人工神经网络文献综述.
人工神经网络综述

人工神经网络综述〔摘要〕本文使用通谷易懂的语言从物理概念上深入浅出地介绍了人工神经网络的工作原理、特点及几种典型神经网络,避免出现繁琐的公式及数学推导。
希望能通过本文引起广大科研工作者对人工神经网络的认识和重视。
1 神经元模型的提出“人工神经网络”(ARTIFICIAL NEURAL NETWORK,简称A.N.N.)是在对人脑组织结构和运行机智的认识理解基础之上模拟其结构和智能行为的一种工程系统。
早在本世纪40年代初期,心理学家McCulloch、数学家Pitts就提出了人工神经网络的第一个数学模型,从此开创了神经科学理论的研究时代。
其后,F.Rosenblatt、Widrow和Hopf、J.J.Hopfield等学者又先后提出了感知模型,使得人工神经网络技术得以蓬勃发展。
神经系统的基本构造是神经元(神经细胞),它是处理人体内各部分之间相互信息传递的基本单元。
据神经生物学家研究的结果表明,人的一个大脑一般有~个神经元。
如图1所示,每个神经元都由一个细胞体,一个连接其他神经元的轴突和一些向外伸出的其它较短分支——树突组成。
轴突的功能是将本神经元的输出信号(兴奋)传递给别的神经元。
其末端的许多神经末梢使得兴奋可以同时传送给多个神经元。
树突的功能是接受来自其它神经元的兴奋。
神经元细胞体将接受到的所有信号进行简单地处理(如:加权求和,即对所有的输入信号都加以考虑且对每个信号的重视程度——体现在权值上——有所不同)后由轴突输出。
神经元的树突与另外的神经元的神经末梢相连的部分称为突触。
图1 神经元结构图图2 神经元模型对应于图1,可以很容易的建立起神经元的模型,如图2所示。
大脑之所以能够处理极其复杂的分析、推理工作,一方面是因为其神经元个数的庞大,另一方面还在于神经元能够对输入信号进行非线性处理。
因此,对图2可进一步建立起更接近于工程的数学模型,如图3所示,它是一个多输入单输出的非线性器件。
其中的权值W即代表神经元之间的连接强度,f(x)为非线性函数。
BP算法文献综述

人工神经网络的技术前沿11115028 王媛媛1.人工神经网络的起源自古以来,各界研究工作者对于“人脑”“生物智能”一直表现着极大的研究兴趣.采用某种工程技术的手段设计出具有生物神经网络的某些结构功能的软硬件智能设施被称为“人工神经网络技术”【1】。
举例来讲,“识别人脸"是大脑的基本功能,正常成人可以正确辨别认识的人脸。
但计算机要准确做到这一点却比较困难,因为计算机智能针对具体的模型机型指令编程,若没有精确的模型,程序也就无法编制。
故而如何针对人脑所具有的各项智能活动做出有效的计算机或硬件模拟,就是人工神经网络的主要研究内容。
人工神经网络起源于20世纪初期,主要由两方面因素催生。
一方面经过生物学家数学家的不懈努力,采用数学模型来描述神经元的基本生物活动成为可能.神经元是神经活动的基础原件,了解神经元的工作机制是创建人工神经网络科学的基础。
另外一方面,19世纪比较具有代表性的牛顿力学或者欧式几何都是线性科学,而生物智能活动如此纷繁复杂,不可能用简单的线性数学模型进行模拟,提出一种非线性的可有效模拟神经网络活动的模型算法迫在眉睫。
人工神经网络的发展并不是偶然,而是在当时的科学背景下应运而生.2.人工神经网络的发展人工神经网络算法真正发展于20世纪40年代初,至今发展也不超过一百年,虽然其存在的时间较短,但其发展过程可谓一波三折,经历很多挫折,也取得很多进展.1943年,心理学家W.S。
Mcculloch和数学家W。
Pitts总结了生物神经元的一些基本特性,共同提出M—P模型,第一次用数学语言描述了神经元的活动【2】。
虽然其神经元的功能较弱,但M—P模型的提出为人工神经网络奠定了基础,自此发展开来。
心理学家D。
O。
Hebb于1949年提出神经元之间的突触联系强度可变的假设,他认为人脑的学习活动室发生在突触上的,而其联系的强度会随着神经元的活动而变化【3】。
他的假设为人工神经网络的学习活动研究提供了基础.1958年,Rosenblatt提出了著名的感知机模型,这是第一个真正意义上的神经网络,它基本上满足了神经生理学的一切先验知识,可用于模式识别、联想记忆等方面【4】。
神经网络【文献综述】

毕业论文文献综述应用物理神经网络人工神经网络是由大量的简单基本元件——神经元相互联接而成的自适应非线性动态系统。
每个神经元的结构和功能比较简单,但大量神经元组合产生的系统行为却非常复杂神经网络反映了人脑功能的若干基本特性,但并非生物系统的逼真描述,只是某种模仿、简化和抽象。
与数字计算机比较,人工神经网络在构成原理和功能特点等方面更加接近人脑,它不是按给定的程序一步一步地执行运算,而是能够自身适应环境、总结规律、完成某种运算、识别或过程控制人工神经元的研究起源于脑神经元学说。
19世纪末,在生物、生理学领域,Waldeger等人创建了神经元学说。
人们认识到复杂的神经系统是由数目繁多的神经元组合而成。
大脑皮层包括有100亿个以上的神经元,每立方毫米约有数万个,它们互相联结形成神经网络,通过感觉器官和神经接受来自身体内外的各种信息,传递至中枢神经系统内,经过对信息的分析和综合,再通过运动神经发出控制信息,以此来实现机体与内外环境的联系,协调全身的各种机能活动若从速度的角度出发,人脑神经元之间传递信息的速度要远低于计算机,前者为毫秒量级,而后者的频率往往可达几百兆赫。
但是,由于人脑是一个大规模并行与串行组合处理系统,因而,在许多问题上可以作出快速判断、决策和处理,其速度则远高于串行结构的普通计算机。
人工神经网络的基本结构模仿人脑,具有并行处理特征,可以大大提高工作速度。
人脑存贮信息的特点为利用突触效能的变化来调整存贮内容,也即信息存贮在神经元之间连接强度的分布上,存贮区与计算机区合为一体。
虽然人脑每日有大量神经细胞死亡(平均每小时约一千个),但不影响大脑的正常思维活动。
而普通计算机是具有相互独立的存贮器和运算器,知识存贮与数据运算互不相关,只有通过人编出的程序使之沟通,这种沟通不能超越程序编制者的预想。
元器件的局部损坏及程序中的微小错误都可能引起严重的失常。
人类大脑有很强的自适应与自组织特性,后天的学习与训练可以开发许多各具特色的活动功能。
人工智能文献综述10000字

人工智能文献综述10000字人工智能(Artificial Intelligence,AI)是指通过模拟、延伸和扩展人类智能的技术和方法。
人工智能已经渗透到了各个领域,如医疗、金融、交通等。
本文将对人工智能领域的一些重要文献进行综述,以期了解目前人工智能领域的研究进展和热点。
1. "Deep Residual Learning for Image Recognition" (Kaiming He, Xiangyu Zhang, Shaoqing Ren, Jian Sun, 2016)这篇论文提出了一种新的深度残差网络(Deep Residual Network,ResNet)结构,通过引入残差学习的方法解决了深度神经网络的退化问题。
该论文在ImageNet数据集上取得了当时最先进的结果,为深度学习的发展做出了重要贡献。
2. "Playing Atari with Deep Reinforcement Learning" (Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan Wierstra, Martin Riedmiller, 2013)这篇论文提出了一种基于深度强化学习的方法,将深度神经网络应用于Atari游戏的自动游戏玩家训练中。
这种方法通过将图像作为输入,直接从原始像素中学习游戏策略,取得了比之前所有方法更好的结果。
这是深度强化学习在游戏领域的开创性工作。
3. "Generative Adversarial Networks" (Ian J. Goodfellow,Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua Bengio, 2014)这篇论文提出了一种新的生成模型,称为生成对抗网络(Generative Adversarial Networks,GANs)。
人工神经网络综述【范本模板】

人工神经网络综述摘要:人工神经网络是属于人工智能的一个组成部分,它的提出是基于现代神经科学的相关研究,并且在诸多领域得到了广泛的应用,为人工智能化的发展提供了强大的动力.首先论述了人工神经网络的发展历程,并介绍了几种常见的模型及应用现状,最后总结了当前存在的问题及发展方向。
关键词:神经网络、分类、应用0引言多年以来,科学家们不断从医学、生物学、生理学、哲学、信息学、计算机科学、认知学、组织协同学等各个角度探索人脑工作的秘密,希望能制作模拟人脑的人工神经元.特别是近二十年来. 对大脑有关的感觉器官的仿生做了不少工作,人脑含有数亿个神经元,并以特殊的复杂形式组成在一起,它能够在计算某些问题(如难以用数学描述或非确定性问题等)时,比目前最快的计算机还要快许多倍。
大脑的信号传导速度要比电子元件的信号传导要慢百万倍,然而,大脑的信息处理速度比电子元件的处理速度快许多倍,因此科学家推测大脑的信息处理方式和思维方式是非常复杂的,是一个复杂并行信息处理系统.在研究过程中,近年来逐渐形成了一个新兴的多学科交叉技术领域,称之为“人工神经网络”。
神经网络的研究涉及众多学科领域,这些领域互相结合、相互渗透并相互推动.1 人工神经网络概述1.1 人工神经网络的发展人工神经网络是20世纪80年代以来人工智能领域中兴起的研究热点,因其具有独特的结构和处理信息的方法,使其在许多实际应用中取得了显著成效。
1。
1。
1 人工神经网络发展初期1943年美国科学家家Pitts和MeCulloch从人脑信息处理观点出发,采用数理模型的方法研究了脑细胞的动作和结构及其生物神经元的一些基本生理特性,他们提出了第一个神经计算模型,即神经元的阈值元件模型,简称MP 模型,这是人类最早对于人脑功能的模仿。
他们主要贡献在于结点的并行计算能力很强,为计算神经行为的某此方面提供了可能性,从而开创了神经网络的研究.1958年Frank Rosenblatt提出了感知模型(Pereeptron),用来进行分类,并首次把神经网络的研究付诸于工程实践。
人工神经网络文献综述.

WIND一、人工神经网络理论概述 (一人工神经网络基本原理神经网络 (Artificialneuralnet work , ANN 是由大量的简单神经元组成的非线性系统,每个神经元的结构和功能都比较简单,而大量神经元组合产生的系统行为却非常复杂。
人工神经元以不同的方式,通过改变连接方式、神经元的数量和层数,组成不同的人工神经网络模型 (神经网络模型。
人工神经元模型的基本结构如图 1所示。
图中X=(x 1, x 2, … x nT∈ R n表示神经元的输入信号 (也是其他神经元的输出信号 ; w ij 表示神经元 i 和神经元 j 之间的连接强度,或称之为权值; θj 为神经元 j 的阀值 (即输入信号强度必须达到的最小值才能产生输出响应 ; y i 是神经元 i 的输出。
其表达式为 y i =f(nj =iΣw ij x j+θi式中, f (·为传递函数 (或称激活函数 ,表示神经元的输入 -输出关系。
图 1(二人工神经网络的发展人工神经网络 (ArtificialNeuralNetwork 是一门崭新的信息处理科学,是用来模拟人脑结构和智能的一个前沿研究领域,因其具有独特的结构和处理信息的方法,使其在许多实际应用中取得了显著成效。
人工神经网络系统理论的发展历史是不平衡的,自 1943年心理学家 McCulloch 与数学家 Pitts 提出神经元生物学模型 (简称MP-模型以来,至今已有 50多年的历史了。
在这 50多年的历史中,它的发展大体上可分为以下几个阶段。
60年代末至 70年代,人工神经网络系统理论的发展处于一个低潮时期。
造成这一情况的原因是人工神经网络系统理论的发展出现了本质上的困难,即电子线路交叉极限的困难。
这在当时条件下,对神经元的数量 n 的大小受到极大的限制,因此它不可能去完成高度智能化的计算任务。
80年代中期人工神经网络得到了飞速的发展。
这一时期,多种模型、算法与应用问题被提出,主要进展如:Boltzmann 机理论的研究, 细胞网络的提出,性能指标的分析等。
人工神经网络文献综述

WIND一、人工神经网络理论概述 (一人工神经网络基本原理神经网络 (Artificialneuralnet work , ANN 是由大量的简单神经元组成的非线性系统,每个神经元的结构和功能都比较简单,而大量神经元组合产生的系统行为却非常复杂。
人工神经元以不同的方式,通过改变连接方式、神经元的数量和层数,组成不同的人工神经网络模型 (神经网络模型。
人工神经元模型的基本结构如图 1所示。
图中X=(x 1, x 2, … x nT∈ R n表示神经元的输入信号 (也是其他神经元的输出信号 ; w ij 表示神经元 i 和神经元 j 之间的连接强度,或称之为权值; θj 为神经元 j 的阀值 (即输入信号强度必须达到的最小值才能产生输出响应 ; y i 是神经元 i 的输出。
其表达式为 y i =f(nj =iΣw ij x j+θi式中, f (·为传递函数 (或称激活函数 ,表示神经元的输入 -输出关系。
图 1(二人工神经网络的发展人工神经网络 (ArtificialNeuralNetwork 是一门崭新的信息处理科学,是用来模拟人脑结构和智能的一个前沿研究领域,因其具有独特的结构和处理信息的方法,使其在许多实际应用中取得了显著成效。
人工神经网络系统理论的发展历史是不平衡的,自 1943年心理学家 McCulloch 与数学家 Pitts 提出神经元生物学模型 (简称MP-模型以来,至今已有 50多年的历史了。
在这 50多年的历史中,它的发展大体上可分为以下几个阶段。
60年代末至 70年代,人工神经网络系统理论的发展处于一个低潮时期。
造成这一情况的原因是人工神经网络系统理论的发展出现了本质上的困难,即电子线路交叉极限的困难。
这在当时条件下,对神经元的数量 n 的大小受到极大的限制,因此它不可能去完成高度智能化的计算任务。
80年代中期人工神经网络得到了飞速的发展。
这一时期,多种模型、算法与应用问题被提出,主要进展如:Boltzmann 机理论的研究, 细胞网络的提出,性能指标的分析等。
人工神经网络综述论文

人工神经网络的最新发展综述摘要:人工神经网络是指模拟人脑神经系统的结构和功能,运用大量的处理部件,由人工方式建立起来的网络系统。
该文首先介绍了神经网络研究动向,然后介绍了近年来几种新型神经网络的基本模型及典型应用,包括模糊神经网络、神经网络与遗传算法的结合、进化神经网络、混沌神经网络和神经网络与小波分析的结合。
最后,根据这几种新型神经网络的特点,展望了它们今后的发展前景。
关键词:模糊神经网络;神经网络与遗传算法的结合;进化神经网络;混沌神经网络;神经网络与小波分析。
The review of the latest developments in artificial neuralnetworksAbstract:Artificial neural network is the system that simulates the human brain’s structure and function, and uses a large number of processing elements, and is manually established by the network system. This paper firstly introduces the research trends of the neural network, and then introduces several new basic models of neural networks and typical applications in recent years, including of fuzzy neural network, the combine of neural network and genetic algorithm, evolutionary neural networks, chaotic neural networks and the combine of neural networks and wavelet analysis. Finally, their future prospects are predicted based on the characteristics of these new neural networks in the paper.Key words: Fuzzy neural network; Neural network and genetic algorithm; Evolutionary neural networks; Chaotic neural networks; Neural networks and wavelet analysis1 引言人工神经网络的研究始于20世纪40年代初。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
WIND
一、人工神经网络理论概述 (一人工神经网络基本原理
神经网络 (Artificialneuralnet work , ANN 是由大量的简单神经元组成的非线性系统,每个神经元的结构和功能都比较简单,而大量神经元组合产生的系统行为却非常复杂。
人工神经元以不同的方式,通过改变连接方式、神经元的数量和层数,组成不同的人工神经网络模型 (神经网络模型。
人工神经元模型的基本结构如图 1所示。
图中X=(x 1, x 2, … x n
T
∈ R n
表示神经元的输入信号 (也是其他神经元的输出信号 ; w ij 表示
神经元 i 和神经元 j 之间的连接强度,或称之为权值; θj 为神经元 j 的阀值 (即输入信号强度必须达到的最小值才能产生输出响应 ; y i 是神经元 i 的输出。
其表达式为 y i =f(
n
j =i
Σw ij x j
+θi
式中, f (
·为传递函数 (或称激活函数 ,表示神经元的输入 -输出关系。
图 1
(二人工神经网络的发展
人工神经网络 (ArtificialNeuralNetwork 是一门崭新的信息处理科学,是用来模拟人脑结构和智能的一个前沿研究领域,因其具有独特的结构和处理信息的方法,使其在许多实际应用中取得了显著成效。
人工神经网络系统理论的发展历史是不平衡的,自 1943年心理学家 McCulloch 与数学家 Pitts 提出神经元生物学模型 (简称MP-模型以来,至今已有 50多年的历史了。
在这 50多年的历史中,它的发展大体上可分为以下几个阶段。
60年代末至 70年代,人工神经网络系统理论的发展处于一个低潮时期。
造成这一情况的原因是人工神经网络系统理论的发展出现了本质上的困难,即电子线路交叉极限的困难。
这在当时条件下,对神经元的数量 n 的大小受到极大的限制,因此它不可能去完成高度智能化的计算任务。
80年代中期人工神经网络得到了飞速的发展。
这一时期,多种模型、算法与应用问题被提出,主要进展如:Boltzmann 机理论的研究, 细胞网络的提出,性能指标的分析等。
90年代以后,人工神经网络系统理论进入了稳健发展时期。
现在人工神经网络系统理论的应用研究主要是在模式识别、经济管理、优化控制等方面:与数学、统计中的多个学科分支发生联系。
(三人工神经网络分类
人工神经网络模型发展到今天已有百余种模型,建造的方法也是多种多样,有出自热力学的、数学方法的、模糊以及混沌方法的。
其中 BP 网络(BackPropagationNN 是当前应用最为广泛的一种人工神经网络。
在人工神经网络的实际应用中, 80%~90%的人工神经网络模型是采用 BP 网络或它的变化形式,它也
是前向网络的核心部分,体现了人工神经网络最精华的部分。
其结构简单,应用范围主要在模式识别、分类、非线性映射,复杂系统仿真,过程控制等方面。
(四人工神经网络模型的研究及相关应用
神经网络一直是科学界的研究热点,无论是理论研究还是应用实践都有大量的成果报道。
人工神经网络历史上首先应用于电子科技领域,如模式识别、信号和图像处理、控制理论等。
随着人们对神经网络的认知和了解,其应用领域将更加广泛。
由于人工神经网络具有任意逼近函数、自学习自适应能力极强的特点,因此,在这里,可以将人工神经网络应用到经济预警问题之中。
如王春峰,万海晖,张维应用 BP 网络对股票价格进行预测,应用 BP 网络模型对商业银行的信贷风险进行预警,运用 BP 网络模型评估借贷方的信用风险等等,这些应用都取得了比较好的效果。
顾海军等人利用 BP 网络的较高的自组织、自适应和自学能力,对商业银行风险进行综合评价,从而为商业银行风险评价走向使用化奠定了基础。
为了避免传
统参数期权定价模型 (parametric option pricing models , POPMS 的缺陷,马文伟课题的研究,借助人工神经网络探讨实物期权定价,这将有利于实物期权定价理论的完善和发展。
王洪利等人采用人工神经网络方法,对最常用于体育场馆建设的网架结构形式进行了选型研究,结果表明,该方法能较好的进行网架结构的选型,从而节约建造成本。
吴煜等人通过人工神经网络寻找组合预测权重的方法,有效的解决预测城市用水需求量这样的复杂性问题。
段玉波等人使用的递归神经网络可以满足短期负荷预测的需要,效果较好对于合理地进行电力系统调度,
计划,用电与规划具有一定的现实意义。
刘历波提到利用改进的 BP 神经网络算法对建设项目集成管理绩效进行了综合评价,证明该方法的可行性和有效性,为我国建设项目集成管理绩效评价提供了一条新的可操作性方法。
付辉指出应用Hopfield 网络对非定量因素进行科学的分析, 可以消除一些人为因素的影响,使评选
结果更加合理。
杨俊琴通过对投标项目风险因素辨识,建立了基于 BP 神经网络的风险分析模型,对项目的风险度进行评估,为投标人在进行投标决策时提供了一个有效的风险分析工具。
二、总结
人工神经网络在各个领域中的应用,为工作的顺利进行提供了保障,克服了以往的常用方法的缺陷,解决了很多难题。
比如在工程造价预测中的应用,它利用了神经网络具有自学习、自组织、自适应的特点,建立了具有反馈系统从而不断调节误差的 BP 算法,减少了人为主观的参与,这使得造价预测结果更加贴近实际,更加精确。
在评标过程中的应用亦是如此。
但是,神经网络作为新兴学科,在理论和实践中, 还有很多不完善和不成熟的地方,又在一定程度上制约了它的实际应用。
总之在利用人工神经网络解决问题时,需要选定合适的网络模型及网络算法,同时还要加深人工神经网络基础理论方面的研究。
[摘要 ]本文主要介绍人工神经网络的基本原理 , 发展和分类,详细描述了其在各行业的有关研究及应用;对人工神经网络的应用提出了建
议。
[关键词 ]人工神经网络;分类及发展;应用人工神经网络文献综述
段玉三
(安徽蟠桃园林绿化工程有限公司,安徽巢湖
231500
[参考文献 ]
[1]段玉波 , 曲薇薇 , 周群等 . 应用递归人工神经网络预测电力短期负荷 [J].佳木斯大学学报 (自然科学版 ,2010.
[2]姜绍飞 , 张春丽 , 钟善桐 .BP 网络模型的改进方法探讨 [J].哈尔滨建筑大学学报 ,2000.
[3]冯清海 , 袁万城 .BP 神经网络和 R BF 神经网络在墩柱抗震性能评估中的比较研究 [J].结构工程师 ,2007.
[4]李刚 . 基于人工神经网络的房地产估价研究 [D].长安大学 ,2006.
[5]刘丹 . 基于人工神经网络的风险投资项目评估模型 [D].中南大学 ,2002. [6]张凌 . 基于人工神经网络的期权定价模型 [D].武汉理工大学 ,2007.
[7]马文伟 . 基于人工神经网络的实物期权定价方法研究 [D].武汉理工大学 , 2004.
学术论坛
185。