ANSYS Workbench 网格划分

合集下载

ANSYSWorkbenchMesh网格划分(自己总结)

ANSYSWorkbenchMesh网格划分(自己总结)

ANSYSWorkbenchMesh网格划分(自己总结)Workbench Mesh网格划分分析步骤网格划分工具平台就是为ANSYS软件的不同物理场和求解器提供相应的网格文件,Workbench中集成了很多网格划分软件/应用程序,有ICEM CFD,TGrid,CFX,GAMBIT,ANSYS Prep/Post等。

网格文件有两类:①有限元分析的结构网格:结构动力学分析,电磁场仿真,显示动力学分析;②计算流体力学分析的网格:用于ANSYS CFX,ANSYS FLUENT,Polyflow;这两类网格的具体要求如下:结构网格:①细化网格来捕捉关心部位的梯度,例如温度、应变能、应力能、位移等;②大部分可划分为四面体网格,但六面体单元仍然是首选;③有些显示有限元求解器需要六面体网格;④结构网格的四面体单元通常是二阶的;CFD网格:①细化网格来捕捉关心的梯度,例如速度、压力、温度等;②于是流体分析,网格的质量和平滑度对结果的精确度至关重要,这导致较大的网格数量,经常数百万的单元;③大部分可划分为四面体网格,但六面体单元仍然是首选,流体分析中,同样的求解精度,六面体节点数少于四面体网格的一半。

④CFD网格的四面体单元通常是一阶的一般而言,针对不同分析类型有不同的网格划分要求:①结构分析:使用高阶单元划分较为粗糙的网格;②CFD:好的,平滑过渡的网格,边界层转化;③显示动力学分析:需要均匀尺寸的网格;物理选项实体单元默认中结点关联中心缺省值Coarse Coarse Medium Coarse 平滑度过渡 Mechanical CFD Electromagnetic Explicit Kept Dropped Kept Dropped Medium Medium Medium Fine Fast Slow Fast Slow 注:上面的几项分别对应Advanced中的Element Midside Nodes,以及Sizeing中的Relevance Center,Smoothing,Transition。

ansysworkbenchmeshing网格划分总结

ansysworkbenchmeshing网格划分总结

Base point and delta创建出的点重合时看不到大部分可划分为四面体网格,但六面体网格仍是首选,四面体网格是最后的选择,使用复杂结构。

六面体(梯形)在中心质量差,四面体在边界层处质量差,边界层处用棱柱网格prism。

棱锥为四面体和六面体之间的过渡棱柱由四面体网格被拉伸时生成3DSweep扫掠网格划:只有单一的源面和目标面,膨胀层可生成纯六面体或棱柱网格Multizone多域扫掠网格:对象是多个简单的规则体组成时(六面体)——mapped mesh type映射网格类型:包括hexa、hexa/prism——free mesh type自由网格类型:包括not allowed、tetra、hexa dominant、hexa core(六面体核心)——src/trg selection源面/目标面选择,包括automatic、manual source手动源面选择patch conforming:考虑一些小细节(四面体),包括CFD的膨胀层或边界层识别patch independent:忽略一些小细节,如倒角,小孔等(四面体),包括CFD 的膨胀层或边界层识别——max element size 最大网格尺寸——approx number of elements大约网格数量mesh based defeaturing 清除网格特征——defeaturing tolerance 设置某一数值时,程序会根据大小和角度过滤掉几何边Use advanced size function 高级尺寸功能——curvature['kɜːvətʃə]曲率:有曲率变化的地方网格自动加密,如螺钉孔,作用于边和面。

——proximity[prɒk'sɪmɪtɪ]邻近:窄薄处、狭长的几何体处网格自动加密,如薄壁,但花费时间较多,网格数量增加较多,配合min size使用。

控制面网格尺寸可起到相同细化效果。

AnsysWorkbench划分网格

AnsysWorkbench划分网格

Ansys Workbench 划分网格(张栋zd0561@)1、对于三维几何体(对于三维几何体(3D 3D 3D))有几种不同的网格化分方法。

如图1下部所示。

图1网格划分的种类1.1、Automatic(自动划分法)1.2、Tetrahedron(四面体划分法)它包括两种划分方法:Patch Conforming(A W 自带功能),Patch Independent(依靠ICEM CFD Tetra Algorithm 软件包来实现)。

步骤:Mesh(右键)——Insert——Method(操作区上方)Meshcontrl——Method(左下角)Scope——GeometryMethod——Tetrahedrons(四面体网格)Algorithm——Patch Conforming(补充:Patch Independent该算法是基于Icem CFD Tetra的,Tetra部分具有膨胀应用,其对CAD许多面的修补均有用,包括碎面、短边、较差的面参数等。

在没有载荷或命名选项的情况下,面和边无需考虑。

)图2四面体网格分两类图3四面体划分法的参数设置1.3、Hex Dominant(六面体主导法)1.4、Sweep(扫掠划分法)1.5、MultiZone(多区划分法)2、对于面体或者壳二维几何对于面体或壳二维(2D),A W有一下:Quad Dominant(四边形单元主导)Triangles(三角形单元)Uniform Quad/Tri(均匀四面体/三角形单元)Uniform Quad(均匀四边形单元)3、网格参数设置下图为缺省设置(Defaults)下的物理环境(Physics Preferance)图4网格参数设置图5Mechanical默认网格上图中的关键数据:物理优先项、关联中心缺省值、平滑度、过渡、跨越角中心、实体单元默认中节点。

图6缺省参数设置上图中,虽然Relevance Center是在尺寸参数控制选项里设置的,但由于Relevance需要与其配合使用,故在此介绍。

ansys_workbench_15.0_网格划分讲解

ansys_workbench_15.0_网格划分讲解

Advanced Contact & Fasteners
基于网格相关度控 制网格密度的方法 ,设置的单元尺寸 对于网格密度有着 重要的影响!
3.网格控制-总体尺寸控制-高级尺寸函数
Training Manual
Advanced Contact & Fasteners
Advanced Sizing Functions (ASF) -该项功能用于控制接近表面区域和具有高曲 率区域的网格生长和分布 高级尺寸函数有五个选项: -关闭高级尺寸函数(off) -Proximity and Curvature -Curvature -Proximity -Fixed
Training Manual
Advanced Contact & Fasteners
1. Meshing网格划分概述
Training Manual
Advanced Contact & Fasteners
Workbench中的Meshing应用程序的目标是提供通用的网 格划分格局。网格划分工具可以在任何分析类型中使用:
Training Manual
Advanced Contact & Fasteners
3.网格控制-总体尺寸控制-高级尺寸函数
Training Manual
Advanced Contact & Fasteners
3.网格控制-总体尺寸控制-高级尺寸函数
Curvature尺寸控制函数
-该函数基于模型中的曲率信息控制网格,主要 作用于模型中的孔,洞和缺陷处。 该函数有5个控制参数: Curvature Normal Angle-曲率法向角度 Min Size-总体最小尺寸 Max Face –面上最大尺寸 Max Size-总体最大尺寸 Growth Rate-网格生长率

AnsysWorkbench划分网格

AnsysWorkbench划分网格

Ansys Workbench 划分网格(张栋zd0561@)1、对于三维几何体(对于三维几何体(3D 3D 3D))有几种不同的网格化分方法。

如图1下部所示。

图1网格划分的种类1.1、Automatic(自动划分法)1.2、Tetrahedron(四面体划分法)它包括两种划分方法:Patch Conforming(A W 自带功能),Patch Independent(依靠ICEM CFD Tetra Algorithm 软件包来实现)。

步骤:Mesh(右键)——Insert——Method(操作区上方)Meshcontrl——Method(左下角)Scope——GeometryMethod——Tetrahedrons(四面体网格)Algorithm——Patch Conforming(补充:Patch Independent该算法是基于Icem CFD Tetra的,Tetra部分具有膨胀应用,其对CAD许多面的修补均有用,包括碎面、短边、较差的面参数等。

在没有载荷或命名选项的情况下,面和边无需考虑。

)图2四面体网格分两类图3四面体划分法的参数设置1.3、Hex Dominant(六面体主导法)1.4、Sweep(扫掠划分法)1.5、MultiZone(多区划分法)2、对于面体或者壳二维几何对于面体或壳二维(2D),A W有一下:Quad Dominant(四边形单元主导)Triangles(三角形单元)Uniform Quad/Tri(均匀四面体/三角形单元)Uniform Quad(均匀四边形单元)3、网格参数设置下图为缺省设置(Defaults)下的物理环境(Physics Preferance)图4网格参数设置图5Mechanical默认网格上图中的关键数据:物理优先项、关联中心缺省值、平滑度、过渡、跨越角中心、实体单元默认中节点。

图6缺省参数设置上图中,虽然Relevance Center是在尺寸参数控制选项里设置的,但由于Relevance需要与其配合使用,故在此介绍。

ANSYS 13.0 Workbench 网格划分及操作案例

ANSYS 13.0 Workbench 网格划分及操作案例
对选中的实体可施加 6 种网格划分方法,如图 3­3 所示。
图 3­3 3D 实体网格划分方法
(1)自动划分网格【Automatic】:程序基于几何的复杂性,自动检测实体,对可以扫掠 的实体采用扫掠方法划分六面体网格,对不能扫掠划分的实体采用协调分片算法划分四面体 网格。
(2)四面体网格【Tetrahedrons】:生成四面体单元,采用基于 TGrid 的协调分片算法【Patch Conforming】和基于 ICEM CFD 的独立分片算法【Patch Independent】。
ANSYS 13.0 中,两种四面体算法都可用于零件、体及多体零件,也可用于膨胀层网格。 协调分片算法的分片面及边界考虑零件实体间的相互影响采用小公差,常用于考虑几何体的 小特征,可以用虚拟拓扑工具把一些面或边组成组,构成虚拟单元,从而减少单元数目,简 化小特征,简化载荷提取,因此如果采用虚拟拓扑工具可以放宽分片限制。
1)六面体域网格【Hex Dominant】:生成非结构化的六面体域网格,主要采用六面体单元, 但是包含少量棱锥单元和四面体单元,用于那些不能扫掠的体,常用于结构分析。也用于不 需要膨胀层及偏斜率和正交质量在可接受范围内的 CFD 网格划分。
使用方法为:导航树中选择【Mesh】,右击鼠标,选择【Insert】→【Method】,图形区选 择要划分的实体确认,明细窗口中设置【Method】=Hex Dominant,如图 3­7 所示。
图 3­8 显示可扫掠实体
在【Mesh】上单击右键,选择【Insert】→【Method】,图形区中确认要扫掠的实体,明细窗 口中设置【Method】=Sweep,如果对薄壁模型,补充设置薄层扫掠【Src/Trg Selection】=Automatic Thin,沿厚度的单元层数【Sweep Num Divs】=2,可以得到薄层扫掠网格,参见图 3­9 所示。

Ansys15.0workbench网格划分教程

Ansys15.0workbench网格划分教程

第3章Workbench网格划分3.1 网格划分平台ANSYS Workbench中提供ANSYS Meshing应用程序(网格划分平台)的目标是提供通用的网格划分格局。

网格划分工具可以在任何分析类型中使用。

●FEA仿真:包括结构动力学分析、显示动力学分析(AUTODYN、ANSYS LS/DYNA)、电磁场分析等。

●CFD分析:包括ANSYS CFX、ANSYS FLUENT等。

3.1.1 网格划分特点在ANSYS Workbench中进行网格划分,具有以下特点:●ANSYS网格划分的应用程序采用的是Divide & Conquer(分解克服)方法。

●几何体的各部件可以使用不同的网格划分方法,亦即不同部件的体网格可以不匹配或不一致。

●所有网格数据需要写入共同的中心数据库。

●3D和2D几何拥有各种不同的网格划分方法。

ANSYS Workbench 15.0从入门到精通ANSYS Workbench中提供的网格划分法可以在几何体的不同部位运用不同的方法。

1.对于三维几何体对于三维几何体(3D)有如图3-1所示的几种不同的网格划分方法。

图3-1 3D几何体的网格划分法(1)自动划分法(Automatic)自动设置四面体或扫掠网格划分,如果体是可扫掠的,则体将被扫掠划分网格,否则将使用Tetrahedrons下的Patch Conforming网格划分器划分网格。

同一部件的体具有一致的网格单元。

(2)四面体划分法(Tetrahedrons)四面体划分法包括Patch Conforming划分法(Workbench自带功能)及Patch Independent划分法(依靠ICEM CFD Tetra Algorithm软件包实现)。

四面体划分法的参数设置如图3-2所示。

图3-2 四面体划分法的参数设置Patch Independent网格划分时可能会忽略面及其边界,若在面上施加了边界条件,便不能忽略。

ANSYSWorkbenchMesh网格划分(自己总结)

ANSYSWorkbenchMesh网格划分(自己总结)

ANSYSWorkbenchMesh网格划分(自己总结)Workbench Mesh网格划分分析步骤网格划分工具平台就是为ANSYS软件的不同物理场和求解器提供相应的网格文件,Workbench中集成了很多网格划分软件/应用程序,有ICEM CFD,TGrid,CFX,GAMBIT,ANSYS Prep/Post等。

网格文件有两类:①有限元分析的结构网格:结构动力学分析,电磁场仿真,显示动力学分析;②计算流体力学分析的网格:用于ANSYS CFX,ANSYS FLUENT,Polyflow;这两类网格的具体要求如下:结构网格:①细化网格来捕捉关心部位的梯度,例如温度、应变能、应力能、位移等;②大部分可划分为四面体网格,但六面体单元仍然是首选;③有些显示有限元求解器需要六面体网格;④结构网格的四面体单元通常是二阶的;CFD网格:①细化网格来捕捉关心的梯度,例如速度、压力、温度等;②于是流体分析,网格的质量和平滑度对结果的精确度至关重要,这导致较大的网格数量,经常数百万的单元;③大部分可划分为四面体网格,但六面体单元仍然是首选,流体分析中,同样的求解精度,六面体节点数少于四面体网格的一半。

④CFD网格的四面体单元通常是一阶的一般而言,针对不同分析类型有不同的网格划分要求:①结构分析:使用高阶单元划分较为粗糙的网格;②CFD:好的,平滑过渡的网格,边界层转化;③显示动力学分析:需要均匀尺寸的网格;物理选项实体单元默认中结点关联中心缺省值Coarse Coarse Medium Coarse 平滑度过渡 Mechanical CFD Electromagnetic Explicit Kept Dropped Kept Dropped Medium Medium Medium Fine Fast Slow Fast Slow 注:上面的几项分别对应Advanced中的Element Midside Nodes,以及Sizeing中的Relevance Center,Smoothing,Transition。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

确定全局网格的设置
d. Proximity and curvature:具有proximity和curvature二者的特点, 但所消耗的时间也多。 e. Fixed:以设定的大小划分网格,当然也不会更具曲率大小自动细化 网格 • ASF选项如下图所示:
确定全局网格的设置
• 对于Relevance和Relevance Center选项: a. Relevance:网格相关度,数值从-100至+100,代表网格的由疏到密。 b. Relevance Center:代表网格Coarse(稀疏)、Medium(中等)、Fine(细 化) c. Relevance和Rlevance Center详细栏
Hex Dominant网格划分
• Hex-Dominant网格实际上是在模型的外面生成六面体单元,而里面是 四面体单元。它的算法是先在外表面生成一个平面网格,然后经过向 内拖拉形成块/锥,最后再在内部添加锥形四面体单元。这种方法适 用于块状的几何体,而对于细长类的几何体适用性并不好。
Hex-Dominant网格
流程图
确定物理场和网格划分法
• 划分网格之前必须首先确定物理场的类型,即究竟是结构场、流场、 显式动力学还是电磁场。不同类型的物理场下的一些参数往往是不相 同的。如下图所示的详细栏信息:
确定全局网格的设置
• 全局网格设置通常用于整体网格划分的部署,包括网格尺寸函数、 inflation、平滑度、模型简化、参数输入、激活等。 • 设置合适的全局网格参数可以减小后面具体网格参数的设置工作量, 对于结构场,其详细栏见上个PPT的mechanical,下面以结构分析为 例对其展开描述。Mechanical中的尺寸函数(sizing)下参数项是高 级尺寸函数(advanced sizing function,简称ASF),这主要是控制 曲线、面在曲率较大的地方的网格。具体选项有: a) Off:在此项时先从边开始划分网格,再在曲率较大处细化边网格,接 下来再产生面网格,最后才产生体网格。 b) Curvature:是由曲率法确定、细化边和曲面处的网格大小 c) Proximity:是控制模型邻近区网格生成,主适用于窄、薄处网格的 生成。
检查网格质量
• 在mechanical下网格检查准则有:element quality(单元质量检 验)、aspect ratio(纵横比)、jacobian ratio(雅克比率)、 warping factor(翘曲因子)、Parallel Deviation(平行偏差)、 Maximum Corner Angle(最大转弯角)、Skewness(偏度)、Orthogonal Quality(正交程度质量)。下图是Element Quality(单元质量检验)的 结果图。
确定局部网格的设置
• 1. a. b. 局部网格设置主要确定以下参数 sizing:用来设置局部单元大小,如下图所示,常采用如下两类: element size:用来设置单元的平均边长 sphere of influence:用球体来设定单元平均大小的范围,球体的中 心坐标采用的是局部坐标系,所有包含在球体内的实体,其单元网格 大小均按设定的尺寸划分。
确定局部网格的设置
4. Mapped Face Meshing:这是映射面网格划分。 其特点是允许在面上生成结构网格,由于进行映射网格划分可以得到一 致的网格,所以这对计算求解是有益的。 5.Match Control:这是面匹配网格划分。 这用于定义三维实体的周期面或二维面体的周期边,从而在对称面或对 称边上划分出一致的网格。Match control尤其适用于旋转机械的旋 转对称分析 6. Pinch:这用于网格的收缩控制 pinch可以在划分网格时自动去除模型上的一些小特征,如边、狭窄区等, 但要知道: a. Pinch仅对点和边才有效,对面和体是无效的。 b. pinch不支持笛卡尔网格
直接划分网格
• 在workbench14.0中可以直接划分网格(Direct Meshing) ,操作时只要在树形窗口几何体(Geometry)项下用鼠标 选中相应的几何体,再在右键弹出的快捷菜单中选中 Genetate Mesh产生网格即可。 • 直接划分网格的最大的优点之一就是能单独地划分几何体 的网格,即以前划分网格时只能整个模型一起同时划分。 显然,对于我们而言,直接控制网格划分具有更大的柔性。
扫掠型
自动划分法
• 自动划分法(automatic method) 自动划分实际就是在四面体与扫掠型划分之间自动切换,这取决于被划 分的几何体能否被扫掠。具体的说当几何体不规则(即不能被扫掠) 时,程序就自动产生四面体。反之,当几何体规则(即能被扫掠)时 就产生六面体网格。
四面体网格 六面体网格
此处切断
确定局部网格的设置
7. inflation 当一些物理参数在边界层处的梯度变化很大时,为了精确地描述 这些参数,inflation法通常将边界层处的网格密度应较之其他地方 划分得较密一点,一般在CFD分析中处理边界层处的网格常用 inflation方法。当然,在FEM中若对表面边界层处的结果感兴趣的话, 亦可用inflation方法。 插入局部网格设置方法如下图所示:
四面体网格
2. a. b. c. 基于ICEM CFD Tetra法的四面体网格有以下特点: 划分网格时依次从几何的体、面、边顺序划分网格 主要适用于比较“烂”即比较“脏”的几何体 几何体上的面积边界等的影响往往可能被忽略,即粗糙的网格可能 忽略几何体表面细节
扫掠型网格
• 这种网格划分方法主要是产生六面体网格或者棱柱形网格。但要注意 被划分体必须是可扫掠(规则几何体)的,且有单一的原面和单一的 目标面。
典型网格划分法
• 主要内容
四面体网格
• 在三维网格中,相对而言四面体网格划分是最简单的。在workbench 中,四面体网格的生成主要基于两种方法:RGRID算法和ICEM CFD tetra算法,具体如下: 1. 基于TGRID算法的四面体网格 TGRID算法的四面体网格有以下特点: a. 划分网格是一次从几何的边、面、体的顺序划分网格 b. 划分网格时都考虑到了几何体上的面积边界,包括边界层上网格的设 置等。 c. 主要适用于比较好即较“干净”的几何体 d. 同一几何体上可以有不同的网格类型,如扫掠法产生的网格
目录
• • • • 认识网格划分平台 典型网格划分法 网格划分的工作流程 网格划分实例
认识网格划分平台
网格文件具体地说主要有两类:有限元分析网格和计算流体力学 的网格。
认识网格划分平台
• 对于三维几何体,ANSYS共有下面六种不同的划分网格法
认识网格划分平台
• 对于二维几何体ANSYS有以下几种不同的划分网格法。
1
2
预览并划分网格
• 当网格的各类参数设置完后就可以划分网格了。用户可以采用直接划 分网格(direct meshing)先单独划分部分实体的网格,也可以整体 一起划分网格。如下图所示:
1
1
2
2 直接划分网格 整体一起划分网格
检查网格质量
• 当网格划分结束后可以检查网格的质量。一般而言不同物理场和不同 求解器所要求的网格检查准则是不同的,下图是在结构场下网格检查 准则的选项图。
2.contact sizing:用于接触区域的网格设置 在接触面上产生大小一致的单元有利于分析,具体设置类型有: element size和relevance。如下图所示:
3.refinement:用于网格局部单元细化,但要注意: a.refinement仅对边和面有效 b.refinement标准值范围是1~3之间,其中为1时,单元边界划 分为初始单元边界的一半,这通常是在生成粗网格后,再细化 网格的简易方法。 注:refinement和尺寸控制是有区别的。 •尺寸控制在划分前就设定的平均单元长度。通常来说,在定义 的几何体上可以产生一致的网格,网格过渡较平滑。 •refinement打破了原来划分的网格。如果原来的网格原本就不 一致,则细化后的网格也不一致。虽然程序对单元的过渡进行 平滑处理,但细化后仍有可能有不平滑的过渡。
多域扫掠型
• 多域扫掠型(Multizone Sweep Meshing)主要用来划分六面体网格。 其特点就是具有几何体自动分解的功能,从而产生六面体网格。如下 图所示左边的几何体,若以常规的方式想划分成全六面体网格,则需 要先将几何体切分成四个规则体后,再扫掠成六面体网格。然而在 workbench中,只要直接使用多域扫掠法,程序就能自动处理划分成 六面体网格。
相关文档
最新文档