实验五-土壤中铜的测定-(1)
土壤有效态铜、锌、铁、锰的测定

土壤有效态铜、锌、铁、锰的测定DTPA浸提-原子吸收分光光度法1 方法提要用pH7.3的DTPA-TEA-CaCl2缓冲溶液作为浸提剂,螯合浸提出土壤中有效态锌、锰、铜、铁,用原子吸收分光光度法直接测定。
其中DTPA为螯合剂;氯化钙能防止石灰性土壤中游离碳酸钙的溶解,避免因碳酸钙所包蔽的锌、铁等元素释放而产生的影响;三乙醇胺作为缓冲剂,能使溶液pH保持7.3左右,对碳酸钙溶解也有抑止作用。
2 应用范围本方法适用于pH大于6的土壤中有效态铜、锌、铁、锰的测定,其他土壤也可参照使用。
3 主要仪器设备1)原子吸收分光光度计(包括铜、锌、铁、锰元素空心阴极灯);2)酸度计;3)恒温往复式或旋转式振荡机,或普通振荡器及恒温室,满足180r/min±20r/min的振荡频率或达到相同效果;4)带盖塑料瓶:200 mL。
4 试剂4.1 DTPA浸提剂[c(DTPA)=0.005mol·L-1,c(CaCl2)=0.01mol·L-1,c(TEA)=0.1mol·L-1,pH7.30]:称取1.967g二乙三胺五乙酸(DTPA),溶于14.92g(约13.3mL)三乙醇胺(TEA)和少量水中;再将1.47g氯化钙(CaCl2·2H2O)溶于水后,一并转入1L容量瓶中,加水至约950mL;在酸度计上用1:1盐酸溶液或1:1氨水调节pH至7.3,用水定容,贮于塑料瓶中。
此溶液可保存几个月,但用前需校准pH值。
4.2 铜标准贮备液[ρ(Cu)=1000μg·mL-1]:称取1.0000g金属铜(优级纯),溶解于20mL 1:1 硝酸溶液,移入1L容量瓶中,用水定容;或用硫酸铜配制:称取3.928g硫酸铜(CuSO4·5H2O,未风化),溶于水中,移入1L 容量瓶中,加5mL1:5硫酸溶液,稀释至刻度,混匀;4.3 铜标准溶液[ρ(Cu)=50μg·mL-1]:吸取铜标准贮备液5.00mL于100mL容量瓶中,用水定容;4.4 锌标准贮备液[ρ(Zn)=1000μg·mL-1]:称取1.0000g金属锌(优级纯),用40mL 1:2盐酸溶液溶解,移入1L容量瓶中,用水定容;或用硫酸锌配制:称取4.398g硫酸锌(ZnSO4·7H2O),溶于水中,移入1L容量瓶中,加5mL1:5硫酸溶液,稀释至刻度,混匀;4.5 锌标准溶液[ρ(Zn)=50μg·mL-1]:吸取锌标准贮备液5.00mL于100mL容量瓶中,用水定容;4.6 铁标准贮备液[ρ(Fe)=1000μg·mL-1]:称取1.0000g金属铁(优级纯),溶解于40mL 1:2盐酸溶液中(加热溶解),移入1L容量瓶中,用水定容;或用硫酸铁铵配制:称取8.634g硫酸铁铵[NH4Fe(SO4)2·12H2O],溶于水,移入1L 容量瓶中,加10mL1:5硫酸溶液,稀释至刻度,混匀;4.7 铁标准溶液[ρ(Fe)=50μg·mL-1]:吸取铁标准贮备液5.00mL于100mL容量瓶中,用水定容,即为含50μg·mL-1铁标准溶液;4.8 锰标准贮备液[ρ(Mn)=1000μg·mL-1]:称取1.0000g金属锰(优级纯),用20mL 1:1硝酸溶液溶解,移入1L容量瓶中,用水定容;或用硫酸锰配制:称取2.749g已于4005o C~500o C灼烧至恒重的无水硫酸锰(MnSO4)溶于水中,移入1L容量瓶中,加5mL1:5硫酸溶液,稀释至刻度,混匀;4.9 锰标准溶液[ρ(Mn)=50μg·mL-1]:吸取锰标准贮备液5.00mL于100mL容量瓶中,用水定容。
土壤中铜、锌的测定

式中:n——每个采样单元布设的最少采样点数;
s——样本相对标准偏差,即变异系数;
t——置信因子,当置信水平为95%时,t值为1.96; d——允许偏差,当规定抽样精度不低于80%时,d取0.2。
(三) 采样点布设方法 1.对角线布点法
适用于面积较小、地势平坦的污水 灌溉或污染河水灌溉的田块。
将采集的土壤样品(一般不少于500g)混匀后用 四分法缩分至约100g。缩分后的土样经风干后, 除去土壤中石子和动物植物残体等异物,用木棒 (或玛瑙棒)研压,通过2mm尼龙筛,混匀。用 玛瑙研钵将通过2mm尼龙筛的土样研磨至全部通 过100目(孔径0.149mm)尼龙筛,混匀后备用
一、土壤样品的采集
铜是人类最早使用的金属。早在史前时代,人们就开始采掘露天铜矿, 并用获取的铜制造武器、式具和其他器皿,铜的使用对早期人类文明的 进步影响深远。铜是一种存在于地壳和海洋中的金属。铜在地壳中的含 量约为0.01%,在个别铜矿床中,铜的含量可以达到3%~5%。自然界 中的铜,多数以化合物即铜矿物存在。铜矿物与其他矿物聚合成铜矿石, 开采出来的铜矿石,经过选矿而成为含铜品位较高的铜精矿。是唯一的 能大量天然产出的金属,也存在于各种矿石(例如黄铜矿、辉铜矿、斑 铜矿、赤铜矿和孔雀石)中,能以单质金属状态及黄铜、青铜和其他合 金的形态用于工业、工程技术和工艺上。
(一) 土壤样品的类型、采样深度及采样量
1. 混合样品 一般了解土壤污染状况时采集混合样品:将 一个采样单元内各采样分点采集的土样混合均匀制 成。 对种植一般农作物的耕地,只需采集0~20 cm耕作层土壤;对于种植果林类农作物的耕地, 采集0~60cm耕作层土壤。
2. 剖面样品 了解土壤污染深度时采集剖面样品:按土壤 剖面层次分层采样。
AAS测定土壤中镉铜铅锌

实验四原子吸收分光光度法测定土壤中的镉、铜、铅、锌实验目的:1、学习和掌握土壤中金属离子的测定方法和原理。
2、学习和掌握用原子吸收分光光度法测定土壤中金属离子的测定方法和原理。
实验原理:土壤样品经过HCl-HNO3-HClO4混酸体系消解后,将消解液喷入空气-乙炔火焰。
在火焰中形成的金属(Cd、Cu、Pb、Zn)基态原子蒸汽对光源发射的特征电磁辐射产生吸收。
测得试液吸光度扣除全程序空白吸光度,从标准曲线查得金属含量,计算土壤中Cd含量。
金属(Cd、Cu、Pb)含量低时可用碘化钾-甲基异丁酮萃取富集分离后测定,方法简便、灵敏、准确、选择性好,可以消除背景和基体效应干扰。
铜、铅含量较低时,可用石墨炉无火焰法测定,含量较高时,可用石墨炉无火焰法测定,含量较高时,可不经萃取,直接将消解液喷入空气-乙炔火焰中进行测定(土壤受污染的成分复杂时,最好萃取分离)。
仪器:原子吸收分光光度计镉、铜、铅、锌单元素空心阴极灯。
试剂:硝酸(特级纯)盐酸(特级纯)高氯酸(优级纯)2mol/L碘化钾溶液:称取333.4g碘化钾溶于1L去离子水中。
抗坏血酸甲基异丁酮(MIBK).镉标准储备液:称取0.5000g金属镉粉(99.9%),溶于10mL盐酸(1+1)中,转移至500mL容量瓶中,用去离子水稀释至标线。
此溶液每毫升含1.00mg镉。
测定时将此溶液逐级稀释为1mL含5μg的镉标准使用液。
铅标准储备液:称取0.5000g金属铅(99.9%),用适量硝酸(1+1)溶解后,移入500mL容量瓶中,用去离子水稀释至标线。
此溶液每毫升含1.00mg铅。
铜标准储备液:称取1.0000g金属铜(99.9%),溶于15mL硝酸(1+1)中,转移至1000mL容量瓶中,用去离子水稀释至标线。
此溶液每毫升含1.00mg铜。
锌标准储备液:称取1.0000g金属锌(99.9%),用20mL盐酸(1+1)溶解后,用去离子水稀释至标线。
此溶液每毫升含1.00mg锌。
保护土壤的实验报告(3篇)

第1篇一、实验背景土壤作为地球表面生物、气候、母质、地形、时间等因素综合作用下形成的疏松混合物,是植物生长、人类生活和生态环境的基础。
然而,随着人类活动的加剧,土壤污染、退化等问题日益严重,威胁着地球生态环境和人类健康。
为了探讨保护土壤的有效方法,本实验选取了以下几种措施进行实验研究。
二、实验目的1. 了解土壤污染、退化的原因及危害;2. 探讨保护土壤的有效方法;3. 评估不同保护措施对土壤环境的影响。
三、实验材料与方法1. 实验材料:不同污染程度的土壤样品、植物种子、有机肥料、化肥、土壤改良剂等。
2. 实验方法:(1)土壤污染修复实验:将不同污染程度的土壤样品分别放入三个培养箱中,分别施加有机肥料、化肥和土壤改良剂,观察土壤环境变化。
(2)植物修复实验:将植物种子播种在受污染土壤中,观察植物生长情况及土壤环境变化。
(3)土壤有机质含量测定:采用重铬酸钾-硫酸法测定土壤有机质含量。
(4)土壤重金属含量测定:采用原子荧光光谱法测定土壤重金属含量。
四、实验结果与分析1. 土壤污染修复实验结果:(1)施加有机肥料后,土壤有机质含量、pH值、微生物数量等指标均得到明显改善,重金属含量有所降低。
(2)施加化肥后,土壤有机质含量、pH值、微生物数量等指标变化不大,重金属含量略有降低。
(3)施加土壤改良剂后,土壤有机质含量、pH值、微生物数量等指标得到改善,重金属含量降低幅度较大。
2. 植物修复实验结果:(1)种植植物后,受污染土壤中的重金属含量显著降低,植物生长良好。
(2)不同植物对土壤重金属的吸收能力不同,其中,苜蓿、紫花苜蓿等植物对土壤重金属的吸收能力较强。
3. 土壤有机质含量测定结果:(1)有机肥料处理组土壤有机质含量最高,化肥处理组次之,土壤改良剂处理组最低。
(2)植物修复实验组土壤有机质含量高于未处理组。
4. 土壤重金属含量测定结果:(1)有机肥料处理组土壤重金属含量最低,化肥处理组次之,土壤改良剂处理组最高。
火焰原子吸收分光光度法测定

(3)土壤样品的分解
样品转移:灼烧后的样品,轻轻倒入50ml干净的玻璃烧杯中,为保证样品转移完全,可用毛笔尖轻轻地将坩埚壁上的样品扫入玻璃烧杯中,并用少量蒸馏水冲洗坩埚。
(3)土壤样品的分解
样品分解:用少量蒸馏水润湿样品和空白烧杯,加入30ml 1:1 HNO3,盖上表皿,放在可调式电热板上低温加热分解1~1.5小时,取下烧杯,稍冷却后用少量蒸馏水冲洗表皿,移去表皿后,继续将烧杯放在电热板上,升高温度。
一﹑实验原理 原子吸收原理: 原子吸收分光光度计由光源、原子化器、单色器、检测器四部分组成。原子吸收分光光度法是将待测元素的分析溶液经喷雾器雾化后,在燃烧器的高温下进行试样原子化,使其解离为基态自由原子。
一﹑实验原理 2、原子吸收原理: 锐线光源空心阴极灯发射出待测元素特征波长的光辐射,并穿过原子化器中一定厚度的原子蒸汽,此时光的一部分被原子蒸汽中待测元素的基态自由原子吸收,透过的光辐射经单色器光栅将非特征辐射线分离掉。
实验原理 硝酸呈强酸性,具有强氧化性,含量65~68%,比重1.40,浓度15mol/L,最高沸点121℃。在样品分解过程中,加入硝酸可使土壤中的铜分解成离子状态,从而进入溶液,达到湿法分析所要求的条件,定容后上机测试。
仪器和试剂 仪器: 可调式电热板 烧杯(500ml 1个;200ml 1个;50ml 4个)、表面皿(4个)、容量瓶(100ml 4个)、量杯(10ml 和50ml 各1个)、玻棒(1根)、洗瓶(1个) 试剂: 浓HNO3(分析纯) 浓HCl(分析纯)
实验目的
添加标题
了解标准溶液的作用和掌握标准溶液配制方法;
01
添加标题
了解标准曲线法的绘制方法;
02
添加标题
掌握原子吸收光谱定量分析实验技术。
土壤中重金属的形态分析

以上只是通过一个案例分析了土壤重金属形态分布特点,分析方法是共通的,值得借鉴。
(Hale Waihona Puke )答:本次实验有个比较大的问题是我们对分光光度计的原理不太清楚,无法将光度计调到最佳状态,无法判断实验数据的准确性,所以我们应该去了解这种仪器的一个使用方法和产生误差的原因,下面就Z-2000火焰原子吸收分光光度计一些常见的误差进行简略的分析。
目前研究最彻底、应用最广泛的重金属形态分析方法是Tessier等提出的顺序提取法及其修正方法,适合Cd、Co、Cu、Ni、Pb、Zn、Fe和Mn等多数重金属的提取,并按照提取顺序,将土壤或沉积物中重金属的形态分为可交换态、碳酸盐结合态、铁锰氧化物结合态、有机物结合态和残渣态5种形式。
本次实验只做可交换态的重金属浓度提取、测定和分析,可交换态是指主要吸附在粘土、腐殖质和其他成分上的金属,易于迁移转化,同时较易被植物吸收利用,当土壤pH值降低时,交换态金属含量明显升高,可交换态可以较好的反映土壤近期受到的污染状况。
(三)Z-2000火焰原子吸收分光光度计的操作规范问题,我们在进行分光光度计测量Cu浓度的时候,调零后测纯水的Cu浓度也达到了0.06mg/L,所以应该是调零的时候存在问题,所以分光光度计的错误使用也会导致实验数据误差甚至错误的出现。
八、思考与讨论
(一)
答:生物可利用性定义为一个单独的生物暴露在含有化学物质的土壤或沉积物中所发生的物理、化学以及生物的相互作用过程,该过程反映了人体和生物受体暴露在土壤和沉积物中污染物作用的程度。
以上36个因素中,只要有一个不好,就不可能得到好的分析结果,就将严重影响分析测试结果的可靠性。这些因素都是使用者如何选择和用好火焰AAS仪器时应高度重视的问题。为了保证技术指标的准确、可靠性,使用者应经常自己检测仪器的技术指标,如发现问题应及时解决(还需要根据实际的测试方法),只有这样才能尽量减小实验误差。
土壤质量铜、锌的测定火焰原子吸收分光光度法

火焰原子吸收分光光度法测定土壤中的铜和锌一、实验目的:1.掌握原子吸收分光光度法的基本原理2.了解原子吸收分光光度计的主要结构及操作方法3.学会土样的消解及重金属的测定方法。
二、仪器和仪器:1.仪器:100 mL容量瓶、移液管、玻璃棒、聚四氟乙烯坩埚、电热板novAA 400原子吸收分光光度计、铜-空心阴极灯、锌-空心阴极灯2.试剂:(1)盐酸,优级纯; (2)硝酸,优级纯;(3)去离子水;(4)氢氟酸,ρ=1.49g/ml;(6)高氯酸,ρ=1.68 g/ml。
(7)硝酸镧水溶液:称取3g硝酸镧(La(NO3)·6H2O)溶于42ml水中。
(没用吧,应去掉)(8)2%(v/v)硝酸溶液:移取20 ml浓硝酸(优级纯)于980 ml去离子水中。
(9)国际标准样品-锌-单元素标准溶液,1000 ug/mL。
(10)国家标准样品-铜-单元素标准溶液,1000 ug/mL。
(11)铜、锌混合标准使用液:分别移取10ml铜和4ml锌单元素标准溶液于25 mL容量瓶中,用2%的稀硝酸稀至刻度,配制铜、锌混合标准工作液,使铜、锌浓度分别为100 ug/ml、40 ug/ml,待用。
四、实验原理:采用盐酸-硝酸-高氯酸全分解的方法,彻底破坏土壤的矿物晶格,使试样中的待测元素全部进入试液中。
然后,将土壤消解液喷入空气-乙炔火焰中。
在火焰的高温下,铜、锌化合物离解为基态原子,该基态原子蒸汽对相应的空心阴极灯发生的特征谱线产生选择性吸收。
在选择的最佳测定条件下,测定铜、锌的吸光度。
五、操作方法:1.土壤样品的处理:将采集的土壤样品(一般不少于500g)倒在塑料薄膜上,晒至半干状态,将土块压碎,除去残根、杂物,铺成薄层,经常翻动,在阴凉处使其慢慢风干。
然后用有机玻璃棒或木棒将风干土样碾碎,过2 mm尼龙筛,去掉2 mm以上的砂砾和植物残体。
将上述风干细土反复按四分法弃取,最后约留下100 g土样,进一步用研钵磨细,通过100目尼龙筛,装于瓶中(注意在制备过程中不要被沾污)。
火焰原子吸收法连续测定土壤样品中的铜、铅、锌、钴、镍

Z n
G0
Ni
结 果发 现两 种体 系 中 c 、b z 、0 N 的测 定 结果 u P 、n c 、 i
13 实验方 法 .
与推荐值相符 , 结果令人满意。但是 H 1 H O ~ C一 N
收稿 日期 :0 8—1 20 2—1 7 作者简介 : 微 (9 1 ) 女 , 王 1 8一 , 硕士研究生 , 助理工程师 , 主要从事分析检测工作 。
火焰原子吸收法连续测定土壤样品中的铜、 锌、 镍 铅、 钴、
王 微
( 辽宁有色地质测试 中心 , 辽宁 沈阳 10 2 ) 1 11
摘
要: 采用王水溶解土壤样品 , 用火焰原 子吸收法连续测定铜 、 、 、 、 铅 锌 钴 镍五种元 素 , 比了两 对 种消解体系 , 化了盐酸复溶 体系 , 优 优化 了仪 器的使 用条件 , 法检 出限为 C .4l 方 u11 g・ a
中 图分 类 号 :13 S5 文献 标 识 码 : A
随着 地质 调查 工 作 的进 一 步 深 入 , 对地 质实 验 室 的分析 测试 技术也 相应 的提 出 了更 准 、 快 、 方 更 更 便 的要求 。 目前检 测铜铅 锌钴镍 一般 采用 微波 消解
1 3 1 样 品 的 前 处 理 ..
移 去表 面 皿 , 发 至 干 。取 下 冷 却 , 入 浓 盐 酸 5 蒸 加 mL 用水 冲洗杯 壁 , , 加热 至 沸腾 , 冷却 后 移 入 5 0mL
l 实验部分
1 1 仪器 与试 剂 .
Hale Waihona Puke 容量瓶中, 用水稀释到刻度 , 摇匀 , 澄清后与原子荧
光 同时测 定 。
将土壤样品风干、 粉碎 , 10目筛。称取经过 过 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验五土壤中铜的测定
一、实验目的和要求
(1)掌握原子吸收分光光度法原理及测定铜的技术。
(2)预习第二章金属测定的有关内容及第五章土壤质量监测的有关内容。
二、实验原理
土壤样品用HNO3-HF-HClO4或HCl-HNO3-HF-HClO4混酸体系消化后,将消化液直接喷入空气-乙炔火焰。
在火焰中形成的Cu基态原子蒸汽对光源发射的特征电磁辐射产生吸收。
测得试液吸光度扣除全程序空白吸光度,从标准曲线查得Cu含量。
计算土壤中Cu含量。
该方法适用于高背景土壤(必要时应消除基体元素干扰)和受污染土壤中Cu的测定。
方法检出限范围为—5mg/kg。
三、实验仪器
(1)原子吸收分光光度计,空气-乙炔火焰原子化器,铜空心阴极灯。
(2)仪器工作条件:测定波长,通带宽度,空气-乙炔的氧化型火焰类型,蓝色火焰。
四、实验试剂
{
(1)盐酸:特级纯。
(2)硝酸:特级纯。
(3)氢氟酸:优级纯。
(4)高氯酸:优级纯。
(5)铜标准贮备液: 1000mg/L
(6)铜标准使用液:吸取铜标准贮备液于100mL容量瓶中,用水稀至标线,摇匀备用。
即得每毫升含50μg铜的标准使用液。
(7)5%HNO3溶液:
(8)% HNO3溶液
(9)采集土壤样品,并干燥,磨细过80目,备用。
五、测定步骤
(1)土样试液的制备:称取土样于25mL聚四氟乙烯坩埚中,用少许水润湿,加入10mLHCl,在电热板上加热(<450℃)消解2小时,然后加入15mLHNO3,继续加热至溶解物剩余约5mL时,再加入5mLHF并加热分解除去硅化合物,最后加入5mLHClO4加热至消解物呈淡黄色时,打开盖,蒸至近干。
取下冷却,加入5%HNO31mL微热溶解残渣,移入50mL容量瓶中,定容。
同时进行全程序试剂空白实验。
[
(2)标准曲线的绘制:吸取相应体积的铜标准使用液,分别于6个50mL容量瓶中,用%HNO3溶液定容、摇匀。
分别测其吸光度,绘制标准曲线。
铜标准溶液用量及标准系列含铜见下表:
、
(3) 样品测定
① 标准曲线法:按绘制标准曲线条件测定试样溶液的吸光度,扣除全程序空白吸光度,从标准曲线上查得铜含量。
W
m
mg/kg
)铜( 式中:m ——从标准曲线上查得铜含量(μg); W ——称量土样干重量(g )。
② 标准加入法:取试样溶液分别于4个10mL 容量瓶中,依次分别加入铜标准使用液(μg/mL)0、、、,用%HNO 3溶液定容,设试样溶液镉浓度为c x ,加标后试样浓度分别为c x +0、c x +c s 、c x +2c s 、c x +3c s ,测得之吸光度分别为A x 、A 1、A 2、A 3。
绘制A -C 图(图略)。
由图知,所得曲线不通过原点,其截距所反映的吸光度正是试液中待测铜离子浓度的响应。
外延曲线与横坐标相交,原点与交点的距离,即为待测铜离子的浓度。
结果计算方法同上。
六、注意事项
(1)土样消化过程中,最后除HClO 4时必须防止将溶液蒸干涸,不慎蒸干时Fe 、Al 盐可能形成难溶的氧化物而包藏镉,使结果偏低。
注意无水HClO 4会爆炸!
(2)高氯酸的纯度对空白值的影响很大,直接关系到测定结果的准确度,因此必须注意全过程空白值的扣除,并尽量减少加入量以降低空白值。
~
(
·
实验 22 溶剂萃取气相色谱法测定水中的氯苯
水中氯苯类化合物具有强烈刺激气味,在进入人体时有蓄积作用,会严重损害人体健康。
一、实验目的
1. 熟悉溶剂萃取富集水样的方法。
2. 了解气相色谱仪的基本结构、性能和操作方法
3. 掌握气相色谱法的基本原理和定量方法。
二、原理
用二硫化碳(CS2)萃取水样中氯苯,经浓缩后,用气相色谱氢火焰离子化检测器测量。
三、仪器和试剂
1.仪器和器材
…
配有氢火焰离子化检测器(FID)的气相色谱仪;
(色谱柱:不锈钢或硬质玻璃填充柱,内含%有机皂土和%邻苯二甲酸二壬酯的固定液)微量进样器5μL,10μL;
容量瓶 50mL, 100mL;
KD浓缩器或旋转蒸发仪;
容量瓶 50mL, 100mL;
分液漏斗 250mL, 500mL;
2.试剂
二硫化碳(CS2);氯苯色谱纯;
氯苯标准溶液:
储备液(mL):准确称取氯苯放入50mL容量瓶中,用CS2稀释至刻度。
,
使用液(100μg/mL,μg/μL):准确称取贮备液,用CS2稀释至。
无水硫酸钠。
四、实验内容
1.调整色谱仪
柱温:130℃;
气化室温度:160℃;
检测器温度:200℃;
气体流量:载气(高纯N2)40mL/min,氢气45mL/min;空气450mL/min;
进样量:1μL。
2.操作步骤
(1)标样的测定
1)…
2)分别用微量进样器吸取0、、、、、和μL氯苯标准使用液(100mg/L,μg/μL),
加入到100mL容量瓶中,用无有机物的蒸馏水稀释至刻度。
3)按给定色谱条件,进样1μL。
4)记录峰高。
(2)水样的测定
1)水样:取250mL含氯苯水样(2个平行样),放入500mL分液漏斗中。
2)萃取:加入 CS2萃取,振摇并时时放气,萃取5min,待静置分层后,再加入CS2萃取一次,合并萃取液。
3)干燥浓缩:萃取液用无水硫酸钠脱水干燥,在KD浓缩器或旋转蒸发仪中(50℃水浴下)浓缩至。
4)按标样测定步骤(2)和(3)进行,记录峰高。
3.实验数据整理
(1)实验记录(表)
(2)标准曲线绘制:扣除空白后,以水中氯苯含量(μg/L)为横坐标,对应的峰高为纵坐标绘制标准曲线。
(3)由水样的峰高(mV),在标准曲线上查出水样中氯苯的浓度(μg/L)。
4.注意事项
(1)实验前认真阅读气相色谱仪的使用说明,实验时严格遵守操作规程;
(2)色谱条件选择可由实验室指导教师根据现有仪器条件完成。
(3)氯苯对人体有害且易燃,操作时注意安全。
思考题
1.根据实验数据和色谱图,你知道本实验中氯苯的保留时间t R吗色谱法中t R有何意义
2.根据绘制标准曲线的数据,谈谈色谱峰高的作用是什么。