得2k +⎝⎛⎭⎫1x 1+1x 2=1,② 由(1)可得x 1+x 2=12k ,x 1x 2=-12,代入②得k =1.11.若点M (1,1)是抛物线y 2=4x 的弦AB 的中点,则弦AB 的长为________.答案 15解析 设A (x 1,y 1),B (x 2,y 2),代入抛物线y 2=4x ,可得y 21=4x 1,y 22=4x 2,两式相减,可得k =y 1-y 2x 1-x 2=4y 1+y 2=2, 所以直线AB 的方程为y -1=2(x -1),即y =2x -1,代入抛物线的方程得4x 2-8x +1=0,则x 1+x 2=2,x 1x 2=14, 则||AB =1+k 2·(x 1+x 2)2-4x 1x 2=5×⎝⎛⎭⎫22-4×14=15, 即弦AB 的长为15.12.已知A ,B 是抛物线y 2=2px (p >0)上两点,O 为坐标原点.若|OA |=|OB |,且△AOB 的垂心恰是此抛物线的焦点,则直线AB 的方程为________.答案 x =5p 2解析 由抛物线的性质知A ,B 关于x 轴对称.设A (x ,y ),则B (x ,-y ),焦点为F ⎝⎛⎭⎫p 2,0.由题意知AF ⊥OB ,则有y x -p 2·-y x =-1. 所以y 2=x ⎝⎛⎭⎫x -p 2,2px =x ⎝⎛⎭⎫x -p 2. 因为x ≠0.所以x =5p 2. 所以直线AB 的方程为x =5p 2. 13.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线x 23-y 23=1相交于A ,B 两点,若△ABF 为等边三角形,则p =________.答案 6解析 抛物线的焦点坐标F ⎝⎛⎭⎫0,p 2,准线方程为y =-p 2.代入x 23-y 23=1得||x = 3+p 24. 要使△ABF 为等边三角形,则tan π6=|x |p =3+p 24p =33,解得p 2=36,p =6. 14.直线y =x -3与抛物线y 2=4x 交于A ,B 两点,过A ,B 两点向抛物线的准线作垂线,垂足分别为P ,Q ,则梯形APQB 的面积为________.答案 48解析 由⎩⎪⎨⎪⎧ y 2=4x ,y =x -3消去y 得x 2-10x +9=0,得x =1或9,即⎩⎪⎨⎪⎧ x =1,y =-2或⎩⎪⎨⎪⎧x =9,y =6. 所以|AP |=10,|BQ |=2或|BQ |=10,|AP |=2,所以|PQ |=8,所以梯形APQB 的面积S =10+22×8=48.15.已知抛物线C :y 2=8x 与点M (-2,2),过C 的焦点且斜率为k 的直线与C 交于A ,B 两点,若MA →·MB→=0,则k 等于( )A.12B.22C. 2 D .2答案 D解析 由题意可知,抛物线的焦点为(2,0).设A (x 1,y 1),B (x 2,y 2),直线AB 的方程为y =k (x -2).由⎩⎪⎨⎪⎧y =k (x -2),y 2=8x 得k 2x 2-(4k 2+8)x +4k 2=0, 则x 1+x 2=4k 2+8k 2,x 1x 2=4. y 1+y 2=k (x 1-2)+k (x 2-2)=k (x 1+x 2-4)=8k, y 1y 2=-8x 18x 2=-16.∴MA →·MB →=(x 1+2,y 1-2)·(x 2+2,y 2-2)=(x 1+2)(x 2+2)+y 1y 2-2(y 1+y 2)+4=x 1x 2+2(x 1+x 2)+4-16-16k +4=0, 解得k =2,故选D.16.已知直线l 经过抛物线y 2=6x 的焦点F ,且与抛物线相交于A ,B 两点.(1)若直线l 的倾斜角为60°,求|AB |的值;(2)若|AB |=9,求线段AB 的中点M 到准线的距离.解 (1)因为直线l 的倾斜角为60°,所以其斜率k =tan 60°=3,又F ⎝⎛⎭⎫32,0,所以直线l 的方程为y =3⎝⎛⎭⎫x -32. 联立⎩⎪⎨⎪⎧y =3⎝⎛⎭⎫x -32,y 2=6x ,消去y 得4x 2-20x +9=0,解得x 1=12,x 2=92, 故|AB |=1+(3)2×⎪⎪⎪⎪92-12=2×4=8.(2)设A (x 1,y 1),B (x 2,y 2),由抛物线定义,知|AB |=|AF |+|BF |=x 1+p 2+x 2+p 2=x 1+x 2+p =x 1+x 2+3=9, 所以x 1+x 2=6,于是线段AB 的中点M 的横坐标是3, 又准线方程是x =-32,所以M 到准线的距离等于3+32=92.。
抛物线知识点和题型分类讲解

抛物线知识点和题型分类讲解抛物线知识点和题型分类讲解抛物线的定义:抛物线是平面内满足以下三个条件的点的轨迹:1.在平面内;2.动点到定点F距离与到定直线l的距离相等;3.定点不在定直线上。
当定点F在定直线l上时,动点的轨迹是过定点F且与直线l垂直的直线。
抛物线的标准方程和几何性质:标准方程:1.y^2 = 2px (p>0)2.y^2 = -2px (p>0)3.x^2 = 2py (p>0)4.x^2 = -2py (p>0)p的几何意义:焦点F到准线l的距离。
图形:抛物线是关于对称轴对称的。
顶点:抛物线的顶点是对称轴与抛物线的交点。
对称轴:与抛物线垂直且通过顶点的直线。
焦点:抛物线的定点F。
离心率:离心率e = PF/d,其中PF为焦点到抛物线上一点P的距离,d为抛物线的准线到顶点的距离。
准线方程:与抛物线垂直且通过焦点F的直线。
范围:抛物线的定义所决定的范围。
开口方向:抛物线开口的方向由p的正负号决定。
焦半径:焦半径是从焦点到抛物线上一点P的距离。
自测:1.抛物线的顶点在原点,准线方程为x = -2,则抛物线的方程是y^2 = 8x。
2.已知d为抛物线y = 2px^2(p>0)的焦点到准线的距离,则pd等于4.3.抛物线的焦点为椭圆x^2/9 + y^2/4 = 1的左焦点,顶点为椭圆中心,则抛物线方程为y^2 = -45x。
4.点(3,1)是抛物线y^2 = 2px的一条弦的中心,且这条弦所在直线的斜率为2,则p = 1/2.1.解析:如图,设点P的坐标为(x,y),则点P到直线y=-1的距离为|y-(-1)|=|y+1|,点P到点(0,3)的距离为√[(x-0)²+(y-3)²],由题意得|y+1|+2=√[(x-0)²+(y-3)²],两边平方得y²+2y+1+4=x²+y²-6y+9,化简得x²=2y-6,即为点P的轨迹方程.2.解析:如图,设点P的坐标为(x,y),则有|PB|+|PF|=√[(x-3)²+(y-2)²]+√[(x-1)²+y²],由抛物线的定义可知点P 到焦点F的距离等于点P到直线x=-1的距离,设点P到直线x=-1的距离为d,则有d=|x+1|,又因为点P在抛物线上,所以有y²=4x,代入d=|x+1|,得y²=4|x+1|,即为点P 的轨迹方程.3.删除此段落,因为没有明显的问题或需要改写的地方.4.解析:如图,设点P的坐标为(x,y),则有y²=4x,点A的坐标为(1,1),抛物线的焦点为F(2,0),则点P到抛物线的准线x=-1的距离为|y|,点P到焦点F的距离为√[(x-2)²+y²],由题意得|y|+√[(x-2)²+y²]=|y-1|,解得x²=y,即为点P的轨迹方程.5.解析:如图,设点P的坐标为(x,y),则有x²=4y,点A的坐标为(1,1),抛物线的焦点为F(1,0),则点P到焦点F的距离为√[(x-1)²+y²],点P到点A的距离为√[(x-1)²+(y-1)²],由题意得√[(x-1)²+y²]+√[(x-1)²+(y-1)²]=√[(x-1)²+y²]+|y|,解得y=x²/4,即为点P的轨迹方程.1) 由题意可知,点M到焦点的距离为5,横坐标为3,因此焦点坐标为(4,0)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
抛物线的简单性质 编稿:张林娟责编:孙永钊【学习目标】 1.知识与技能:掌握抛物线的范围、对称性、定点、焦点、准线、离心率、顶点、通径,理解2p 和e 的几何意义,初步学习利用方程研究曲线性质的方法.2.过程与方法:通过曲线的方程来研究曲线性质的方法,让学生体会数形结合的思想、方程思想及转化的思想在研究和解决问题中的应用.3.情感态度与价值观:通过自主探究、交流合作使学生亲身体验研究的艰辛,感受知识的发生发展过程,力求使学生获得符合时代要求的“双基”【要点梳理】要点一:抛物线标准方程2(0)2y =px p >的几何性质1. 对称性观察图象,不难发现,抛物线y 2=2px (p >0)关于..x .轴对称...,我们把抛物线的对称轴叫做抛物线的轴.抛物线只有一条对称轴........ 2. 范围抛物线y 2=2px (p >0)在y 轴的右侧,开口向右,这条抛物线上的任意一点M 的坐标(x ,y )的横坐标满足不等式x .≥0..;当x 的值增大时,|y |也增大,这说明抛物线向右上方和右下方无限延伸.抛物线是无界曲线.3. 顶点抛物线和它轴的交点叫做抛物线的顶点.抛物线的顶点坐标是坐标原点....(0,0). 4. 离心率抛物线上的点M 到焦点的距离和它到准线的距离的比,叫做抛物线的离心率.用e 表示,e .=1... 5. 通径通过抛物线的焦点且垂直于对称轴的直线被抛物线所截得的线段叫做抛物线的通径.因为通过抛物线y 2=2px (p >0)的焦点而垂直于x 轴的直线与抛物线两交点的坐标分别为,2p p ⎛⎫ ⎪⎝⎭,,2p p ⎛⎫- ⎪⎝⎭,所以抛物线的通径长为....2.p ..这就是抛物线标准方程中2p 的一种几何意义.另一方面,由通径的定义我们还可以看出,p 刻画了抛物线开口的大小,p 值越大,开口越宽;p 值越小,开口越窄.6. 焦半径抛物线上任意一点M 与抛物线焦点F 的连线段,叫做抛物线的焦半径焦半径公式:抛物线22(0)y px p =>,0022p pPF x x =+=+;抛物线22(0)y px p =->,0022p pPF x x =-=-; 抛物线22(0)x py p =>,0022p pPF y y =+=+; 抛物线22(0)x py p =->,0022p pPF y y =-=-. 7. 焦点弦定义:过焦点的直线割抛物线所成的相交弦.设过抛物线22(0)y px p =>焦点的直线交抛物线于A 、B 两点,设1122(,)(,)A x y B x y , 焦点弦公式:焦点弦12()AB p x x =++;同理: 若抛物线为22(0)y px p =->,则12()AB p x x =-+; 若抛物线为22(0)x py p =>,则12()AB p y y =++; 若抛物线为22(0)x py p =->,则12()AB p y y =-+. 有关性质: ①124px x =和212y y p =-. 2()22p y k x y px⎧=-⎪⎨⎪=⎩2220p y y p k ⇒--=和22222(2)04k p k x k p p x -++=212y y p ⇒=-和124x x ②若已知过焦点的直线倾斜角θ,则22sin pAB θ=;当θ=900时,|AB |的最小值等于2p ,这时的弦叫抛物线的通径.(过焦点且垂直于对称轴的相交弦).③以AB 为直径的圆必与准线l 相切.④焦点F 对A 、B 在准线上射影的张角为90︒.⑤112AF BF p+=. 要点诠释:(1)抛物线只位于半个坐标平面内,虽然它可以无限延伸,但没有渐进线; (2)抛物线只有一条对称轴,没有对称中心; (3)抛物线只有一个顶点、一个焦点、一条准线; (4)抛物线的离心率是确定的,为1. 要点二:抛物线标准方程几何性质的对比图形标准方程 y 2=2px (p >0) y 2=-2px (p >0) x 2=2py (p >0) x 2=-2py (p >0)顶点 O (0,0)范围 x ≥0,y R ∈x ≤0,y R ∈y ≥0,x R ∈y ≤0,x R ∈对称轴 x 轴y 轴焦点 ,02p F ⎛⎫ ⎪⎝⎭,02p F ⎛⎫- ⎪⎝⎭0,2p F ⎛⎫ ⎪⎝⎭0,2p F ⎛⎫- ⎪⎝⎭离心率 e =1准线方程 2p x =-2px = 2p y =-2p y = 焦半径 0||2p MF x =+ 0||2pMF x =- 0||2p MF y =+0||2pMF y =-要点诠释:(1)与椭圆、双曲线不同,抛物线只有一个焦点、一个顶点、一条对称轴,一条准线;(2)标准方程中的参数p 的几何意义是指焦点到准线的距离;p >0恰恰说明定义中的焦点F 不在准线l 上这一隐含条件;参数p 的几何意义在解题时常常用到,特别是具体的标准方程中应找到相当于p 的值,才易于确定焦点坐标和准线方程.要点三:直线和抛物线的位置关系 1. 点和抛物线的位置关系将点P (x 0,y 0)代入抛物线y 2=2px (p >0):若2020y px ->,则点在抛物线外; 若202=0y px -,点在抛物线上; 若2020y px -<,则点在抛物线内.2. 直线和抛物线的位置关系有三种:相交、相切、相离.将直线方程和抛物线方程联立,消元转化为关于x (或y 的)方程组:Ax 2+Bx +C =0(或Ay 2+By +C =0),其中A ,B ,C 为常数若A =0,则直线和抛物线相交(直线与抛物线的对称轴平行),有一个交点; 若A ≠0,计算判别式2=4B AC ∆ :若0∆>,则直线和抛物线相交(有两个交点);若=0∆,则直线和抛物线相切(有一个交点); 若=0∆,则直线和抛物线相离(无交点); 2. 判断直线和抛物线位置关系的操作程序:要点诠释:(1)在判断直线和抛物线位置关系时,不要忽略直线和抛物线的对称轴平行的情况; (2)若直线和抛物线相交于点()111,P x y ,()222,P x y ,则相交弦的弦长()()22212121212||1|1+4PP k x x k x x x x ⎡⎤=+-+-⎣⎦或()2121212122211||1|14(0)PP y y y y y y k k k ⎛⎫⎡⎤=+-=++-≠ ⎪⎣⎦⎝⎭. 要点四:抛物线的光学性质过抛物线上一点可以作一条切线,过切点所作垂直于切线的直线叫做抛物线在这点的法线. 抛物线的法线有一条重要性质:经过抛物线上一点作一直线平行于抛物线的轴,那么经过这一点的法线平分这条直线和这点与焦点连线的夹角.如图.抛物线的这一性质在技术上有着广泛的应用.例如,在光学上,如果把光源放在抛物镜的焦点F 处,射出的光线经过抛物镜的反射,变成了平行光线,汽车前灯、探照灯、手电筒就是利用这个光学性质设计的.反过来,也可以把射来的平行光线集中于焦点处,太阳灶就是利用这个原理设计的【典型例题】类型一:抛物线的几何性质【高清课堂:双曲线的方程 358821例1】 例1.(1)写出抛物线214y x =的焦点坐标、准线方程; (2)已知抛物线的焦点为(0,2),F -写出其标准方程;(3)已知抛物线的焦点在x 轴的正半轴上,且焦点到准线的距离为3,求抛物线的标准方程、焦点坐标和准线方程.x y 平行于轴法线切线O【解析】(1)抛物线214y x =的标准方程为24x y =,因为2p =4,所以焦点坐标为(0,1),准线方程为1y =-.(2)因为抛物线的焦点在y 轴的负半轴上,且2p=2,所以4p =,从而所求抛物线的标准方程为28x y =-. (3)由已知得3p =,所以所求抛物线标准方程为26y x =,焦点坐标为3(,0)2,准线方程为32x =-.【总结升华】讨论抛物线的方程和几何性质时要注意抛物线的焦点轴和几何量,,22pp p 的区别与联系.举一反三:【变式】已知抛物线的标准方程是26y x =,求它的焦点坐标和准线方程 【答案】因为p =3,所以焦点坐标是3(,0)2准线方程是32x =-例2.已知抛物线的顶点在原点,焦点在y 轴上,抛物线上一点M (M ,-3)到焦点的距离为5,求M 的值、抛物线的方程和准线方程.【解析】解法一:因为顶点在原点,对称轴是y 轴,点M (M ,-3)位于第三或第四象限故设抛物线方程为x 2=-2py (p >0),则焦点(0,)2pF -;∵M (M ,-3)在抛物线上且|MF |=5, 故2226(3)52m pp m ⎧=⎪⎨+-+=⎪⎩,解得426p m =⎧⎪⎨=±⎪⎩, ∴26m =±,抛物线方程为x 2=-8y , 准线方程为y =2.解法二:如图所示:设抛物方程为x 2=-2py (p >0),则焦点(0,)2p F -,准线:2pl y =,作M N ⊥l ,垂足为N ,则|M N|=|MF |=5,而||32p MN =+, ∴352p+=,∴p =4, 由M 2=-8 (-3),得26m =±. ∴26m =±,抛物线方程为x 2=-8y ,准线方程为y =2.【总结升华】抛物线的定义与方程的形式是解决抛物线几何性质问题时必须要考虑的两个重要因素 举一反三:【变式1】设抛物线的顶点在原点,其焦点F 在y 轴上,又抛物线上的点(k ,-2)与F 点的距离为4,则k 的值是( )A .4B .4或-4C .-2D .2或-2【答案】B【变式2】若抛物线22y ax =的焦点与椭圆22184x y +=的右焦点重合,则a 的值为()A .-2B .2C .-4D .4类型二:直线和抛物线的位置关系例3. 已知抛物线的方程为2=4y x ,直线l 过定点(-2,1)P ,斜率为k ,k 为何值时,直线l 与抛物线2=4y x : (1)只有一个公共点;(2)两个公共点;(3)没有公共点?【思路点拨】先定数,在定量:画出草图,确定与抛物线有一个、两个、没有公共点的直线条数;再设出直线l 的方程,与抛物线方程联立,消元,判断一元一次方程或一元二次方程解的个数,从而确定k 的值. 【解析】设直线l 的方程为:()12y k x -=+,联立()2124.y k x y x ⎧-=+⎪⎨=⎪⎩,,整理得24840ky y k ++= ①.当k =0时,方程①有一个解,此时直线l 方程为y =1,与抛物线有一个公共点; 当k 0≠时,方程①为一元二次方程,判别式()2=1621k k ∆+ , 当0∆>,即112k <<时,方程①有2个不同的解,所以此时直线l 与抛物线有2个公共点; 当=0∆,即1k = 或12k <时,方程①有1个解,所以此时直线l 与抛物线有1个公共点; 当0∆<,即<1k 或12k >时,方程①有没有解,所以此时直线l 与抛物线有没有公共点; 综上所述,当k =0或1k = 或12k <时,直线l 与抛物线只有1个公共点; 当112k <<时,直线l 与抛物线有2个公共点; 当<1k 或12k >时,直线l 与抛物线有没有公共点. 如图:【总结升华】直线与抛物线有一个公共点的情况有两种情形:一种是直线平行于抛物线的对称轴;另一种是直线与抛物线相切.【变式1】过点(0,2)与抛物线y 2=8x 只有一个公共点的直线有()A . 1条B . 2条C . 3条D . 无数多条 【答案】C【变式2】已知抛物线方程y 2=4x ,当b 为何值时,直线l :y =x +b 与抛物线:(1)只有一个公共点;(2)两个公共点;(3)没有公共点. 当直线与抛物线有公共点时,b 的最大值是多少?【解析】联立y =x +b 和y 2=4x ,消去x ,可得一元二次方程:2440y y b +=当()=161=0b ∆ ,即b =1时,直线和抛物线只有一个公共点; 当()=161>0b ∆ ,即b <1时,直线和抛物线有两公共点; 当()=161<0b ∆ ,即b >1时,直线和抛物线没有公共点. 当直线和抛物线有公共点时,b ≤1,所以b 的最大值是1. 类型三:焦点弦和焦半径例4. 斜率为1的直线经过抛物线24y x =的焦点,与抛物线相交于两点A 、B ,求焦点弦长AB 的长. 【解析】方法一:由抛物线的标准方程可知,抛物线焦点的坐标为F (1,0), 所以直线AB 的方程为01(1)y x -=⋅-,即1y x =-,① 将方程①代入抛物线方程24y x =,化简得2610x x -+=, 解这个方程,得132x =+,232x =-, 将1322x =+2322x =-得122y =+2222y =-,即A (322+222+),B (32-222-, ∴22||(42)(42)8AB =+.方法二:由抛物线的定义可知,|AF |=AD |=1x +1, |BF |=|B C|=2x +1,于是|AB |=|AF +|BF |=1x +2x +2. 在方法一中得到方程2610x x -+=后, 根据根与系数的关系可以直接得到1x +2x =6, 于是立即可以求出|AB |=6+2=8.方法三:抛物线24y x =中24p =,直线的倾斜角为4π 所以焦点弦长224==81sin 2p AB θ=. 【总结升华】求抛物线弦长的一般方法: ①用直线方程和抛物线方程列方程组;②消元化为一元二次方程后,应用韦达定理,求根与系数的关系式,而不要求出根,代入弦长公式()()22212121212||1|1+4PP k x x k x x x x ⎡⎤=+-+-⎣⎦特别地,若弦过焦点,即为焦点弦则据定义转化为|AB | =x 1+x 2 +p 或|AB | =y 1+y 2+p .结合②中的关系式可求解.体现了转化思想.【变式1】求抛物线22y px =的焦点弦长的最小值.【解析】设焦点弦所在直线的倾角为θ,则直线AB 的方程为:cos sin ()2py x θθ=-,设1122(,),(,)A x y B x y ,由2cos sin ()22p y x y pxθθ⎧=-⎪⎨⎪=⎩得:222222sin (2cos sin )sin 04p x p x θθθθ-++= 22122(2cos sin )sin p x x θθθ+∴+=112AB AF BF x x p ∴=+=++2222(2cos 2sin )2sin sin p pθθθθ+== 当2sin 1θ=,即2πθ=时,AB 取最小值2p .【变式1】已知AB 为抛物线y 2=2px (p >0)的焦点弦,若|AB |=m ,则AB 中点的横坐标为__________.【解析】AQ ⊥BQ ,P 为Rt △AQB 斜边中点,∴|PQ |=||22AB m=. 设AB 中点的横坐标为x 0,则|P Q|=x 0+2p. ∴x 0+2p =2m , 得x 0=2m p -. 所以AB 中点的横坐标为2m p-.【变式2】抛物线y2=4x的过焦点的弦长163,则此弦所在直线的倾斜角为__________.【解析】设弦所在直线斜率为k,由y2=4x得焦点F(1,0),则直线方程为y=k(x-1).联立y=k(x-1)和y2=4x,消去y得k2x2-(2k2+4)x+k2=0,由韦达定理得x1+x2=2224kk+,由抛物线定义知弦长d=x1+x2+p=2224kk++2=163,解得k∴倾斜角为60°或120°.。