图像分割算法的研究与实现

合集下载

图像分割算法的研究与实现_毕业设计论文

图像分割算法的研究与实现_毕业设计论文

学士学位论文(设计)论文题目图像分割算法研究与实现作者姓名指导教师所在院系物理与电子科学学院专业名称电子信息科学与技术完成时间2010年5月15日目录摘要: (1)1.前言 (3)2.图像分割概念 (3)2.1图像分割定义 (3)2.2图像分割方法综述 (5)2.3阈值法 (5)2.4 基于边缘检测的分割方法 (9)2.5基于区域的分割方法 (12)3.图像分割方法详述 (13)3.1图像分割方法 (13)3.2 图像分割方法实现 (13)4.实验结果及分析 (15)4.1 实验结果 (15)4.2 实验结果分析 (19)5.小结 (21)5.1 本文主要工作总结 (21)5.2 结论及展望 (21)6.致谢 (23)7.附录 (25)图像分割算法研究与实现摘要:图像分割是图像处理与计算机视觉的基本问题之一,是图像处理图像分析的关键步骤。

因为图像分割及其基于分割的目标表达、特征提取和参数测量等将原始图像转化为更抽象更紧凑的形式,使得更高层的图像分析和理解成为可能。

因此,图像分割多年来一直得到人们的高度重视.本文首先将现有的多种类型图像分割方法归结为3类典型的方法 , 并分析各自的特性;然后提出图象分割方案,并利用MATLAB 软件编写程序,展示实验现象,最后对所做工作进行总结。

关键词:图像分割阈值法边缘检测微分算子局部阈值中图分类号:TP391.41RESEARCH AND IMPLEMENTATION OF IMAGESEGMENTATION ALGORITHMSHan Yan(College of Physics and Electronic Science,Hubei Normal University, Huangshi 435002, China) Abstract :Image segmentation is one of basic problems in image pro- cessing and computer vision,and is a key step in image processingand image analysis.Because original image can be translated intomore abstract and more compact format by image segmentation andtarget expression , feather extraction , parameter survey , and so onwhich are base on segmentation , this makes more high images analysis and image understanding possible. Therefore, the image segmen-tation for many years is highly valued.At first ,image segmentationmethods are classified into three typical types ,and their characteris-tics are analyzed. Secondly , the scheme of image segmentation areintroduced .At last,there is a summation to the whole work,writtingprogram with MATLAB , and show the phenomenon.Key words: Image Segmentation ,Threshold , Edge Detection , Differential operator ,Local threshold图像分割算法研究与实现1.前言在图像的研究和应用过程中,人们往往仅对各幅图像中的某些部分感兴趣.这些部分常称为目标或前景,它们一般对应图像中特定的具有独特性质的区域.为了辨别和分析目标,需要将这些区域分离提取出来,在此基础上才有可能对目标进一步利用.图像分割就是将图像分成各具特性的区域并提取出感兴趣的目标的技术和过程.在进行图像分割时,首先要根据目标和背景的先验知识来对图像中的目标、背景进行标记、定位,然后将等待识别的目标从背景中分离出来.图像分割是由图像处理进到图像分析的关键步骤,也是一种基本的计算机视觉技术.这是因为图像的分割、目标的分离、特征的提取和参数的测量将原始的图像转化为更抽象更紧凑的形式,使得更高层的分析和理解成为可能.因此,图像分割多年来一直得到人们的高度重视[1]。

医学图像处理中的分割技术研究与应用

医学图像处理中的分割技术研究与应用

医学图像处理中的分割技术研究与应用一、概述医学图像处理是医学影像学领域的重要组成部分,它的基本任务是对从医学影像中获取的图像信息进行分析、处理和识别。

其中医学图像分割技术是医学影像分析中的重要分支,它可以将医学图像中的不同结构或组织分离出来,并形成具有特定标记的区域,从而为医学诊断和治疗提供有力支持。

本文将围绕医学图像处理中的分割技术展开讨论,探讨其研究现状、技术原理、算法优劣以及在实际应用中的案例。

二、研究现状目前,医学图像分割技术主要用于医学影像诊断、手术规划、肿瘤治疗等领域。

其中,肿瘤分割是应用较为广泛的领域之一,通过对医学影像中的肿瘤组织进行划分,可以实现肿瘤的量化分析和精确定位,为医生的治疗方案提供依据。

近年来,随着深度学习技术的发展,深度卷积神经网络(CNN)等模型在医学图像分割中得到越来越广泛的应用。

以CNN为代表的深度学习模型可以通过学习医学图像中显著特征,提高图像分割的精确性和效率。

此外,基于超像素的分割算法、区域生长算法、阈值分割算法等传统的分割方法仍然是研究的热点和难点之一。

三、技术原理医学图像的分割是指将医学图像中不同区域或组织进行分离的过程。

其技术核心是对数据的自动或半自动化分割,基于图像强度、空间信息等特性进行分析,将图像划分为各个独立的、有意义的区域。

医学图像的分割技术核心包括以下方面:1.特征提取:医学影像中蕴含的结构、材质以及其它一些信息可以通过特征提取的方式转化为数值或向量形式,这些特征在分割过程中被用作数据的表征。

2.分割算法:分割算法可以根据特定的规则,将提取到的特征进行分类和分割,不同算法的优劣决定了分割的精确度和操作效率。

3.评价指标:用于评估分割结果的准确性,如划分出的区域是否正确、与实际结果之间的误差、操作所需时间和计算复杂度等。

四、常见算法1.基于阈值的分割算法:其原理是设定一个阈值,将图像中灰度值大于该阈值的像素视为目标像素,否则视为背景像素。

基于深度学习的图像分割算法研究与应用

基于深度学习的图像分割算法研究与应用

基于深度学习的图像分割算法研究与应用近年来,随着计算机技术的不断发展和普及,人们对计算机视觉领域的需求也越来越迫切。

在计算机视觉领域中,图像分割一直是一个热门研究方向。

图像分割就是将一幅图像分成多个具有内部一致性的区域的过程,跟踪物体和背景、识别医学图像中的病变区域以及语义分割等诸多应用场景都需要图像分割技术的支撑。

而随着深度学习技术的普及,基于深度学习的图像分割算法也得到了广泛关注和研究。

一、深度学习与图像分割深度学习是一种能够训练神经网络学习输入与输出之间映射关系的方法。

直到近年来,随着计算机性能的提高,深度学习被广泛应用于计算机视觉领域,尤其是在图像分割、物体识别等方向上取得了极为显著的成果。

在图像分割中,深度学习通常采用的方法是基于卷积神经网络的方法(Convolutional Neural Network,简称CNN)。

CNN是一种特殊的神经网络,它可以从图像中自动学习特征,而不需要人工提取特征。

因此,CNN已经成为了深度学习在图像分割中的核心技术。

二、基于深度学习的图像分割算法1.全卷积网络(Fully Convolutional Networks,简称FCN)FCN是一种基于卷积神经网络的图像分割方法。

FCN将全连接层替换为卷积层,保留了输入的空间信息。

该方法在PASCAL VOC 2012语义分割任务上获得了当时最好的性能。

但是,FCN有一个明显的缺点,即输出的分辨率与输入图像的分辨率不一致。

2. 语义分割网络(Semantic Segmentation Network,简称SegNet)SegNet是一种基于CNN的语义分割神经网络,其主要特点是将池化层的最大值索引存储起来,之后再将其用于上采样层中。

因此,SegNet可以高效地恢复输入图像的空间分辨率,并同时保留语义信息,该方法在CamVid数据集上的语义分割任务上达到了当时最好的性能。

3. 深度级联网络(DeepLab)DeepLab是基于CNN的图像语义分割方法。

医学图像配准与分割算法的研究与改进

医学图像配准与分割算法的研究与改进

医学图像配准与分割算法的研究与改进一、引言医学图像在临床医学中起着至关重要的作用,它们被广泛应用于疾病诊断、治疗规划和研究等方面。

然而,由于医学图像的复杂性和多样性,我们面临着许多挑战,其中最重要的是图像配准和图像分割。

本文将对医学图像配准和分割算法进行研究和改进,以提高准确性和可靠性。

二、医学图像配准算法医学图像配准是将不同位置或不同时间获取的医学图像对齐的过程。

常见的医学图像配准算法包括基于特征的配准算法和基于区域的配准算法。

基于特征的配准算法通过提取图像中的特征点或特征描述子,并计算它们之间的匹配关系来实现图像配准。

而基于区域的配准算法则通过计算图像中相似区域的相似性来实现图像配准。

为了改进医学图像配准算法的准确性和稳定性,我们可以采用深度学习方法,例如使用卷积神经网络来学习特征提取和匹配的过程。

三、医学图像分割算法医学图像分割是将医学图像中具有相同属性或特征的区域分割出来的过程。

医学图像分割的准确性对于疾病预测、定量分析和手术规划等应用非常重要。

目前常见的医学图像分割算法包括阈值分割、区域生长、边缘检测和基于机器学习的方法等。

然而,传统的医学图像分割算法在处理复杂情况下仍然存在一定的局限性。

因此,改进医学图像分割算法成为当前研究的热点。

可以采用深度学习方法,如使用卷积神经网络来实现医学图像分割。

此外,引入先进的图像处理和机器学习方法也可以提高医学图像分割算法的准确性和可靠性。

四、医学图像配准与分割算法的融合医学图像配准和分割是紧密相关的任务,它们之间相互依赖。

医学图像配准的准确性对于医学图像分割的结果具有决定性的影响。

因此,将医学图像配准和分割算法进行融合是非常重要的。

可以通过使用配准结果来引导分割算法,提高分割的准确性。

同时,可以使用分割结果来优化配准算法,提高配准的稳定性。

深度学习方法在医学图像配准与分割的融合中起着重要作用,可以使用深度学习模型来联合优化配准和分割的过程。

五、改进医学图像配准与分割算法的挑战与展望然而,改进医学图像配准与分割算法仍然面临着一些挑战。

基于半监督学习的图像分割算法研究与实现

基于半监督学习的图像分割算法研究与实现

基于半监督学习的图像分割算法研究与实现近年来,随着人工智能技术的不断发展,图像分割算法成为了计算机视觉领域的一个热门话题。

图像分割是指将一幅图像中的像素分成多个互不重叠的区域,并使得每个区域内的像素具有相似的特征。

图像分割在计算机视觉领域有着广泛的应用,如目标检测、图像识别、医学影像处理等方面。

现有的图像分割算法大体可以分为基于阈值的分割、基于区域的分割、基于边缘的分割和基于图论的分割等几种。

但是,这些算法都存在着一定的缺陷,如阈值灵敏度低、对图像特征提取不够灵活、对图像大小、形状、方向等不敏感等。

针对这些问题,近年来基于半监督学习的图像分割算法逐渐成为研究热点。

半监督学习是指同时利用有标记样本和未标记样本来进行学习,即半监督模型同时利用了标记数据和未标记数据来进行学习和分类,这使得模型的准确性得到了提高,同时减少了标记数据的数量和成本。

基于半监督学习的图像分割算法通常包括两个步骤:1、通过半监督模型对图像进行分割;2、通过自适应连通性分析方法来进一步优化分割结果。

下面,我们将针对这两个步骤展开讨论。

首先,对于半监督模型的选择,一般可以选择支持向量机(SVM)、半监督随机游走(SSL-RW)、半监督鲁棒性特征选择(SSL-BMR)等。

这些算法都可以有效地利用未标记样本来提高图像分割的准确性和鲁棒性。

值得注意的是,对于不同的数据集和应用场景,选择合适的半监督模型是非常关键的。

其次,自适应连通性分析方法也是基于半监督学习的图像分割算法的重要部分之一。

这种方法利用了图像特征之间的连通性来优化图像分割结果,同时充分考虑了相邻像素之间的相似性。

自适应连通性分析方法通常包括以下几个步骤:1、构建相似图,其中相似矩阵由半监督模型输出的小概率值和像素点相似度构成;2、利用谱聚类算法对相似图进行聚类,将图像分割成多个互不重叠的分割区域;3、通过处理定位问题来剪切不必要的边缘像素点,最终得到更为精确的分割结果。

综上所述,基于半监督学习的图像分割算法具有较为广泛的应用前景和研究价值。

基于颜色空间的图像分割算法研究

基于颜色空间的图像分割算法研究

基于颜色空间的图像分割算法研究一、简介图像分割是数字图像处理中的重要内容,其目的是将一张图像分成不同的部分或区域。

图像分割在计算机视觉、机器人、医学图像以及自然图像的分析等方面有着广泛的应用。

基于颜色空间的图像分割算法是图像分割领域中的一种常见方法,本文将从该方法的原理、实现及优化方面进行研究。

二、基于颜色空间的图像分割算法原理基于颜色空间的图像分割算法的原理是:在RGB、HSI、HSV、LAB等颜色空间中,将图像像素的颜色信息利用聚类分析的方法分类,从而得到不同的区域。

其中,RGB色彩空间以红、绿、蓝三原色的亮度为基础,可以展现出色彩的真实性,但缺乏人眼的视觉特性;HSI色彩空间是将RGB色彩空间转换至色相(H)、饱和度(S)、强度(I)三方向,用于描述颜色的感性特征。

HSV色彩空间是将RGB色彩空间转换至色调(H)、饱和度(S)、亮度(V)三方向。

LAB色彩空间是基于三个属性:L(亮度)、A(色彩在绿-红轴上的位置)、B(色彩在蓝-黄轴上的位置)。

三、基于颜色空间的图像分割算法实现基于颜色空间的图像分割算法的实现步骤如下:1.选择合适的颜色空间转换成灰度图像;2.确定聚类中心,对灰度图像进行聚类,确定不同的区域;3.利用聚类得到的分割结果对原图像进行分割,得到不同的区域。

四、基于颜色空间的图像分割算法优化基于颜色空间的图像分割算法的优化主要从以下几个方面:1. 颜色空间选择:应选择适合特定应用场合的颜色空间。

例如,应选择HSV颜色空间来提取彩色图像中特定颜色物体的信息;2. 聚类算法:应选择合适的聚类算法,不同聚类算法适用于不同的分割结果;3. 深度学习方法:利用深度学习方法实现图像分割可以提高分割的准确性和效率;4. 视频图像分割:对于视频图像分割,可以将前一帧的分割结果作为后一帧的初始聚类中心,以减少重复计算。

五、总结基于颜色空间的图像分割算法是图像分割领域中的常见方法之一,在医学图像、机器人、计算机视觉等领域有着广泛的应用。

基于深度学习的图像分割算法设计与实现

基于深度学习的图像分割算法设计与实现

基于深度学习的图像分割算法设计与实现随着计算机视觉技术的不断发展,图像分割技术已经成为了一项非常重要的研究领域。

图像分割的目的是将一幅图像分割成多个具有语义含义的区域,常常用于目标识别、医学影像分析、图像处理等领域。

随着深度学习技术的发展,基于深度学习的图像分割算法得到了广泛的应用和研究。

一、深度学习技术原理深度学习技术是目前最流行、最先进的机器学习技术之一。

它的主要特点是通过构建多个层次的神经网络来实现对大量数据的高效学习和分类。

深度学习算法采用了反向传播算法来优化神经网络中的权重和偏置,从而不断提高模型的准确性。

二、基于深度学习的图像分割算法很多图像分割算法都采用了深度学习技术。

常用的基于深度学习的图像分割算法有FCN、U-Net、SegNet等。

1. FCNFCN全称为Fully Convolutional Network,是一种基于卷积神经网络的图像分割算法。

FCN将卷积神经网络中的全连接层替换成卷积层,使得整个网络可以接收任意大小的输入图像,并输出一张大小相同的分割图像。

FCN算法需要训练一个分类器,将每个像素点划分到不同的类别中,从而实现图像分割的任务。

2. U-NetU-Net是一种基于编码-解码架构的图像分割算法。

在编码过程中,U-Net使用了一个卷积层和一个池化层的组合来逐渐缩小图像的尺寸;在解码过程中,U-Net使用了一个反卷积层和一个卷积层的组合来逐渐恢复图像的尺寸。

U-Net算法使用了跳跃连接技术,将编码层的信息与解码层的信息相结合,从而提高了算法的精度。

3. SegNetSegNet是一种基于卷积神经网络的图像分割算法,它采用了一个编码器和一个解码器的结构。

编码器负责将原始图像通过卷积和池化操作降采样,解码器则负责将降采样后的特征图通过反卷积和卷积操作升采样。

SegNet算法还使用了上采样索引技术,记录下了池化操作的位置,从而在解码过程中保留了池化操作中删除的像素。

三、图像分割的应用深度学习技术在图像分割领域的应用非常广泛,被广泛应用于目标识别、医学影像分析、图像处理等领域。

显著性图像分割算法的研究与优化

显著性图像分割算法的研究与优化

显著性图像分割算法的研究与优化一、引言图像分割是计算机视觉领域中的一个重要研究和应用方向,其主要目的是将图像分为不同的区域,使得每个区域内的像素具有相似的特征。

在目标检测、图像识别和图像处理等应用中,图像分割作为前置步骤扮演着重要角色。

当前,显著性图像分割算法是研究的热点之一。

本文将对显著性图像分割算法的研究现状和优化策略进行探讨。

二、显著性图像分割算法1. 基于传统方法的显著性区域提取传统的显著性图像分割算法通常采用手工设计的特征提取方法,如边缘检测、颜色直方图、纹理等,以及一些经典的分割技术,如聚类、阈值化、分水岭等。

常见的基于传统方法的显著性图像分割算法包括GrabCut、Mean-Shift、GraphCut等。

其中,GrabCut是一种基于交互操作的图像分割算法,它通过人工标记前景和背景来分割图像。

该算法先对用户标记的前景和背景像素进行聚类,得到前景区域和背景区域的高斯混合模型,然后将图像像素分配到前景或背景,直到模型收敛为止。

2. 基于深度学习的显著性区域提取近年来,深度学习技术的快速发展使得其成功地应用在图像分割中。

基于深度学习的显著性图像分割算法通常采用卷积神经网络(Convolutional Neural Network,CNN)或循环神经网络(Recurrent Neural Network,RNN)等深度模型进行特征提取和分割。

常见的基于深度学习的显著性图像分割算法包括DeepLab、FCN-8s、U-Net等。

其中,DeepLab是一种基于深度学习的图像分割算法,该算法采用深度卷积神经网络学习图像特征,然后使用空洞卷积(Dilated Convolutions)进行多尺度分析,最终生成图像分割结果。

U-Net是一种基于卷积神经网络的图像分割算法,通过特征提取和下采样操作得到低分辨率的特征图,然后通过上采样操作和特征融合得到高分辨率的分割结果。

三、显著性图像分割算法的优化策略1. 多尺度特征融合多尺度特征融合是提高显著性图像分割精度的常用策略之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

图 4 区域生 长 的例子
图 4表示 了一个 很 简单 的 区域 生长 的例 子 。每一 步所 接受 的邻 近点 的灰
度级与当前物体 的平均灰度级的差小于 2 。图 4(输人图像 ,其起始点灰度 a ) 级为 9 ;图 4() 一步 接受 的邻 近 点 ( 时虚 线框 内的平均 灰度 级为 ( + + b第 此 88
(o oatT ahn eatetf o ue,i sU i ri, el gi g i ui50 7 hn) Cmm nly ecig pr n mpt J mui nv syH injn a s140 , ia i D m oC r a e t o a Jm C
Ab t c : h ma e sg e tt n i r n i r m h ma e p o e sn o t e i g n l ss c mmi e tp T i s r t e i g e m na o s ta st f a T i s o t e i g r c s i g t h ma e a ay i o t d s . hs t e

5 4
2 3

5 r Q-一 2 Q
一 一 一 一

r ●。 r J 9 1 弋 。● 3 c _)

图 3 L pain 子实现 后 的图像 al a 算 c
一 . : - = 3
2 基于区域 的分割方法
区域分 割 的实 质 就是把 具 有某 种 相似 性质 的像 素连 通起来 ,从 而构 成 最终 的分 割 区域 。它利用 了图像 的局 部空 间信息 ,可有 效地 克 服其 它 方法存 在 的 图像 分 割空 间不 连续 的缺 点 ,但它 通 常会造 成 图像 的过 度
r ’ ’ 1
5 5 8 6
5 5 8: : 6
I ●
4 8:9 : 7
2 2 ‘ 8 3 --
4 8 9: : 7
● l
L..J
2 2 8 3
3 3 3 3
( a )
3 3 3 3
89)4 . + /=8 5);图 4 (第 二步 接受 的邻近 点 ( 时所接 受 的点 区平均 灰度 2 c ) 此
级为 8 ),进一 步生 长 已经不 可能 了 ;图 4 () 6开始 生长 的结果 。 d由
在 实现 区域生 长 时 ,选 取 的 阈值是 根 据双 峰法 得到 的 ,然后 自定 义 了两 个 函数 aead pm on) aead0 nm on) 得 区域增 加 的范 围 。图 5 radu (pit raddw (pit 及 来求 为 区域 生长后 的效 果 图 。
参 考文献
f 1 】乐宋进,武和雷 , 胡泳芬.图像分割方法 的研究 现状 与展 望『. 昌水专学报 ,2 0 2 :1— 1 J 南 1 0 4( ) 6 2
[ e nt..at m n 数 字 图像 处 理 [ . 志 刚 等 译 . 京 : 电子 工业 出版 社 , 19 . 2 】K n e RC s e a . h l M】 朱 北 98
图5 区域生 长效果 图
f 3 ]韩伟峰.D lh 程序设计教程 [ . e i6 p M] 北京 :清华大学出版社 ,2 0 . 02 【 4 ]王爱 民,沈兰荪 .图像分割研究综述 【 _ 控技术 ,2 0 5):- . J 测 】 0 0( 16 f 5 ]傅德胜,寿益 禾.图形 图像处理学【 . M】 南京 : 东南大学 出版礼 ,2 0 . 02
第5 期
图像分割算法 的研究与实现
・ 9・ 3
I 1 - o
l 1 4 0 1—
在 实现拉 普拉 斯算 子 时 , 调用 灰 度过 程 ; 定 义两个 一维 数组 a 需 且 和
b ,一个 是存放 原 始 图像 3×3 区域 的 9个 值 ,一个 存 放掩模 ;还 用 到 了 小 循 环 的嵌 套 。其 中小 的循 环 是从 0到 9排序 ( 因为 它相 当于是 在把 图像 分 成多个 3X3的小 区域 的第 一个 区域 中 9个数 排 序 , 它定 义成 一个 一维 数 把 组) ,然后 根 据算 子 求 出该像 素点 卷 积后 的灰 度值 。依 次往 下循 环 ,到第 24列后 就返 回到 下一 行继 续 ,这 就是 外 面 的大循 环 ,它是行 、列都从 1 5 到 24开始 循环 , 5 因为第 一行 、最 后 一行 和第 一列 、最 一列 都不 考虑 图 。 3为拉普拉 斯算 子子分 割 后 的 图像 效 果 。

4 0・
齐 齐 哈 尔 大 学 学 报
21 0 0矩
Th e e rh a d i pe e t f ma e s g e t t n me h d ers ac n m lm n o i g e m nai to o
LI Yu GE M a - o g U e, o s n
它 可 以取 决于候选 点 相对 于 0的位 置 ; 者候 选点 的灰 度级 与 0的平 均灰 度级 接 近的程 度 ;同进 还可 以考 或
_ 一
1 ● ● -

虑 0本身的形状和大小 ,因为有时需要生成某种形状和大小的物体或区域。当新点被接受后 , 把它们与 0 相连 , 然后用所得 到的新 0重复这一生长过程 ,直到没有可接受的邻近点为止 ,于是生成过程结束 。
P 5 L● 1 _~ ~8 — ● 1 J — 5 广 一 . 4 2 8 9 8 7 b 3
分割H 。例如 , 0为已接受 的一小块物体 ( 已检测出的一个 目标点 ) 设 或 。此时检验它 的全部邻近点 , 并把 满 足跟踪 接受 准则 的所有 邻 近 点合 并人 上 述小 块 中 。这个 准 则可 以取 决 于候 选 点 的位 置种 l 】 生质 。例如 ,
相关文档
最新文档