基于MATLAB的直接序列扩频通信系统课程设计报告
移动通信课程设计实验报告-利用matlab进行m序列直接扩频仿真

目录一、背景 (4)二、基本要求 (4)三、设计概述 (4)四、Matlab设计流程图 (5)五、Matlab程序及仿真结果图 (6)1、生成m序列及m序列性质 (6)2、生成50位随机待发送二进制比特序列,并进行扩频编码 (7)3、对扩频前后信号进行BPSK调制,观察其时域波形 (9)4、计算并观察扩频前后BPSK调制信号的频谱 (10)5、仿真经awgn信道传输后,扩频前后信号时域及频域的变化 (11)6、对比经信道前后两种信号的频谱变化 (12)7、接收机与本地恢复载波相乘,观察仿真时域波形 (14)8、与恢复载波相乘后,观察其频谱变化 (15)9、仿真观察信号经凯萨尔窗低通滤波后的频谱 (16)10、观察经过低通滤波器后无扩频与扩频系统的时域波形 (17)11、对扩频系统进行解扩,观察其时域频域 (18)12、比较扩频系统解扩前后信号带宽 (19)13、比较解扩前后信号功率谱密度 (20)14、对解扩信号进行采样、判决 (21)15、在信道中加入2040~2050Hz窄带强干扰并乘以恢复载波 (24)16、对加窄带干扰的信号进行低通滤波并解扩 (25)17、比较解扩后信号与窄带强干扰的功率谱 (27)六、误码率simulink仿真 (28)1、直接扩频系统信道模型 (28)2、加窄带干扰的直扩系统建模 (29)3、用示波器观察发送码字及解扩后码字 (30)4、直接扩频系统与无扩频系统的误码率比较 (31)5、不同扩频序列长度下的误码率比较 (32)6、扩频序列长度N=7时,不同强度窄带干扰下的误码率比较 (33)七、利用Walsh码实现码分多址技术 (34)1、产生改善的walsh码 (35)2、产生两路不同的信息序列 (36)3、用两个沃尔什码分别调制两路信号 (38)4、两路信号相加,并进行BPSK调制 (39)5、观察调制信号频谱,并经awgn信道加高斯白噪和窄带强干扰 (40)6、接收机信号乘以恢复载波,观察时域和频域 (42)7、信号经凯萨尔窗低通滤波器 (43)8、对滤波后信号分别用m1和m2进行解扩 (44)9、对两路信号分别采样,判决 (45)八、产生随机序列Gold码和正交Gold码 (47)1、产生Gold码并仿真其自相关函数 (48)2、产生正交Gold码并仿真其互相关函数 (50)九、实验心得体会 (51)直接序列扩频系统仿真一、背景直接序列扩频通信系统(DSSS)是目前应用最为广泛的系统。
Matlab与通信仿真课程设计报告

Matlab与通信仿真课程设计报告Matlab与通信仿真课程设计报告班级:12通信(1)班姓名:诸葛媛学号:Xb12680129实验⼀S-函数&锁相环建模仿真⼀、实验⽬的1.了解S函数和锁相环的⼯作原理2.掌握⽤S函数建模过程,锁相环载波提取仿真⼆、实验内容1、⽤S函数编写Similink基本模块(1)信源模块实现⼀个正弦波信号源,要求其幅度、频率和初始相位参数可以由外部设置,并将这个信号源进⾏封装。
(2)信宿和信号显⽰模块实现⼀个⽰波器⽊块,要求能够设定⽰波器显⽰的扫描周期,并⽤这个⽰波器观察(1)的信源模块(3)信号传输模块实现调幅功能,输⼊⽤(1)信源模块,输出⽤(2)信宿模块;基带信号频率1KHz,幅度1V;载波频率10KHz,幅度5V实现⼀个压控正弦振荡器,输⼊电压u(t)的范围为[v1,v2]V,输出正弦波的中⼼频率为f0Hz,正弦波的瞬时频率f随控制电压线性变化,控制灵敏度为kHz/V。
输⼊⽤(1)信源模块,输出⽤(2)信宿模块2、锁相环载波提取的仿真(1)利⽤压控振荡器模块产⽣⼀个受10Hz正弦波控制的,中⼼频率为100Hz,频偏范围为50Hz到150Hz的振荡信号,并⽤⽰波器模块和频谱仪模块观察输出信号的波形和频谱。
(2)构建⼀个抑制载波的双边带调制解调系统。
载波频率为10KHz,被调信号为1KHz正弦波,试⽤平⽅环恢复载波并进⾏解调。
(3)构建⼀个抑制载波的双边带调制解调系统。
载波频率为10KHz,被调信号为1KHz正弦波,试⽤科斯塔斯环恢复载波并进⾏解调。
(4)设参考频率源的频率为100Hz,要求设计并仿真⼀个频率合成器,其输出频率为300Hz。
并说明模型设计上与实例3.26的主要区别三、实验结果分析1、⽤S函数编写Similink基本模块(3)为了使S函数中输⼊信号包含多个,需要将其输⼊变量u初始为制定维数或⾃适应维数,⽽在S函数模块外部采⽤Simulink基本库中的复⽤器(Mux)将3⾏的信号矩阵。
基于matlab的直序扩频通信系统的仿真设计

基于matlab的直序扩频通信系统的仿真摘要根据扩频理论,用MATLAB对直接序列扩频通信系统进行了仿真。
根据香农定理和科捷尔尼科夫潜在抗干扰理论,通过MATLAB的仿真平台对直扩通信系统进行了仿真,建立了扩频通信系统仿真模型,详细讲述了各个模块的设计,接收端同步捕获过程采用数字匹配滤波器的原理。
在给定的仿真条件下,对仿真程序进行了运行测试,得到了预期的仿真结果。
关键词:直接序列扩频;通信;MATLABDirect sequence spread spectrum communication system basedon matlab simulationAbstractIn this paper, based on the spread spectrum theory, I use MATLAB to simulate the direct sequence spread spectrum.According to the shannon theorem and jie's nico's potential interference theory, direct sequence spread spectrum is simulated by the simulation platform which is offered by MATLAB. And it tells the story of the design of various modules in detail. The receiver synchronization capture process adopts the principle of digital matched filter. In a given simulation conditions, I run the test simulation program and get the expectant simulation results.Key Words:direct sequence spread spectrum, communication, MATLAB目录1绪论31.1 扩频通信的概述31.2扩频通信的发展与应用32 直接序列扩频通信52.1理论基础52.2扩频通信系统的指标62.3扩频通信的种类72.4直接序列扩频通信系统72.5 扩频序列122.6 扩频序列的同步捕获162.6.1 扩频序列的伪码同步162.6.2 扩频序列的同步捕获173 直接扩频系统MATLAB仿真263.1 直接扩频MATLAB仿真组成框图263.2 m序列发生器263.3 高斯噪声263.4干扰和解扩判决273.5仿真结果分析273.6实验心得29附录29参考文献32致331 绪论1.1 扩频通信的概述扩频通信与光纤通信、卫星通信一同被誉为进入信息时代的三大高技术通信传输方式,它是指发送的信息被展宽到一个很宽的频带上,在接收端通过相关接收,将信号恢复到信息带宽的一种系统[1]。
直接序列扩频通信系统仿真设计—移动通信课程设计

直接序列扩频通信系统仿真设计摘要:综合利用前期相关课程及移动通信课程所学的各种知识,设计扩频通信系统,利用Matlab/Simulink对直接序列扩频系统进行了仿真,并对仿真结果做了详细的讲解分析。
先对直接序列扩频系统原理进行介绍,然后基于Simulink 的发射机和接收机的仿真,同时对直接序列扩频系统的抗干扰能力与直接序列扩频系统的同步方法进行了相关仿真,最后在该系统中加入特定的干扰,进行测试,研究整个系统的抗干扰性能。
关键词:通信系统;直接序列扩频;调制解调保密通信目录目录 (II)第1章绪论 (1)1.1背景 (1)1.2 实验目的及总体介绍 (2)1.3 本次设计任务与要求 (2)第2章直接序列扩频通信原理 (3)2.1扩频通信概念及分类 (3)2.1.1扩频通信概念 (3)2.1.2扩频通信分类 (3)2.2直接序列扩频定义 (5)2.3直接序列扩频的基本原理 (6)2.4 直扩系统的性能分析 (7)2.4.1 直扩系统的抗干扰性 (7)2.4.2 直扩系统的抗多径干扰性能 (8)第3章扩频码序列 (10)3.1 码序列的相关性 (10)3.2 m序列 (11)第4章基于Simulink的仿真 (12)4.1 MATALB及SIMULINK的介绍 (12)4.1.1 MATLAB简介 (12)4.1.2 SIMULINK简介 (12)4.2发射机部分的Simulink的仿真 (13)4.3接收机部分的Simulink仿真 (16)第5章直接序列扩频通信系统的抗干扰性能分析 (20)第6章 CDMA系统仿真设计 (24)结论 (28)参考文献 (29)致谢 (30)第1章绪论1.1背景扩展频谱(SS,Spread Spectrum)通信简称为扩频通信。
扩频通信的定义可简单表述如下:扩频通信技术是一种信息传输方式,在发端采用扩频码调制,使信号所占的频带宽度远大于所传信息必需的带宽,在收端采用相同的扩频码进行相关解扩以恢复所传信息数据。
用Matlab仿真直接序列扩频系统

实际数据因为噪声的随机存在,每次会不相同
结论
• 载波速率越高,接收数据的正确率越高 • 伪码数据越长,接收数据的正确率越高 • 伪码速率越高,接收数据的正确率越高
谢谢!
伪码速率(FPN) 1023 1023 1023 1023 1023 1023 1023 102300 1023000 1023000
载波速率 FPN*4 FPN*50 FPN*100 FPN*4 FPN*5 FPN*20 FPN*50 FPN*20 FPN*20 FPN*30
正确率 0.42 0.98 1.0 0.46 0.48 0.8 1.0 0.9 0.95 1.0
用Matlab仿真直接序列扩频系统
汇报内容
• 扩频过程描述 • 随机数据和Gold码的产生方法 • 调制和解调的实现方法 • 扩频和解扩的实现方法 • 捕获的方法 • 实验结果
直接序列扩频过程描述
随机数据的产生
产生函数:通过“randsrc”生成了一个值为0和1的随机数,数据长度为20
Gold码的实现方法
Gold码
扩频的实现方法
扩频码
调制实现的方法
• 使用函数:dmod • 载波频率:1023*30 • 采样频率:1023*30*4 • 调制方法:BPSK
经过调制的信号波形
高斯噪声的产生方法
• 使用函数:awgn • 信噪比:-20db
经过高斯信道后的信号波形
解调实现的方法• 使用源自函数:ddemod捕获连续取5个 码字数据
每个码字 和伪码异
或
计算异或 后的能量
判断是否 是有效码
字
如果有4个 码字则是
有效码
捕获效果
该图5个码字均有效=>捕获成功
基于m序列的直接序列扩频

基于m序列的直接序列扩频扩频通信实验实验名称:基于m序列的直接序列扩频专业班级:通信111501班学⽣姓名:穆琦沈傲⽴孙琳王瑞学熊晓倩学号:指导教师:郑秀萍时间:1 需求分析在通信发射端将载波信号展宽到较宽的频段上;在接收端,⽤同样的扩频码序列进⾏解扩和解调,把展宽的信号还原成原始信息.通过扩展频谱的相关处理,⼤⼤降低了频谱的平均能量密度,可在负信噪⽐条件下⼯作,获得了⾼处理增益,从⽽降低了被截获和检测的概率,避免了⼲扰影响.通过仿真模型结果分析抗噪声性能结果。
2 概要设计扩频通信系统分为直接序列扩频系统、跳频扩频系统、跳时扩频系统和混合式扩频系统。
直接序列扩频系统,⼜称“平均”系统或伪噪声系统,就是采⽤⾼码率的扩频码序列PN 码(伪随机码),在发送端与编码数据信号进⾏模2 加,产⽣⼀扩频序列,这⼀码序列由于码元很窄,占⽤了很宽的频带,达到扩频的⽬的,然后⽤扩频序列去调制载波并予以传输。
在接收端接收到的扩频信号经⾼频放⼤混频之后,⽤与发端相同且同步的伪随机码对扩频信号进⾏相关解扩,由于收发端伪随机码的相关系数为1,故可以完全恢复所传的信息,⽽⼲扰和噪声由于与接收机伪随机码不相关,在相关解调时⼤⼤降低进⼊信号通频带内的⼲扰。
它是⽬前应⽤较⼴泛的⼀种扩展频谱系统。
在国外已获得成功的空间探测器“喷⽓推进实验室(JPL)测距技术”就是⼀种直接序列调制,TATS-1 军⽤卫星中的扩展频谱多址(SSMA)系统等都使⽤DSSS。
直接序列扩频系统的接收⼀般采⽤相关接收,并分成两步,即解扩和解调。
在接收端,接收信号经过数控振荡器放⼤混频后,⽤与发射端相同且同步的由M 序列发⽣器产⽣的伪随机码对中频信号进⾏相关解扩,把扩频信号恢复成窄带信号,然后再由基带滤波器进⾏解调,最后恢复出原始信息序列。
扩频与解扩过程中,利⽤PN序列⽣成器模块( PN Sequence Generator ) ,产⽣6级、传输速率500b/s的PN伪随机序列来达到扩频和多址接⼊效果,这⾥扩频增益为50倍.扩频的运算是信息流与PN码相乘或模⼆加的过程.解扩的过程与扩频过程完全相同,即将接收的信号⽤PN码进⾏第⼆次扩频处理.要求使⽤的PN码与发送端扩频⽤PN 码不仅码字相同,⽽且相位相同.否则会使有⽤信号⾃⾝相互抵消.解扩处理将信号压缩到信号频带内,由宽带信号恢复为窄带信号.同时将⼲扰信号扩展,降低⼲扰信号的谱密度,使之进⼊到信息频带内的功率下降,从⽽使系统获得处理增益,提⾼系统的抗⼲扰能⼒.调制与解调使⽤⼆相相移键控PSK⽅式.为了⽅便分析, 我们可对系统作如下假设: 系统各⽤户同步;系统各⽤户功率相同;仅考虑系统MAI和⽩噪声⼲扰引起的误码, 忽略信号传输、调制解调过程中的误码。
课程设计说明书3-基于matlab的直接序列扩频码的产生和解扩算法(新)

设计要求和已知技术参数:
直扩通信是利用直扩序列扩展信号传输带宽的一种通信方式,本课题要求利用Matlab软件对直接序列扩频码的产生和解扩算法的仿真,同一组的成员之间可以分工合作。
通过对直扩通信系统的matlab仿真,深入了解直扩通信系统的工作原理,理解通信系统各个部分的关联,利用Matlab/Simulink环境下编程实现直接序列扩频码的产生和解扩算法。
指导教师填写
工作计划安排:
1、2014.06.27-2014.07.06熟悉Matlab仿真工具;
2、2014.07.07-2014.07.10理解并深入学习课题所涉及的理论知识;
3、2014.07.11-201源自.07.15在Matlab/Simulink环境下编程实现;
4、2014.07.11-2014.07.15撰写课程设计报告。
Harbin Institute of Technology
课程设计任务书
课程名称:通信系统仿真
设计题目:
院系:电子与信息工程学院
班级:
设计者:
学号:
指导教师:
设计时间:20140627-20140718
哈尔滨工业大学
通信系统仿真课程设计任务书
姓名:院(系):电子与信息工程学院
专业:通信工程班号:
任务起至日期:2014年6月28日至2014年7月18日
直接扩频Matlab仿真实验报告m序列

西 安 邮 电 大 学实验名称:基于Matlab 直接序列扩频系统性能仿真一、 实验目的通过仿真,进一步掌握m 序列产生方法及其性能,重点掌握直接序列扩频通信系统原理及性能。
二、 实验环境Win10 Matlab2015b三、 实验内容● 产生n=7时203对应的m 序列,并给出其NRZ 波形的自相关函数;● 选用相位差16个码片的两条序列兼做地址和扩频码,构造码分系统,仿真其通信原理;●仿真AWGN 和单频干扰下系统的BER 性能。
四、 实验原理扩频通信的可行性是从香农公式引申而来2log (1+S/N)C W其中,C 为系统信道容量(bit/s );W 为系统信道带宽;N 为噪声功率S 为信号功率。
由上式可以看出,可以从两种途径提高信道容量C ,即加大带宽W 或提高信噪比S/N 。
也就是说当信道容量C 一定时,信道带宽W 和信噪比S/N 是可以互换的,增加带宽可以降低对信噪比的要求,可以使有用信号的功率接近甚至湮没在噪声功率之下。
扩频通信就是通过增加带宽来换取较低的信噪比,这就是扩频通信的基本思想和理论依据。
当信噪比无法提高时,可以加大带宽,达到提高信道容量的目的。
直接序列扩频的原理是,在发射端把有用信号与伪随机序列相乘(或者模二加),使信号的频谱展宽到一个很宽的范围,然后用扩展后的序列去调制载波。
在接收端,把接收到的信号用相同的伪随机序列相乘,有用信号与伪随机码相关,相乘后恢复为扩频前的信号。
输入的数据信息为d(t)(设基带带宽为B 1),由伪随机编码(如m 序列)调制成基带带宽为B 2的宽带信号,由于扩频信号带宽大于数据信号带宽,所以信号扩展的带宽由伪随机码控制,而与数据信号无关。
经扩频调制的信号再经射频调制后即可发送。
直扩系统的原理框图接收端收到发送来的信号,经混频得到中频信号后,首先通过同步电路捕捉并跟踪发端伪码的准确相位,由此产生与发端伪码相位完全一致的伪随机码作为扩频解扩的本地扩频码,再与中频信号进行相关解扩,恢复出扩频前的窄带信号,而在解扩处理中,干扰和噪声与伪随机码不相关故被扩展,通过滤波使之受到抑制,这样就可在较高的解扩输出信噪比条件下进行信息解调解码,最终获得信息数据。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《扩频通信原理》课程设计报告题目:直接扩频系统仿真班级:0110910和0110911姓名:詹晓丹(32)姜微(03)张建华(36)指导老师:李兆玉1.课程设计目的(1)了解、掌握直接扩频通信系统的组成、工作原理;(2)了解、熟悉扩频调制、解调、解扩方法,并分析其性能;(3)学习、掌握Matlab相关编程知识并用其实现仿真的直接扩频通信系统;2.课程设计实验原理直接扩频通信系统工作原理:直接序列扩频,就是直接用高码率的扩频码序列在发端去扩展信号的频谱,在收端用相同的扩频码去解扩,把展宽的扩频信号还原成原始的基带信号。
在发端输入的信息与扩频码发生器产生的伪随机码序列(这里使用的是m序列)进行波形相乘,得到复合信号,实现信号频谱的展宽,展宽后的信号再调制射频载波发送出去。
由于采用平衡调制可以提高系统抗侦波的能力,所以直接序列扩频调制一般都采用二相平衡调制方式。
一般扩频调制时一个信息码包含一个周期的伪码,用扩频后的复合信号对载波进行二相相移监控(BPSK)调制,当gt从“0”变成“1”或从“1”变到“0”时,载波相位发生180度相移。
接收端的本振信号与发射端射频载波相差一个中频,接收端收到的宽带射频信号与本振信号混频、低频滤波后得到中频信号,然后与本地产生的与发端相同并且同步的扩频码序列进行波形相乘,实现相关解扩,再经信息解调,恢复出原始信号。
3.建立模型描述(1)直接扩频通信系统组成框图:(2)直接扩频通信系统波形图:4.模块功能分析(1)直扩系统的调制功能模块:(都包含模块框图和不同调制、解调方式介绍、分析)(a)扩频调制模块用扩频码发生器产生一个伪随机码pn(这里用的是m序列),与信源信息码序列xt相乘,实现频谱的展宽(b)BPSK调制模块调制的方式可以有二相相移监控BPSK、四相相移键控QPSK、偏移四相相移监控OQPSK、最小频移监控MSK。
QPSK调制的目的是节省频谱,但在扩频系统中有时候带宽的利用并不是最重要的;OQPSK的优点就是调制信号的相位改变没有倒π现象;MSK调制信号时可以避免相位突变,由于以上调制方式实现比较复杂,所以我们选用扩频系统中最常用的BPSK调制方式。
(2)直扩系统的解调功能模块:(a)BPSK解调模块在常规数字通信中,解调可以用锁相环解调器、平方环解调器、科斯塔斯环解调器。
在直扩系统中,一般扩频调制方式是用抑制载波双平衡调制来产生BPSK信号的,而对于BPSK 信号,不管是绝对相移还是差分相移。
其载波分量都被抑制了几十分贝,并且直扩信号谱密度都很低,而大气噪声及接收机内部噪声又很大,有用信号常淹没在噪声中,所以用一般的锁相环难以提取载波。
而平方环虽然便于载波提取,但环路工作在二倍频后的频率上,工作频率高,环路稳定性较差。
我们选用的是科斯塔斯环,因为它的突出优点是能够解调移相键控信号和抑制了载波的信号,且环路的工作频率与输入信号载波频率完全相同。
(b)扩频解调模块解扩方式有相关解扩、直接式相关器解扩、外差式相关器解扩、序列匹配滤波器解扩。
直接式相关器的优点是结构简单,缺点是对干扰信号有直通和码速率泄露现象外差式相关器的抗干扰能力较低;由于相关解扩在性能上很好,在接收端产生的本地pn’码,可以用科斯塔斯环实现与发端的pn码精确的同步。
5.模块源代码及调试过程(1)直扩系统的调制模块(a)信息码生成模块code_length=20; %信息码元个数N=1:code_length;rand('seed',0);x1=rectpulse(x,800);%每个码元内采样800个点plot(x1);axis([0 16000 -1.5 1.5]);title('信源信息码序列');grid on;生成信息码的波形图(b)伪随机码生成模块function y = mgen(g,state,N)%输入g:m序列生成多项式(10进制输入)%state:寄存器初始状态(10进制输入)%N:输出序列长度figure(1)g=19;state=8;N=2000;gen = dec2bin(g)-48;M = length(gen);curState = dec2bin(state,M-1) - 48;for k =1:Ny(k) = curState(M-1);a = rem(sum( gen(2:end).*curState),2);curState = [a curState(1:M-2)];endx_code=sign(y-0.5);pn=rectpulse(x_code,8);%每个伪码元内采样8个点plot(pn);axis([0 600 -1.5 1.5]);title('伪随机码序列');grid on;生成伪随机码的波形图(c)扩频调制模块gt=x1.*pn;plot(gt);axis([0 1000 -1.5 1.5]);title('复合码序列');grid on;生成的复合码波形图(d)BPSK调制模块%用BPSK调制fs=20e6;f0=30e6;for i=1:2000AI=2;dt=fs/f0;n=0:dt/7:dt; %一个载波周期内采样8个点cI=AI*cos(2*pi*f0*n/fs);x_bpsk((1+(i-1)*8):i*8)=gt((1+(i-1)*8):i*8).*cIplot(x_bpsk);axis([0 200 -2.5 2.5]);title('BPSK调制后的波形');grid on;生成BPSK调制后的波形图(2)加噪模块sigma=0.1;nt=sigma*randn(1,20);nt1=rectpulse(nt,800);gt1=gt+nt1;fs=20e6;f0=30e6;for i=1:2000AI=2;dt=fs/f0;n=0:dt/7:dt; %一个载波周期内采样8个点cI=AI*cos(2*pi*f0*n/fs);x_bpsk1((1+(i-1)*8):i*8)=gt1((1+(i-1)*8):i*8).*cIendplot(x_bpsk1);axis([0 200 -2.5 2.5]);title('加噪后已调波的波形');grid on;生成加噪后已调波的波形图(3)直扩系统的解调模块(a)BPSK解调模块AI=1;dt=fs/f0;n=0:dt/7:dt; %一个载波周期内采样八个点cI=AI*cos(2*pi*f0*n/fs);for i=1:2000s((1+(i-1)*8):i*8)= x_bpsk1((1+(i-1)*8):i*8).*cI;endplot(s);axis([0 200 -2.5 2.5]);title('解调后的波形');grid on;生成BPSK解调后的波形图(b)解扩模块%相关解扩jk_code=s.*pn;%低通滤波wn=5/1000000; %截止频率wn=fn/(fs/2),这里fn为扩频码的带宽5M b=fir1(16,wn);H=freqz(b,1,16000);plot(xx);axis([0 16000 -1.5 1.5]);title('解扩并滤波后的波形');grid on;生成解扩后的波形图6.调试分析及结论(1)调试分析(a)信源信息码与收端恢复出的波形的比较(b)频谱分析(2)调制过程中出现的问题及解决方式:1)在调试程序中出现“undefined function or variable ‘mgen’”,后来检测是子函数调用格式出现错误,经改正后得以修改;2)复合码产生程序中,出现“vector must be the same lengths ”,后检测得出原因是信息码和伪随机码长度不相同时不能直接相乘;3)由于所加噪声为高斯白噪声,是用randn函数产生的,具有随机性,所以不同时刻加噪了的已调波具有不同波形;(3)结论通过调试分析及研究,我们发现直扩系统具有较多的特点,将其运用于通信系统能发挥其很大的优势。
首先,直扩系统具有很高的处理增益,因此直扩系统具有抗宽带干扰、抗多频干扰及单频干扰的能力;其次,直扩信号的功率谱密度低,具有隐蔽性和低的截获概率,从而抗截获的能力强,另外功率污染少;第三,直扩伪随机序列的伪随机性和密钥量具有保密性,即系统本身具有加密的能力;第四,利用直扩伪随机序列码型的正交性,可构成直扩码分多址系统;第五,利用直扩信号的相关接收,具有抗多径干扰的能力;第六,利用直扩信号可实现精确的测距定位。
7.心得体会通过这次直接扩频系统的仿真实验,我们加深了对扩频理论知识的理解。
懂得了直接扩频系统的原理所在,并且经过分析,自己应用MATLAB实现了直接扩频系统的仿真,掌握了一定的软件仿真能力。
通过频谱分析,更使我们了解到了直接扩频的抗干扰性能。
在实践也激发了我们对扩频这门课程学习的积极性。
在此次直接扩频系统的仿真实验中,我们收获颇丰,记忆深刻,并全面培养了我们的能力。
8.参考文献刘焕淋.扩展频谱通信[M].北京:北京邮电大学出版社,2008田日才.扩频通信[M].北京:清华大学出版社,2007曾一凡,李晖.扩频通信原理[M].北京:机械工业出版社,2005附件一:程序源代码function y = mgen(g,state,N)%输入g:m序列生成多项式(10进制输入)%state:寄存器初始状态(10进制输入)%N:输出序列长度figure(1)g=19;state=8;N=2000;gen = dec2bin(g)-48;M = length(gen);curState = dec2bin(state,M-1) - 48;for k =1:Ny(k) = curState(M-1);a = rem(sum( gen(2:end).*curState),2);curState = [a curState(1:M-2)];endx_code=sign(y-0.5);pn=rectpulse(x_code,8);%每个伪码元内采样8个点plot(pn);axis([0 600 -1.5 1.5]);title('伪随机码序列');grid on;figure(2)code_length=20; %信息码元个数N=1:code_length;rand('seed',0);x=sign(rand(1,code_length)-0.5); %信息码从0、1序列变成-1、1序列x1=rectpulse(x,800);%每个码元内采样800个点plot(x1);axis([0 16000 -1.5 1.5]);title('信源信息码序列');grid on;figure(3)gt=x1.*pn;plot(gt);figure(4);%用BPSK调制fs=20e6;f0=30e6;for i=1:2000AI=2;dt=fs/f0;n=0:dt/7:dt; %一个载波周期内采样8个点cI=AI*cos(2*pi*f0*n/fs);x_bpsk((1+(i-1)*8):i*8)=gt((1+(i-1)*8):i*8).*cI endplot(x_bpsk);axis([0 200 -2.5 2.5]);title('BPSK调制后的波形');grid on;figure(5)sigma=0.1;nt=sigma*randn(1,20);nt1=rectpulse(nt,800);gt1=gt+nt1;fs=20e6;f0=30e6;for i=1:2000AI=2;dt=fs/f0;n=0:dt/7:dt; %一个载波周期内采样8个点cI=AI*cos(2*pi*f0*n/fs);x_bpsk1((1+(i-1)*8):i*8)=gt1((1+(i-1)*8):i*8).*cI endplot(x_bpsk1);axis([0 200 -2.5 2.5]);title('加噪后已调波的波形');grid on;figure(6)%解调AI=1;dt=fs/f0;n=0:dt/7:dt; %一个载波周期内采样八个点cI=AI*cos(2*pi*f0*n/fs);for i=1:2000s((1+(i-1)*8):i*8)= x_bpsk1((1+(i-1)*8):i*8).*cI; endplot(s);figure(7)%相关解扩jk_code=s.*pn;%低通滤波wn=5/1000000; %截止频率wn=fn/(fs/2),这里fn为扩频码的带宽5M b=fir1(16,wn);H=freqz(b,1,16000);xx=filter(b,1,jk_code);plot(xx);axis([0 16000 -1.5 1.5]);title('解扩并滤波后的波形');grid on;%信源信息码与收端恢复出的波形的比较figure(8)subplot(2,1,1);plot(x1);axis([0 16000 -1.5 1.5]);title('信源信息码序列');grid on;subplot(2,1,2);plot(xx);axis([0 16000 -1.5 1.5]);title('收端接收到的波形');grid on;%频谱图figure(9);T=1;N=20;N_sample=800;df=1/(N*T);f=-(N*N_sample/2)*df+df:df:(N*N_sample/2)*df;subplot(2,2,1);plot(f,abs(fftshift(fft(x1))));axis([-100 100 0 2000]);title('信源信息码序列的频谱图');grid on;T=1;N=2000;N_sample=8;df=1/(N*T);f=-(N*N_sample/2)*df+df:df:(N*N_sample/2)*df;subplot(2,2,2);plot(f,abs(fftshift(fft(pn))));title('伪随机码序列的频谱图');grid on;T=1;N=2000;N_sample=8;df=1/(N*T);f=-(N*N_sample/2)*df+df:df:(N*N_sample/2)*df; subplot(2,2,3);plot(f,abs(fftshift(fft(gt))));axis([-4 4 0 2000]);title('扩频码序列的频谱图');grid on;T=1;N=2000;N_sample=8;df=1/(N*T);f=-(N*N_sample/2)*df+df:df:(N*N_sample/2)*df; subplot(2,2,4);plot(f,abs(fftshift(fft(x_bpsk))));axis([-4 4 0 2000]);title('bpsk已调波的频谱图');grid on;figure(10);T=1;N=2000;N_sample=8;df=1/(N*T);f=-(N*N_sample/2)*df+df:df:(N*N_sample/2)*df; subplot(2,2,1);plot(f,abs(fftshift(fft(x_bpsk1))));axis([-4 4 0 2000]);title('加噪已调波的频谱图');grid on;T=1;N=2000;N_sample=8;df=1/(N*T);f=-(N*N_sample/2)*df+df:df:(N*N_sample/2)*df; subplot(2,2,2);plot(f,abs(fftshift(fft(s))));axis([-4 4 0 2000]);title('解调后的频谱图');grid on;T=1;N=20;df=1/(N*T);f=-(N*N_sample/2)*df+df:df:(N*N_sample/2)*df; subplot(2,2,3);plot(f,abs(fftshift(fft(xx))));axis([-100 100 0 2000]);title('解扩后收端恢复出的信号的频谱图');grid on;。