2.5等腰三角形对称性3教案
苏科版数学八年级上册《2.5 等腰三角形的轴对称性》教学设计

苏科版数学八年级上册《2.5 等腰三角形的轴对称性》教学设计一. 教材分析等腰三角形的轴对称性是苏科版数学八年级上册的教学内容,本节课的主要内容是让学生了解等腰三角形的轴对称性质,并能够运用这一性质解决实际问题。
教材通过引入等腰三角形的对称性,引导学生发现等腰三角形的性质,培养学生的观察能力和推理能力。
二. 学情分析学生在学习本节课之前,已经掌握了三角形的基本概念和性质,具备了一定的观察和推理能力。
但是,对于等腰三角形的轴对称性的理解和运用还需要进一步的引导和培养。
三. 教学目标1.知识与技能目标:学生能够理解等腰三角形的轴对称性,并能够运用这一性质解决实际问题。
2.过程与方法目标:通过观察和推理,学生能够发现等腰三角形的性质,培养学生的观察能力和推理能力。
3.情感态度与价值观目标:学生能够积极参与课堂活动,培养对数学的兴趣和自信心。
四. 教学重难点1.教学重点:等腰三角形的轴对称性。
2.教学难点:等腰三角形轴对称性的运用。
五. 教学方法1.引导法:通过问题引导,让学生自主发现等腰三角形的性质。
2.示范法:教师通过示例,引导学生理解和运用等腰三角形的轴对称性。
3.练习法:通过课堂练习和课后作业,巩固学生的知识和技能。
六. 教学准备1.教学课件:制作相关的教学课件,帮助学生直观地理解等腰三角形的轴对称性。
2.教学素材:准备一些等腰三角形的图片和练习题,用于课堂练习和巩固。
七. 教学过程1.导入(5分钟)通过提问方式引导学生回顾三角形的基本概念和性质,为新课的学习做好铺垫。
2.呈现(10分钟)教师通过课件展示等腰三角形的图片,引导学生观察等腰三角形的特征,并提出问题:“你们能发现等腰三角形的哪些性质?”让学生进行思考和讨论。
3.操练(15分钟)教师通过示例,讲解等腰三角形的轴对称性,并引导学生进行实际操作,验证等腰三角形的性质。
4.巩固(10分钟)教师给出一些练习题,让学生独立完成,巩固对等腰三角形轴对称性的理解。
苏科版数学八年级上册教学设计《2-5等腰三角形的轴对称性(3)》

苏科版数学八年级上册教学设计《2-5等腰三角形的轴对称性(3)》一. 教材分析《2-5等腰三角形的轴对称性(3)》这一节的内容是在学生已经掌握了等腰三角形的性质和轴对称性的概念的基础上进行讲解的。
本节课的主要内容是让学生进一步理解等腰三角形的轴对称性,并能够运用这一性质解决一些实际问题。
教材通过引入等腰三角形的轴对称性,让学生通过观察、操作、思考、交流等活动,进一步理解等腰三角形的性质,提高他们的观察能力、操作能力、推理能力。
二. 学情分析学生在学习这一节内容时,已经有了一定的数学基础,他们对等腰三角形的性质和轴对称性的概念已经有了一定的了解。
但是,对于如何运用这些性质解决实际问题,他们可能还不是很清楚。
因此,在教学过程中,教师需要引导学生通过观察、操作、思考、交流等活动,进一步理解等腰三角形的轴对称性,并能够运用这一性质解决一些实际问题。
三. 教学目标1.让学生进一步理解等腰三角形的轴对称性。
2.让学生能够运用等腰三角形的轴对称性解决一些实际问题。
3.培养学生的观察能力、操作能力、推理能力。
四. 教学重难点1.重点:等腰三角形的轴对称性。
2.难点:如何运用等腰三角形的轴对称性解决实际问题。
五. 教学方法1.观察法:让学生通过观察等腰三角形的性质和轴对称性的概念,理解等腰三角形的轴对称性。
2.操作法:让学生通过实际操作,进一步理解等腰三角形的轴对称性。
3.交流法:让学生通过思考、交流,提高他们的观察能力、操作能力、推理能力。
六. 教学准备1.教师准备:教师需要准备好相关的教学材料,如PPT、等腰三角形模型的教具等。
2.学生准备:学生需要预习相关的知识,了解等腰三角形的性质和轴对称性的概念。
七. 教学过程1.导入(5分钟)教师通过PPT展示一些等腰三角形的图片,引导学生观察等腰三角形的性质,从而引出等腰三角形的轴对称性。
2.呈现(10分钟)教师通过PPT呈现等腰三角形的轴对称性的定义和性质,让学生了解等腰三角形的轴对称性。
苏科版八年级上册数学 2.5等腰三角形的轴对称性 教案

等腰三角形的轴对称性[教学目标]1.经历探索等腰三角形的轴对称性过程进一步体验轴对称的性质,培养几何能力。
2.探索并证明等腰三角形的性质定理。
3.会利用基本作图作三角形,已知底边和底边上高作等腰三角形。
教学重点等腰三角形“等边对等角”和“等腰三角形三线合一”的性质.教学难点等腰三角形“三线合一”性质的推导过程.[学习过程]活动一浏览本节课内容,了解本节课学习重点1.阅读课本60、61页。
2.等腰三角形是轴对称图形,顶角平分线所在直线是它的对称轴;等腰三角形的两个底角相等(简称“等边对等角”)3.等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合(简称“三线合一”) 4.在△ABC中,如果AB=AC,那么∠______=∠_______.5.在△ABC中,AB=AC,点D在BC上如果∠BAD=∠CAD,那么AD⊥BC,BD=CD如果BD=CD,那么∠______=∠_______,_______⊥_________;如果AD⊥BC,那么_________________,__________________.活动二做一做,想一想,证一证操作:准备好一个等腰三角形,按如图所示把等腰三角形沿顶角的平分线对折。
对于等腰三角形大家一定都不陌生。
在前面三角形的学习中我们已经有所认识。
B思考:同学们有什么发现吗?文字叙述:__________________________________________________________几何符号表述:9 / 532 1思考:如何证明上述所得到的结论呢?你能找到多少种证明这个结论的方法?1.证一证:2. 应用例题1 如图,在△ABC中,AB = AC,点D在BC上,且AD = BD。
求证:∠ADB=∠BAC练习:1.根据下列条件求等腰三角形各个内角的度数。
(1)一个底角为70°;(2)一个内角为70°。
(3)一个内角为100°2.如图,在△ABC中,AB=AC,且BC=BD=AD,求△ABC 各角的度数.3.如图,在△ABC中,AB = AC,点D在BC上,且AD = BD。
八年级数学上册《等腰三角形的轴对称性》教案、教学设计

4.培养学生的空间想象能力,为高中阶段的立体几何学习打下基础。
在教学过程中,教师要关注学生的个体差异,充分调动学生的学习积极性,鼓励学生主动探究、积极思考,使学生在掌握知识的同时,提高综合素养。
二、学情分析
八年级学生对几何图形具有一定的认识和了解,但在轴对称性方面的知识掌握程度不同。大部分学生已经掌握了等腰三角形的定义和基本性质,但对等腰三角形轴对称性的理解尚不深入。在学习本章节时,学生可能面临以下情况:
2.课后思考题:
a.请举例说明等腰三角形的轴对称性质在实际生活中的应用;
b.运用等腰三角形的性质,设计一个美丽的轴对称图案,并简要说明设计思路。
通过思考题,激发学生的创新意识,培养学生的几何审美观念。
3.小组合作探究题:
a.探讨等腰三角形与等边三角形的区别与联系;
b.分析等腰三角形在几何图形中的应用,如等腰三角形在建筑、艺术等方面的运用。
(五)总结归纳,500字
1.教师引导学生回顾本节课所学内容,总结等腰三角形的轴对称性质及其应用。
2.学生分享自己的学习心得,总结自己在学习过程中遇到的困难和解决方法。
3.教师对本节课的重点知识进行梳理,强调等腰三角形与等边三角形的区别与联系。
4.布置课后作业,要求学生在课后对所学知识进行巩固,提高自己的几何素养。
3.设计多样化的课堂活动,如小组讨论、合作交流,让学生在互动中深入理解等腰三角形的性质;
4.强化练习环节,针对教学难点设计梯度性练习题,帮助学生巩固所学知识;
5.创设实际问题情境,引导学生运用轴对称性质解决实际问题,培养学生的应用意识和创新意识;
6.注重课堂反馈,及时发现学生存在的问题,给予个性化指导。
苏科版数学八年级上册 2.5 等腰三角形的轴对称性 教案

2.5等腰三角形的轴对称性教学目标:【知识与技能】感受等腰三角形的轴对称性,掌握其相关性质,能够运用性质解决相关问题;【过程与方法】经历“操作-探究-归纳-证明”的数学活动,发展合情推理和演绎推理的能力;【情感态度与价值观】培养学生探究问题的兴趣、合作交流的意识、动手操作的能力与探索精神,增强解决问题的信心,获得解决问题的成功体验.教学重点:等腰三角形的轴对称性及其相关的性质.教学难点:等腰三角形的性质证明及其应用.一、课前准备预习课本60-62二、教学过程(一)创设情境,观察联想(二)动手操作,探究新知探究一:你能用一张长方形纸片剪出等腰三角形吗?问题:(1)你知道等腰三角形是如何定义的吗?(2)剪出的△ABC 是轴对称图形吗?它的对称轴是什么?(3)你能发现剪出的图形具有哪些边和角相等吗?探究二:观察、猜想、探究得出结论:1.猜想:等腰三角形ABC有哪些性质?(1).(2).(3).2.你会证明你的猜想吗?已知:如图,△ABC中,AB=AC.求证:∠B=∠C.问题:(1)如何证明两个角相等?(2)如何构造两个全等的三角形呢?BCADah性质定理 .符号语言:∵在△ABC 中,∴性质定理 .符号语言:在△ABC 中(1)∵AB=AC ,AD ⊥BC∴∠ =∠ , = ; (2)∵AB=AC ,BD=CD ,∴∠ =∠ , ⊥ ; (3)∵AB=AC ,∠BAD=∠CAD∴ ⊥ , = .(三)应用新知,体验成功例:如图的房屋人字梁架中,AB=AC,AD ⊥BC,∠BAC=110°,求∠B 、∠C 、∠BAD 、∠CAD 的度数.练习巩固,学以致用1.(1)等腰三角形一个底角为70°,它的另外两个角为 ;(2)等腰三角形一个角为70°,它的另外两个角为___ ;(3)等腰三角形一个角为110°,它的另外两个角为 . (四)应用实践,巩固拓展探究三:用直尺和圆规作等腰三角形ABC,使底边BC =a,高AD =h.例:如图,在△ABC 中,AB=AC,点D 在BC 上,且AD=BD, 求证∠ADB=∠BAC .DCBABCA变式:如图,在△ABC 中,AB=AC=CD,点D 在BC 上,且AD=BD,则∠C 的度数是____.拓展提高:已知:如图,点B 、D 、E 、C 在同一直线上,AB=AC , AD=AE. 求证:BD=CE.三、课堂小结通过今天的学习,你有哪些收获?. . .四、课后作业与反思..。
2.5等腰三角形的轴对称性(3)教案

2.5等腰三角形的轴对称性(3)二次备课教学目标:1.探索并掌握直角三角形的一个性质定理:直角三角形斜边上的中线等于斜的一半.2.经历“折纸、画图、观察、归纳”的活动过程,发展学生的空间观念和抽象、概括能力,不断积累数学活动的经验.3.在交流过程中,引导学生体会推理的思考方法,进一步提高说理、分析、猜想和归纳的能力.4. 引导学生理解合情推理和演绎推理都是获得数学结论的重要途径,进一步体会证明的必要性.教学重点:探索并能应用“直角三角形斜边上的中线等于斜边的一半”解决相关数学问题.教学难点:引导学生用“分析法”证明“直角三角形斜边上的中线等于斜边的一半”.教学过程一、创设情境提问: 1.等腰三角形有哪些性质?2.怎样判定一个三角形是等腰三角形?设计思路:复习回顾等腰三角形的性质及判定方法,为下面解决问题作铺垫,同时也明确无论是证明线段相等还是折出等腰三角形,都只要证(寻)得相等的角即可.二、应用反馈1.已知:如图,∠EAC是△ABC的外角,AD平分∠EAC,AD∥BC.求证:AB=AC.B思考:(1)上图中,如果AB =AC ,AD ∥BC ,那么AD 平分∠EAC 吗?试证明你的结论.(2)上图中,如果AB =AC ,AD 平分∠EAC ,那么AD ∥BC 吗?通过这一系列问题的解决,你有什么发现?归纳结论:①AB =AC ;②AD 平分∠EAC ;③AD ∥BC 三个论断中,其中任意两个成立,第三个一定也成立..设计思路:对等腰三角形的判定方法的直接应用,同时也为下面折纸活动作铺垫.“思考”两题是第1题的变式,同时也是“等边对等角”性质的应用.培养学生积极思考,举一反三的思维习惯,也培养学生的归纳概括能力.三、探索活动1.提问:你能用折纸的方法将一个直角三角形分成两个等腰三角形吗?2.学生思考,操作,小组内交流.B3.提问:△ACD 与△BCD 为什么是等腰三角形?请说明理由.4.观察图形,你还有哪些发现?有4个直角三角形全等;BD =CD =AD =12AB“直角三角形斜边上的中线等于斜边的一半” .符号语言表述; ∵ 在△ABC 中,∠ACB =90°,点D 是AB 的中点, ∴ CD = 21AB .5.尝试练习. (1)Rt △ABC 中,如果斜边AB 为4cm ,那么斜边上的中线CD =_______cm .(2)如图,在Rt △ABC中,CD 是斜边AB 上的中线,DE ⊥AC ,垂足为E .B①如果CD =2.4cm ,那么AB = cm .②写出图中相等的线段和角.(3)在Rt △ABC 中,∠ACB =90°,CA =CB ,如果斜边AB =5cm ,那么斜边上的高CD = cm .四、例题讲解 1.如图,Rt △ABC ,∠ACB =90°,如果∠A =30°,那么BC 与AB 有怎样的数量关系?分析:(1)对于BC 与AB 的数量关系,你有何猜想?(2)我们猜想BC =21AB ,根据我们学过的知识,什么与21AB 相等?这对于你证明结论有启发吗?(3)指导学生完成证明过程2.已知:如图,点C 为线段AB 的中点, ∠AMB =∠ANB =90°,CM 与CN是否相等?为什么?CB CB五、应用拓展如图,在四边形ABCD中,∠ABC=∠ADC=90°,M、N分别是AC、BD的中点,试说明:(1)MD=MB;(2)MN⊥BD.B六、小结通过本节课的学习你有什么体会?七、作业补充习题。
2.5 等腰三角形的轴对称性(3)

东山莫厘中学2015-2016八年级第一学期教学案【教学目标】:(一)知识目标:根据等腰三角形的轴对称性得出并掌握等边三角形的性质:(1)“等边对等角”和“三线合一”的性质;(2)掌握等边三角形本身所具有的特殊的性质;(3)掌握等边三角形识别的方法。
(二)能力目标:能够熟练的运用等边三角形的相关性质和判定解决问题.(三)情感与价值观目标:经历“折纸、画图、观察、归纳”的活动过程,发展学生的空间观念和抽象、概括能力,感受分类、转化等数学思想方法,不断积累数学活动的经验重点:等边三角形相关性质和识别的应用;难点:等边三角形性质和识别的运用.新课讲解一、课前导学1等边三角形_____(填“是”或“不是”)轴对称图形,对称轴有_____条,是_______.4.如图,E是等边△ABC中AC边上的点,∠1=∠2,BE=CD,则对△ADE的形状的判断是_________.5.师生互动推导出以下性质:讨论:(师生互动)3二、 例题精讲例1、 如图,D 是等边△ABC 的边AB 上的一动点,以CD 为一边向上作 等边△EDC ,连接AE ,找出图中的一组全等三角形,并说明理由.例2 、如图,等边△ABC 的两条中线BD 、CE 相交于点O , (1)求∠BOE 的度数;(2)说明:△AED 是等边三角形,△BED 是等腰三角形.OABCDE例3、用等边三角形的性质探索结论:直角三角形中30°的角所对的直角边等于斜边的一半. 如图1,在Rt △ABC 中,∠ACB =90°,∠B =30°,试说明:AC =12AB .三、课堂练习1.如图,D、E是△ABC的边BC上的两点,BD=DE=EC=AD=AE,则∠BAC的度数为_______.2.在△ABC中,BA=BC,∠B=120°,AB的垂直平分线交AC于点D,则AD与DC的大小关系为________.3.如图,△ABC是等边三角形,点D、E分别在BC、AC上,且AE=CD,AD与BE相交于点F.(1)试说明△ABE≌△CA D.(2)求∠BFD的度数.4.如图,在等边△ABC中,AD⊥BC于D,以AD为一边向右作等边△ADE.请判断AC、DE的位置关系,并说明理由.四、课堂小结:五、课后作业:1.已知:如图,在等边三角形ABC的AC边上取中点D,BC的延长线上取一点E,使CE=CD.试说明:BD=DE.2.如图,△ABC是等边三角形,P为△ABC内部一点,将△ABP绕点A逆时针旋转后,能与△ACP'重合.如果AP=3.求PP'的长.3.已知△ABC为等边三角形,在图①中,点M是线段BC上任意一点,点N线段CA上任意一点.且BM=CN,直线BN与AM相交于Q点.(1)请猜一猜:图①中∠BQM等于多少度?(2)若M、N两点分别在线段BC、CA的延长线上,其他条件不变,如图②所示,(1)中的结论是否仍然成立?请说明理由.六、板书设计:七、教学反思:。
等腰三角形的轴对称性(3)教学案 八年级数学 苏科版

课题:2.5等腰三角形的轴对称性(3)班级 姓名 学号【学习目标】1.由等腰三角形的性质推出等边三角形的特殊性质2.等边三角形性质的运用3.等边三角形的判定方法 【重点难点】重点:等边三角形性质运用及等边三角形的判定方法 难点:等边三角形性质的综合应用 【新知导学】读一读:阅读课本P 62-P 64想一想:1. 什么样的三角形是等边三角形?2.有一个角等于600的等腰三角形是等边三角形吗?3.在一个等腰三角形中,如果腰与底相等,这样的三角形具有什么特殊的性质?练一练:1.等边三角形是 图形,对称轴是2.如图,△ABC 是边长为4cm 的等边三角形,AD ⊥BC ,则∠BAD= ,BD=第2题图 第3题图3.已知:如图,在△ABC 中,∠A=∠B=∠C. 求证:△ABC 是等边三角形。
D CBCBA【新知归纳】1.的三角形是等边三角形或。
.2.等边三角形除具有等腰三角形的一切性质外,还有特殊性质:(1)等边三角形是图形,并且有条对称轴。
(2)等边三角形的每个角都等于度。
3.等边三角形的判定方法:(1)三个角都的三角形是等边三角形。
(2)有一个角是的等腰三角形是等边三角形。
【例题教学】例1.有一个角是600的等腰三角形是等边三角形吗?请说明理由。
例2.如图,P、Q是△课题:2.5等腰三角形的轴对称性(3)【当堂训练】1.在等边三角形、角、线段这三个图形中,对称轴最多的是 ,它共有 条对称轴。
2.等边三角形中,两条中线所夹的钝角的度数为( ) A .120° B .130° C .150° D .160°3.下列命题中,①有一个外角是120°的等腰三角形是等边三角形;②有两个外角相等的等腰三角形是等边三角形;③有一边上的高也是这边上中线的等腰三角形是等边三角形;④三个外角都相等的三角形是等边三角形,正确的个数有( )A .4个B .3个C .2个D .1个4.如图,在等边三角形ABC 的边BC 、AC 上分别取点D 、E ,使BD=CE ,AD 与BE 相交于点F . 求∠AFE 的度数5.如图,△ABC 是等边三角形,点D 、E 、F 分别在AB 、BC 、CA 的延长线上,•且BD=CE=AF . △DEF 也是等边三角形吗?为什么?【课后巩固】EF D CB AF CB ACDEBA1.等腰三角形的周长为80 cm ,若以它的底边为边的等边三角形周长为30cm ,则该等腰三角形的腰长为( )A .25 cmB .35 cmC .30 cmD .40 cm2.如图,在△ABC 中,AB=AC ,∠BAC=120°, AD ⊥AB,AE ⊥AC.图中,等于30°的角有__ _个,等于60°的角有 个。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
怀文中学2013—2014学年度第一学期教学设计
初二数学2.5等腰三角形对称性(3)
主备:陈秀珍审校张苏梅日期:2013年9月30日
教学目标:1.探索并掌握直角三角形的一个性质定理:直角三角形斜边上的中线等于斜边的一半;
2.经历“折纸、画图、观察、归纳”的活动过程,发展学生的空间观念和抽
象、概括能力,不断积累数学活动的经验;
3.在交流过程中,引导学生体会推理的思考方法,进一步提高说理、分析、
猜想和归纳的能力;
教学重点:探索并能应用“直角三角形斜边上的中线等于斜边的一半”解决相关问题.教学难点:引导学生用“分析法”证明“直角三角形斜边上的中线等于斜边的一半”作业布置:课本P68习题2.5第11、12题.
教学内容:
一、自主探究
1.等腰三角形有哪些性质?
2.怎样判定一个三角形是等腰三角形?
二、自主合作
根据你所掌握的方法独立解决下列问题:
1.已知:如图,∠EAC是△ABC的外角,AD平分∠EAC,AD∥BC.求证:AB=AC.
思考:(1)上图中,如果AB=AC,AD∥BC,那么AD平分∠EAC吗?试证明你的结论.(2)上图中,如果AB=AC,AD平分∠EAC,那么AD∥BC吗?
三、自主展示
活动一:操作·探索
1.提问:你能用折纸的方法将一个直角三角形
分成两个等腰三角形吗?
B B
2.提问:△ACD 与△BCD 为什么是等腰三角形?请说明理由.
3.提问:观察图形,你还有哪些发现? 活动二:探索·说理 1.提问.(1)D 是斜边AB 的中点吗?
(2)斜边AB 上的中线CD 与斜边AB 有何数量关系?
2.刚才我们通过折纸活动发现“直角三角形斜边上的中线等于斜边的一半”,你能说明理由吗?
(1)你能根据题中的已知条件和要说明的结论画出图形来表示吗? (2)思考:怎样说明CD =1
2
AB ?
四、自主拓展
1.如图,Rt △ABC ,∠ACB =90°,如果∠A =30°,那么BC 与AB 有怎样的数量关系?试证明你的结论.
2.已知:如图,点C 为线段AB 的中点, ∠AMB=∠ANB=90°.CM 与CN 是否相等?为什
么?
1.课本P66练习2.
五、自主评价
1.如图,在四边形ABCD 中,∠ABC =∠ADC =90°,M 、N 分别是AC 、BD 的中点,试说明:
(1)MD =MB ; (2)MN ⊥BD .
课堂小结: (1)定理:“直角三角形斜边上的中线等于斜边的一半”,并用符号语言表述;(2)证明中常用的一种思考方法:即分析法从需要证明的结论出发,逆推出要使结论成立所需要的条件,再把这样的“条件”看作“结论”,一步一步逆推,直至归结为已知条件.
教学反思:
B
B。