2021-2022年高考数学一轮总复习第十一章计数原理和概率题组训练82古典概型理
届数学一轮复习第十一章计数原理概率随机变量及其分布第七节n次独立重复试验与二项分布学案理含解析

第七节n次独立重复试验与二项分布[最新考纲][考情分析][核心素养]1.了解条件概率和两个事件相互独立的概念.2。
理解n次独立重复试验的模型及二项分布,能解决一些简单的实际问题.主要在选择题、填空题中考查条件概率,对相互独立事件及独立重复试验多在解答题中考查,分值为5分左右。
1。
数学建模2.数学运算‖知识梳理‖1.条件概率条件概率的定义条件概率的性质已知B发生的条件下,A发生的概率,称为B发生时A发生的条件概率,记为1P(A|B)。
当P(B)〉0时,我们有P(A|B)=错误! (其中,A∩B也可以记成AB)。
类似地,当P(A)〉0时,A发生时B发生的条件概率为P(B|A)=错误!错误!(1)0≤P(B|A)≤1;(2)如果B和C是两个互斥事件,则P(B∪C|A)=错误!P(B|A)+P(C|A)2。
事件的相互独立性(1)定义:设A,B为两个事件,若P(AB)=错误!P(A)P(B),则称事件A与事件B相互独立.(2)性质①若事件A与B相互独立,则P(B|A)=错误!P(B),P(A|B)=P(A),P(AB)=错误!P(A)P(B).②如果事件A与B相互独立,那么错误!A与错误!,错误!错误!与B,错误!错误!与错误!也相互独立.3.独立重复试验与二项分布‖基础自测‖一、疑误辨析1.判断下列结论是否正确(请在括号中打“√”或“×”).(1)若事件A,B相互独立,则P(B|A)=P(B).()(2)P(B|A)表示在事件A发生的条件下,事件B发生的概率,P(AB)表示事件A,B同时发生的概率,一定有P(AB)=P(A)·P(B).()(3)相互独立事件就是互斥事件.()(4)二项分布是一个概率分布列,是一个用公式P(X=k)=C错误! p k(1-p)n-k,k=0,1,2,…,n表示的概率分布列,它表示了n次独立重复试验中事件A发生的次数的概率分布.()答案:(1)√(2)×(3)×(4)√二、走进教材2.(选修2-3P55T3改编)根据天气预报,在元旦假期甲地的降雨概率是0.2,乙地的降雨概率是0。
2021-2022年高考数学一轮复习第十一章计数原理概率随机变量及其分布11.5古典概型真题演练集训

2021年高考数学一轮复习第十一章计数原理概率随机变量及其分布11.5古典概型真题演练集训理新人教A 版1.[xx·江苏卷]将一颗质地均匀的骰子(一种各个面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和小于10的概率是________.答案:56解析:解法一:将一颗质地均匀的骰子先后抛掷2次,向上的点数有36种结果,其中点数之和小于10的有30种,故所求概率为3036=56.解法二:将一颗质地均匀的骰子先后抛掷2次,向上的点数有36种结果,其中点数之和不小于10的有(6,6),(6,5),(6,4),(5,6),(5,5),(4,6),共6种,故所求概率为1-636=56.2.[xx·新课标全国卷Ⅱ]某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.A 地区用户满意度评分的频率分布直方图①B地区用户满意度评分的频数分布表满意度评分分组[50,60)[60,70)[70,80)[80,90)[90,100]频数281410 6(1)在图②中作出B地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).B地区用户满意度评分的频率分布直方图②(2)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意解:(1)如图所示.通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A 表示事件:“A 地区用户的满意度等级为不满意”;C B 表示事件:“B 地区用户的满意度等级为不满意”.由直方图,得P (C A )的估计值为(0.01+0.02+0.03)×10=0.6,P (C B )的估计值为(0.005+0.02)×10=0.25.所以A 地区用户的满意度等级为不满意的概率大.3.[xx·天津卷]某小组共10人,利用假期参加义工活动.已知参加义工活动次数为1,2,3的人数分别为3,3,4.现从这10人中随机选出2人作为该组代表参加座谈会.(1)设A 为事件“选出的2人参加义工活动次数之和为4”,求事件A 发生的概率; (2)设X 为选出的2人参加义工活动次数之差的绝对值,求随机变量X 的分布列和数学期望.解:(1)由已知,有P (A )=C 13C 14+C 23C 210=13. 所以事件A 发生的概率为13.(2)随机变量X 的所有可能取值为0,1,2. P (X =0)=C 23+C 23+C 24C 210=415, P (X =1)=C 13C 13+C 13C 14C 210=715, P (X =2)=C 13C 14C 210=415.所以,随机变量X 的分布列为随机变量X 的数学期望E (X )=0×15+1×15+2×15=1.课外拓展阅读古典概型与平面向量、几何、统计等知识的综合古典概型的考查可以和平面向量、几何、统计等知识相互交汇,在解题中要重视古典概型的计算,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后正确使用古典概型的概率计算公式进行计算.[典例1] 甲、乙分别从底为等腰直角三角形的直三棱柱的9条棱中任选一条,则这2条棱互相垂直的概率为( )A.2281 B.3781 C.4481 D.5981[思路分析][解析] 由题意知本题是一个古典概型,试验发生包含的事件是甲从这9条棱中任选一条,乙从这9条棱中任选一条,共有9×9= 81(种)结果,满足条件的事件是这两条棱互相垂直,所有可能情况是:当甲选底面上的一条直角边时,乙有5种选法,共有4条直角边,则共有20种结果; 当甲选底面上的一条斜边时,乙有3种选法,共有2条底面的斜边,则共有6种结果; 当甲选一条侧棱时,乙有6种选法,共有3条侧棱,则共有18种结果, 综上所述,共有20+6+18=44(种)结果, 故2条棱互相垂直的概率是4481.[答案] C 温馨提示以棱柱、棱锥及异面直线、距离等立体几何知识为载体的古典概型求解是高考中的重要题型,题目综合性较强,有一定的难度,解题的关键是要考虑所有的位置关系.[典例2] 设连续掷两次骰子得到的点数分别为m ,n ,令平面向量a =(m ,n ),b =(1,3). (1)求使得事件“a ∥b ”发生的概率; (2)求使得事件“|a |≤|b |”发生的概率. [解] (1)由题意知,m ∈{1,2,3,4,5,6},n ∈{1,2,3,4,5,6}.故(m ,n )所有可能的取法共36种. 由a ∥b ,得n =3m ,则(m ,n )的取法共有2种,即(1,3),(2,6). 所以事件“a ∥b ”发生的概率为236=118.(2)由|a |≤|b |,得m 2+n 2≤10,则(m ,n )的取法共有6种,即(1,1),(1,2),(1,3),(2,1),(2,2),(3,1). 所以事件“|a |≤|b |”发生的概率为636=16.[典例3] 城市公交车的数量太多容易造成资源的浪费,太少又难以满足乘客需求,为此,某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间(单位:分钟)作为样本分成5组,如下表所示:组别 候车时间 人数 一 [0,5) 2 二 [5,10) 6 三 [10,15) 4 四 [15,20) 2 五[20,25]1(1)求这15(2)估计这60名乘客中候车时间少于10分钟的人数;(3)若从上表第三、四组的6人中选2人作进一步的问卷调查,求抽到的2人恰好来自不同组的概率.[思路分析][解] (1)115×(2.5×2+7.5×6+12.5×4+17.5×2+22.5×1)=115×157.5=10.5,故这15名乘客的平均候车时间为10.5分钟.(2)由几何概型的概率计算公式可得,候车时间少于10分钟的概率为2+615=815,所以候车时间少于10分钟的人数为60×815=32.(3)将第三组乘客编号为a1,a2,a3,a4,第四组乘客编号为b1,b2.从6人中任选2人的所有可能情况为(a1,a2),(a1,a3),(a1,a4),(a1,b1),(a1,b2),(a2,a3),(a2,b4),(a2,b1),(a2,b2),(a3,a4),(a3,b1),(a3,b2),(a4,b1),(a4,b2),(b1,b2),共15种,其中2人恰好来自不同组包含8种可能情况,故所求概率为815.。
2021版高考数学一轮总复习第十一章计数原理和概率题组训练85n次独立重复试验与二项分布理20210

2021版高考数学一轮总复习第十一章计数原理和概率题组训练85n 次独立重复试验与二项分布理2021051541341.下列表中能成为随机变量X 的分布列的是( )答案 C2.袋中有大小相同的红球6个、白球5个,从袋中每次任意取出1个球,直到取出的球是白球时为止,所需要的取球次数为随机变量ξ,则ξ的可能值为( ) A .1,2,…,6 B .1,2,…,7 C .1,2,…,11 D .1,2,3,…答案 B解析 除白球外,其他的还有6个球,因此取到白球时取球次数最少为1次,最多为7次.故选B.3.若某一随机变量X 的概率分布如下表,且m +2n =1.2,则m -n2的值为( )X 0 1 2 3 P0.1mn0.1 A.-0.2 C .0.1 D .-0.1答案 B解析 由m +n +0.2=1,m +2n =1.2,可得m =n =0.4,m -n2=0.2.4.已知随机变量X 的分布列为P(X =k)=12k ,k =1,2,…,则P(2<X≤4)等于( )A.316B.14C.116D.516答案 A解析 P(2<X≤4)=P(X =3)+P(X =4)=123+124=316.5.若随机变量X 的分布列为则当P(X<a)=0.8A .(-∞,2] B .[1,2] C .(1,2] D .(1,2)答案 C解析 由随机变量X 的分布列知:P(X<-1)=0.1,P(X<0)=0.3,P(X<1)=0.5,P(X<2)=0.8,则当P(X<a)=0.8时,实数a 的取值范畴是(1,2].6.袋中有大小相同的5只钢球,分别标有1,2,3,4,5五个号码,任意抽取2个球,设2个球号码之和为X ,则X 的所有可能取值个数为( ) A .25 B .10 C .7 D .6答案 C解析 X 的可能取值为1+2=3,1+3=4,1+4=5=2+3,1+5=6=4+2,2+5=7=3+4,3+5=8,4+5=9.7.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,竞赛规定:关于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分).若X 是甲队在该轮竞赛获胜时的得分(分数高者胜),则X 的所有可能取值是________. 答案 -1,0,1,2,3解析 X =-1,甲抢到一题但答错了;X =0,甲没抢到题,或甲抢到2题,但答时一对一错;X =1时,甲抢到1题且答对或甲抢到3题,且一错两对;X =2时,甲抢到2题均答对;X =3时,甲抢到3题均答对.8.已知甲盒内有大小相同的1个红球和3个黑球,乙盒内有大小相同的2个红球和4个黑球,现从甲、乙两个盒内各任取2个球.设ξ为取出的4个球中红球的个数,则P(ξ=2)=________. 答案310解析 ξ可能取的值为0,1,2,3,P (ξ=0)=C 32C 42C 42C 62=15,P (ξ=1)=C 31C 42+C 32C 21C 41C 42C 62=715,又P(ξ=3)=C 31C 42C 62=130,∴P(ξ=2)=1-P(ξ=0)-P(ξ=1)-P(ξ=3)=1-15-715-130=310.9.一个盒子里装有7张卡片,其中有红色卡片4张,编号分别为1,2,3,4;白色卡片3张,编号分别为2,3,4.从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同). (1)求取出的4张卡片中,含有编号为3的卡片的概率;(2)在取出的4张卡片中,红色卡片编号的最大值设为X ,求随机变量X 的分布列与数学期望.答案 (1)67 (2)175解析 (1)设“取出的4张卡片中,含有编号为3的卡片”为事件A , 则P(A)=C 21C 53+C 22C 52C 74=67. 因此取出的4张卡片中,含有编号为3的卡片的概率为67.(2)随机变量X 的所有可能取值为1,2,3,4. P(X =1)=C 33C 74=135,P(X =2)=C 43C 74=435,P(X =3)=C 53C 74=27,P(X =4)=C 63C 74=47.则随机变量X 的分布列是故随机变量X 的数学期望E(X)=1×35+2×35+3×7+4×7=5.10.在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求:(1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 元的概率分布列. 答案 (1)23(2)略解析 (1)该顾客中奖,说明是从有奖的4张奖券中抽到了1张或2张,由因此等可能地抽取,因此该顾客中奖的概率 P =C 41C 61+C 42C 102=3045=23.(或用间接法,即P =1-C 62C 102=1-1545=23).(2)依题意可知,X 的所有可能取值为0,10,20,50,60(元),且P(X =0)=C 40C 62C 102=13,P(X =10)=C 31C 61C 102=25,P(X =20)=C 32C 102=115,P(X =50)=C 11C 61C 102=215,P(X =60)=C 11C 31C 102=115.因此X 的分布列为:11.在103件,求:(1)取出的3件产品中一等品件数X 的分布列;(2)取出的3件产品中一等品件数多于二等品件数的概率. 答案 (1)略 (2)31120解析 (1)由于从10件产品中任取3件的结果数为C 103,从10件产品中任取3件,其中恰有k 件一等品的结果数为C 3kC 73-k,那么从10件产品中任取3件,其中恰有k 件一等品的概率为P(X =k)=C 3kC 73-kC 103,k =0,1,2,3.因此随机变量X 的分布列是(2)设“取出的31件一等品和2件三等品”为事件A 1,“恰好取出2件一等品”为事件A 2,“恰好取出3件一等品”为事件A 3.由于事件A 1,A 2,A 3彼此互斥,且A =A 1∪A 2∪A 3,而P(A 1)=C 31C 32C 103=340,P(A 2)=P(X =2)=740,P(A 3)=P(X =3)=1120,∴取出的3件产品中一等品件数多于二等品件数的概率为P(A)=P(A 1)+P(A 2)+P(A 3)=340+740+1120=31120. 12.(2021·大连质检)某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为12,13,23.(1)求该高中获得冠军个数X 的概率分布列;(2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分Y 的概率分布列. 答案 (1)略 (2)略解析 (1)由题意知X 的可能取值为0,1,2,3, 则P(X =0)=(1-12)×(1-13)×(1-23)=19,P(X =1)=12×(1-13)×(1-23)+(1-12)×13×(1-23)+(1-12)×(1-13)×23=718,P(X =2)=12×13×(1-23)+(1-12)×13×23+12×(1-13)×23=718,P(X =3)=12×13×23=19.∴X 的分布列为(2)∵得分Y =5X +2(3∵X 的可能取值为0,1,2,3.∴Y 的可能取值6,9,12,15.则P(Y =6)=P(X =0)=19,P(Y =9)=P(X =1)=718,P(Y =12)=P(X =2)=718,P(Y =15)=P(X =3)=19.∴Y 的分布列为13.力打造的大型励志专业音乐评论节目,于2012年7月13日正式在浙江卫视播出.每期节目有四位导师参加.导师背对歌手,若每位参赛选手演唱完之前有导师为其转身,则该选手能够选择加入为其转身的导师的团队中同意指导训练.已知某期《中国新歌声》,6位选手演唱完后,四位导师为其转身的情形如下表所示:现从这6(1)求选出的2人导师为其转身的人数和为4的概率;(2)记选出的2人导师为其转身的人数之和为X ,求X 的分布列及数学期望E(X). 答案 (1)15(2)E(X)=5解析 (1)设6位选手中,A 有4位导师为其转身,B ,C 有3位导师为其转知,D ,E 有2位导师为其转身,F 只有1位导师为其转身.从6人中随机抽取两人有C 62=15种情形,其中选出的2人导师为其转身的人数和为4的有C 22+C 21C 11=3种,∴所求概率为P =315=15.(2)X 的所有可能取值为3,4,5,6,7.P(X =3)=C 21C 11C 62=215;P(X =4)=15;P(X =5)=1+C 21C 21C 62=515=13;P(X =6)=C 21C 11+C 22C 62=315=15;P(X =7)=C 21C 11C 62=215. ∴X 的分布列为X 3 4 5 6 7 P215151315215E(X)=3×215+4×5+5×3+6×5+7×15=5.1.由于电脑故障,使得随机变量X 的分布列中部分数据丢失(以“x,y ”代替),其分布列如下:X 1 2 3 4 5 6 P0.200.100.x50.100.1y0.20答案 2,5解析 由于0.20+0.10+(0.1x +0.05)+0.10+(0.1+0.01y)+0.20=1,得10x +y =25,又因为x ,y 为正整数,故两个数据依次为2,5.2.一实验箱中装有标号为1,2,3,3,4的5只白鼠,若从中任取1只,记取到的白鼠的标号为Y ,则随机变量Y 的分布列是________. 答案Y 1 2 3 4 P15152515解析 Y P(Y =1)=15,P(Y =2)=15,P(Y =3)=25,P(Y =4)=15.∴Y 的分布列为3.一个袋子中装有74,黄球3个,编号分别为2,4,6,从袋中任取4个球(假设取到任何一个球的可能性相同). (1)求取出小球中有相同编号的概率;(2)记取出的小球的最大编号为X ,求随机变量X 的分布列. 答案 (1)1935(2)略解析 (1)设“取出的小球中有相同编号的”为事件A ,编号相同可分成一个相同和两个相同,则P(A)=2(C 21C 31+C 32)+1C 74=1935. (2)随机变量X 的可能取值为:3,4,6. P(X =3)=1C 74=135,P(X =4)=C 21C 43+C 42C 74=25, P(X =6)=C 63C 74=47,随机变量X 的分布列为:4.一袋中装有102个球,至少得到1个白球的概率是79.(1)求白球的个数;(2)从袋中任意摸出3个球,记得到白球的个数为X ,求随机变量X 的分布列. 答案 (1)5个 (2)略解析 (1)记“从袋中任意摸出2个球,至少得1个白球”为事件A ,设袋中白球的个数为x ,则P(A)=1-C 10-x 2C 102=79,得到x =5.故白球有5个.(2)X 服从超几何分布,P(X =k)=C 5kC 53-kC 103,k =0,1,2,3.因此可得其分布列为P112 512 512 1125.(2020·福建,理)该银行卡将被锁定.小王到该银行取钱时,发觉自己不记得了银行卡的密码,但能够确认该银行卡的正确密码是他常用的6个密码之一,小王决定从中不重复地随机选择1个进行尝试.若密码正确,则终止尝试;否则连续尝试,直至该银行卡被锁定. (1)求当天小王的该银行卡被锁定的概率;(2)设当天小王用该银行卡尝试密码的次数为X ,求X 的分布列和数学期望. 答案 (1)12 (2)分布列略,E(X)=52解析 (1)设“当天小王的该银行卡被锁定”的事件为A , 则P(A)=56×45×34=12.(2)依题意得,X 所有可能的取值是1,2,3.又P(X =1)=16,P(X =2)=56×15=16,P(X =3)=56×45×1=23.因此X 的分布列为X 1 2 3 P161623因此E(X)=1×16+2×16+3×3=2.6.某中学动员学生在春节期间至少参加一次社会公益活动(下面简称为“活动”).该校合唱团共有100名学生,他们参加活动的次数统计如图所示.(1)求合唱团学生参加活动的人均次数;(2)从合唱团中任选两名学生,求他们参加活动次数恰好相等的概率;(3)从合唱团中任选两名学生,用ξ表示这两人参加活动次数之差的绝对值,求随机变量ξ的分布列.答案 (1)2.3 (2)4199(3)略解析 依照统计图知参加活动1次、2次、3次的学生数分别为10,50,40.(1)该合唱团学生参加活动的人均次数为x -=1×10+2×50+3×40100=2.3.(2)从合唱团中任选两名学生,他们参加活动次数恰好相等的概率P =C 102+C 502+C 402C 1002=4199. (3)ξ的取值为0,1,2,ξ的分布列为7.(2020·重庆)摸奖者先从装有3个红球与4个白球的袋中任意摸出3个球,再从装有1个蓝球与2个白球的袋中任意摸出1个球.依照摸出4个球中红球与蓝球的个数,设一、二、三等奖如下:(1)求一次摸奖恰好摸到1个红球的概率; (2)求摸奖者在一次摸奖中获奖金额X 的分布列. 答案 (1)1835(2)略解析 设A i 表示摸到i 个红球,B j 表示摸到j 个蓝球,则A i (i =0,1,2,3)与B j (j =0,1)独立.(1)恰好摸到1个红球的概率为P(A 1)=C 31C 42C 73=1835.(2)X 的所有可能的值为:0,10,50,200, 则P(X =200)=P(A 3B 1)=P(A 3)P(B 1)=C 33C 73·13=1105,P(X =50)=P(A 3B 0)=P(A 3)P(B 0)=C 33C 73·23=2105,P(X =10)=P(A 2B 1)=P(A 2)P(B 1)=C 32C 41C 73·13=12105=435,P(X =0)=1-1105-2105-435=67.综上知X 的分布列为8.试销终止后(3件,当天营业终止后检查存货,若发觉存量少于2件,则当天进货补充至3件,否则不进货.将频率视为概率.(1)求当天商店不进货的概率;(2)设X 为翌日开始营业时该商品的件数,求X 的分布列和均值. 答案 (1)310 (2)114解析 (1)P(“当天商店不进货”)=P(“当天商品销售量为0件”)+P(“当天商品销售量为1件”)=120+520=310.(2)由题意知,X 的可能取值为2,3.P(X =2)=P(“当天商品销售量为1件”)=520=14;P(X =3)=P(“当天商品销售量为0件”)+P(“当天商品销售量为2件”)+P(“当天商品销售量为3件”)=120+920+520=34.故X 的分布列为X 的均值为E(X)=2×14+3×34=4.9.设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1. (1)求概率P(ξ=0);(2)求ξ的分布列,并求其数学期望E(ξ).解析 (1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,因此共有8C 32对相交棱,因此P(ξ=0)=8C 32C 122=8×366=411.(2)若两条棱平行,则它们的距离为1或2,其中距离为2的共有6对,故P(ξ=2)=6C 122=111. 因此P(ξ=1)=1-P(ξ=0)-P(ξ=2)=1-411-111=611.因此随机变量ξ的分布列是因此E(ξ)=1×611+10.(2020·贵州遵义联考)2021年巴西奥运会的周边商品有80%左右为“中国制造”,所有的厂家差不多上通过层层选择才能获此殊荣.甲、乙两厂生产同一产品,为了解甲、乙两厂的产品质量,以确定这一产品最终的供货商,采纳分层抽样的方法从甲、乙两厂生产的产品共98件中分别抽取9件和5件,测量产品中的微量元素的含量(单位:毫克).下表是从乙厂抽取的5件产品的测量数据:(1)(2)当产品中的微量元素x ,y 满足x≥175,且y≥75,该产品为优等品.用上述样本数据估量乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数ξ的分布列及其均值(即数学期望). 答案 (1)35 (2)14 (3)45解析 (1)乙厂生产的产品总数为5÷1498=35.(2)样品中优等品的频率为25,估量乙厂生产的优等品的数量为35×25=14.(3)ξ=0,1,2,P (ξ=i)=C 2iC 32-iC 52(i =0,1,2), ξ的分布列为3 10+1×35+2×110=45.均值E(ξ)=0×。
2022数学第十一章概率11.2古典概型学案文含解析新人教A版

11。
2古典概型必备知识预案自诊知识梳理1.基本事件在一次试验中,我们常常要关心的是所有可能发生的基本结果,它们是试验中不能再分的最简单的随机事件,其他事件可以用它们来描绘,这样的事件称为。
2.基本事件的特点(1)任何两个基本事件是的.(2)任何事件(除不可能事件)都可以表示成的和.3。
古典概型具有以下两个特点的概率模型称为古典概率模型,简称古典概型。
(1)有限性:试验中所有可能出现的基本事件.(2)等可能性:每个基本事件出现的可能性。
4。
古典概型的概率公式.P(A)=A包含的基本事件的个数基本事件的总数1。
任一随机事件的概率都等于构成它的每一个基本事件概率的和。
2。
求试验的基本事件数及事件A包含的基本事件数的方法有列举法、列表法和树状图法。
考点自诊1.判断下列结论是否正确,正确的画“√”,错误的画“×”。
(1)在一次古典概型试验中,其基本事件的发生一定是等可能的.()(2)基本事件的概率都是1n。
若某个事件A包含的结果有m个,则P(A)=mn.()(3)掷一枚质地均匀的硬币两次,出现“两个正面”“一正一反"“两个反面”,这三个结果是等可能事件.()(4)在古典概型中,如果事件A中基本事件构成集合A,所有的基本事件构成集合I,那么事件A的概率为card(A)card(I)。
()(5)从1,2,3,4,5中任取出两个不同的数,其和为5的概率是0。
2.()2.某同学打算编织一条毛线围巾送给妈妈,决定从妈妈喜欢的白色、黄色和紫色中随机选择两种颜色的毛线编织,那么这条围巾是由白色、紫色两种颜色的毛线编织的概率是()A.14B.13C。
12D.343.(2019全国3,3)两位男同学和两位女同学随机排成一列,则两位女同学相邻的概率是()A。
16B。
14C。
13D.124.从集合A={1,3,5,7,9}和集合B={2,4,6,8}中各取一个数,那么这两个数之和除以3余1的概率是()A。
高考数学一轮复习第十一章计数原理概率随机变量及其分布第五节古典概型课件理

(2)A 地区用户的满意度等级为不满意的概率大. 记 CA 表示事件:“A 地区用户的满意度等级为不 满意”;CB 表示事件:“B 地区用户的满意度等级为 不满意”.由直方图得 P(CA)的估计值为(0.01+0.02 +0.03)×10=0.6,P(CB)的估计值为(0.005+0.02)×10 =0.25. 所以 A 地区用户的满意度等级为不满意的概率大.
在某项大型活动中,甲、乙等五名志愿者被随机地分 到 A,B,C,D 四个不同的岗位服务,每个岗位至少有一 名志愿者.
(1)求甲、乙两人同时参加 A 岗位服务的概率; (2)求甲、乙两人不在同一个岗位服务的概率; (3)求五名志愿者中仅有一人参加 A 岗位服务的概率.
解:(1)记“甲、乙两人同时参加 A 岗位服务” 为事件 EA,那么 P(EA)=CA25A33 44=410,即甲、乙两 人同时参加 A 岗位服务的概率是410.
(2)设甲组投篮命中次数低于 10 次的同学为 A1,A2, 它们的命中次数分别为 9,7.乙组投篮命中次数低于 10 次的同学为 B1,B2,B3,它们的命中次数分别为 8,8,9. 依题意,不同的选取方法有:(A1,B1),(A1,B2),(A2, B1),(A2,B2),(A1,B3),(A2,B3).
答案:(1)B
[探究 1] 在本例(1)的条件下,求所取的 2 球为同色球的概率.
解:从 15 个球中任取 2 个球,取法共有 C215种, 其中都是白球的取法有 C210种,都是红球的取法有 C25种,故所求概率为 P=C21C0+215C25=2111.
[探究 2] 本例(2)中条件不变,求“所取的两道 题都是乙类题的概率”.
(1)有限性:试验中所有可能出现的基本事件 只有有限个 ; (2)等可能性:每个基本事件出现的可能性 相等 .
高中数学一轮复习理数通用版:第十一章 计数原理、概率、随机变量及其分布列 Word版含解析

第十一章⎪⎪⎪ 计数原理、概率、随机变量及其分布列第一节 排列、组合本节主要包括2个知识点: 1.两个计数原理; 2.排列、组合问题.突破点(一) 两个计数原理[基本知识]1.分类加法计数原理完成一件事有两类不同方案,在第1类方案中有m 种不同的方法,在第2类方案中有n 种不同的方法,那么完成这件事共有N =m +n 种不同的方法.2.分步乘法计数原理完成一件事需要两个步骤,做第1步有m 种不同的方法,做第2步有n 种不同的方法,那么完成这件事共有N =m ×n 种不同的方法.3.两个计数原理的比较 名称分类加法计数原理 分步乘法计数原理 相同点 都是解决完成一件事的不同方法的种数问题不同点 运用加法运算运用乘法运算 分类完成一件事,并且每类办法中的每种方法都能独立完成这件事情,要注意“类”与“类”之间的独立性和并列性.分类计数原理可利用“并联”电路来理解分步完成一件事,并且只有各个步骤都完成才算完成这件事情,要注意“步”与“步”之间的连续性.分步计数原理可利用“串联”电路来理解 [基本能力]1.判断题(1)在分类加法计数原理中,某两类不同方案中的方法可以相同.( )(2)在分步乘法计数原理中,只有各步骤都完成后,这件事情才算完成.( )(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( ) 答案:(1)× (2)√ (3)√2.填空题(1)从0,1,2,3,4,5这六个数字中,任取两个不同数字相加,其和为偶数的不同取法的种数是________.解析:从0,1,2,3,4,5六个数字中,任取两数和为偶数可分为两类,①取出的两数都是偶数,共有3种方法;②取出的两数都是奇数,共有3种方法,故由分类加法计数原理得共有N=3+3=6(种).答案:6(2)从集合{0,1,2,3,4,5,6}中任取两个互不相等的数a,b组成复数a+b i,其中虚数有________个.解析:∵a+b i为虚数,∴b≠0,即b有6种取法,a有6种取法,由分步乘法计数原理知可以组成6×6=36个虚数.答案:36(3)书架的第1层放有4本不同的语文书,第2层放有5本不同的数学书,第3层放有6本不同的体育书.从第1,2,3层分别各取1本书,则不同的取法种数为________.解析:由分步乘法计数原理,从1,2,3层分别各取1本书不同的取法种数为4×5×6=120.答案:120[全析考法]分类加法计数原理(1)完成一件事有若干种方法,这些方法可以分成n类.(2)用每一类中的每一种方法都可以完成这件事.(3)把各类的方法数相加,就可以得到完成这件事的所有方法数.[例1](1)三个人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有()A.4种B.6种C.10种D.16种(2)(·杭州二中月考)满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14 B.13C.12 D.10[解析](1)分两类:甲第一次踢给乙时,满足条件的有3种方法(如图),同理,甲先踢给丙时,满足条件有3种方法.由分类加法计数原理,共有3+3=6种传递方式.(2)①当a=0时,有x=-b2,b=-1,0,1,2,有4种可能;②当a≠0时,则Δ=4-4ab≥0,ab≤1,(ⅰ)当a=-1时,b=-1,0,1,2,有4种可能;(ⅱ)当a=1时,b=-1,0,1,有3种可能;(ⅲ)当a=2时,b=-1,0,有2种可能.∴有序数对(a,b)的个数为4+4+3+2=13.[答案](1)B(2)B[易错提醒](1)根据问题的特点确定一个合适的分类标准,分类标准要统一,不能遗漏.(2)分类时,注意完成这件事的任何一种方法必须属于某一类,不能重复.分步乘法计数原理(1)完成一件事需要经过n个步骤,缺一不可.(2)完成每一步有若干种方法.(3)把各个步骤的方法数相乘,就可以得到完成这件事的所有方法数.[例2](1)从-2,0,1,8这四个数中选三个数作为函数f(x)=ax2+bx+c的系数,则可组成________个不同的二次函数,其中偶函数有________个(用数字作答).(2)如图,某电子器件由3个电阻串联而成,形成回路,其中有6个焊接点A,B,C,D,E,F,如果焊接点脱落,整个电路就会不通.现发现电路不通,那么焊接点脱落的可能情况共有________种.[解析](1)一个二次函数对应着a,b,c(a≠0)的一组取值,a的取法有3种,b的取法有3种,c的取法有2种,由分步乘法计数原理知共有3×3×2=18个二次函数.若二次函数为偶函数,则b=0,同理可知共有3×2=6个偶函数.(2)因为每个焊接点都有脱落与未脱落两种情况,而只要有一个焊接点脱落,则电路就不通,故共有26-1=63种可能情况.[答案](1)186(2)63[易错提醒](1)利用分步乘法计数原理解决问题时要注意按事件发生的过程来合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)谨记分步必须满足的两个条件:一是各步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.两个计数原理的综合问题数原理,即分类时,每类的方法可能要运用分步完成,而分步时,每步的方法数可能会采取分类的思想求解.分类的关键在于做到“不重不漏”,分步的关键在于正确设计分步的程序,即合理分类,准确分步.[例3](1)用数字0,1,2,3,4,5组成没有重复数字的五位数,其中比40 000大的偶数共有()A.144个B.120个C.96个D.72个(2)如图矩形的对角线把矩形分成A,B,C,D四部分,现用5种不同颜色给四部分涂色,每部分涂1种颜色,要求共边的两部分颜色互异,则共有________种不同的涂色方法.[解析](1)由题意可知,符合条件的五位数的万位数字是4或5.当万位数字为4时,个位数字从0,2中任选一个,共有2×4×3×2=48个偶数;当万位数字为5时,个位数字从0,2,4中任选一个,共有3×4×3×2=72个偶数.故符合条件的偶数共有48+72=120(个).(2)区域A有5种涂色方法;区域B有4种涂色方法;区域C的涂色方法可分2类:若C与A涂同色,区域D有4种涂色方法;若C与A涂不同色,此时区域C有3种涂色方法,区域D也有3种涂色方法,所以共有5×4×4+5×4×3×3=260种涂色方法.[答案](1)B(2)260[方法技巧]使用两个计数原理进行计数的基本思想对需用两个计数原理解决的综合问题要“先分类,再分步”,即先分为若干个“既不重复也不遗漏”的类,再对每类中的计数问题分成若干个“完整的步骤”,求出每个步骤的方法数,按照分步乘法计数原理计算各类中的方法数,最后再按照分类加法计数原理得出总数.[全练题点]1.[考点二]某班新年联欢会原定的6个节目已排成节目单,开演前又增加了3个新节目,如果将这3个新节目插入节目单中,那么不同的插法种数为()A.504 B.210C.336 D.120解析:选A分三步,先插一个新节目,有7种方法,再插第二个新节目,有8种方法,最后插第三个节目,有9种方法.故共有7×8×9=504种不同的插法.2.[考点二]某电话局的电话号码为139××××××××,若前六位固定,最后五位数字是由6或8组成的,则这样的电话号码的个数为()A.20 B.25C.32 D.60解析:选C依据题意知,后五位数字由6或8组成,可分5步完成,每一步有2种方法,根据分步乘法计数原理,符合题意的电话号码的个数为25=32.3.[考点一]从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A.3 B.4C.6 D.8解析:选D先考虑递增数列,以1为首项的等比数列为1,2,4;1,3,9.以2为首项的等比数列为2,4,8.以4为首项的等比数列为4,6,9.同理可得到4个递减数列,∴所求的数列的个数为2(2+1+1)=8.4.[考点一]在三位正整数中,若十位数字小于个位和百位数字,则称该数为“驼峰数”.比如“102”,“546”为“驼峰数”,由数字1,2,3,4可构成无重复数字的“驼峰数”有________个.解析:十位数的数为1时,有213,214,312,314,412,413,共6个,十位上的数为2时,有324,423,共2个,所以共有6+2=8(个).答案:85.[考点三]如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色方法有________种.解析:按区域1与3是否同色分类.①区域1与3同色:先涂区域1与3,有4种方法,再涂区域2,4,5(还有3种颜色),有3×2×1=6种方法.所以区域1与3涂同色时,共有4×6=24种方法.②区域1与3不同色:先涂区域1与3,有4×3=12种方法,第二步,涂区域2有2种涂色方法,第三步,涂区域4只有一种方法,第四步,涂区域5有3种方法.所以这时共有12×2×1×3=72种方法.故由分类加法计数原理,不同的涂色方法的种数为24+72=96.答案:96突破点(二)排列、组合问题[基本知识]1.排列与排列数排列从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列排列数从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,记作A m n组合从n个不同元素中取出m(m≤n)个元素合成一组,叫做从n个不同元素中取出m个元素的一个组合组合数从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,记作C m n排列数组合数公式A m n=n(n-1)(n-2)…(n-m+1)=n!(n-m)!C m n=A m nA m m=n(n-1)…(n-m+1)m!=n!m!(n-m)!性质A n n=n!;0!=1C0n=1;C m n=C n-mn_;C m n+C m-1n=C m n+1备注n,m∈N*且m≤n4.排列与组合的区别[基本能力]1.判断题(1)所有元素完全相同的两个排列为相同排列.( )(2)两个组合相同的充要条件是其中的元素完全相同.( )(3)若组合式C x n =C m n ,则x =m 成立.( ) (4)(n +1)!-n !=n ·n !.( )(5)A m n =n A m -1n -1.( )(6)k C k n =n C k -1n -1.( ) 答案:(1)× (2)√ (3)× (4)√ (5)√ (6)√2.填空题(1)A 、B 、C 、D 、E 五人并排站成一排,不同的排法共有________种.答案:120(2)某高三毕业班有40人,同学之间两两彼此给对方仅写一条毕业留言,那么全班共写了毕业留言________条.解析:由题意,得毕业留言共A 240=1 560(条).答案:1 560(3)甲、乙两人从4门课程中各选修2门,则甲、乙两人所选的课程中恰有1门相同的选法有________种.解析:依题意得知,满足题意的选法共有C 14·C 13·C 12=24(种).答案:24(4)方程3A 3x =2A 2x +1+6A 2x的解为________. 解析:由排列数公式可知3x (x -1)(x -2)=2(x +1)x +6x (x -1),∵x ≥3且x ∈N *,∴3(x -1)(x -2)=2(x +1)+6(x -1),解得x =5或x =23(舍去),∴x =5. 答案:5(5)已知1C m 5-1C m 6=710C m 7,则m =________. 解析:由已知得m 的取值范围为{}m |0≤m ≤5,m ∈Z ,原等式可化为m !(5-m )!5!-m !(6-m )!6!=7×(7-m )!m !10×7!,整理可得m 2-23m +42=0,解得m =21(舍去)或m =2. 答案:2[全析考法]排列问题[例1] (1)的排法共有( )A .192种B .216种C .240种D .288种(2)把5件不同产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C 不相邻,则不同的摆法有________种.[解析] (1)第一类:甲在最左端,有A 55=120种排法;第二类:乙在最左端,有4A 44=96种排法,所以共有120+96=216种排法.(2)记其余两种产品为D ,E ,由于A ,B 相邻,则视为一个元素,先与D ,E 排列,有A 22A 33种方法.再将C 插入,仅有3个空位可选,共有A 22A 33C 13=2×6×3=36种不同的摆法.[答案] (1)B (2)36[方法技巧] 求解排列问题的六种主要方法直接法把符合条件的排列数直接列式计算 优先法优先安排特殊元素或特殊位置 捆绑法把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列 插空法对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中 定序问题除法处理对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列 间接法 正难则反、等价转化的方法组合问题常见题型一般有选派问题、抽样问题、图形问题、集合问题、分组问题等解题思路(1)分清问题是否为组合问题;(2)对较复杂的组合问题,要搞清是“分类”还是“分步”,一般是先整体分类,然后局部分步,将复杂问题通过两个计数原理化归为简单问题选出4人参加比赛,要求男、女生都有,则男生甲与女生乙至少有1人入选的方法种数为()A.85 B.86C.91 D.90(2)设集合A={(x1,x2,x3,x4,x5)|x i∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.130 B.120C.90 D.60(3)(·浙江高考)从6男2女共8名学生中选出队长1人,副队长1人,普通队员2人组成4人服务队,要求服务队中至少有1名女生,共有________种不同的选法.(用数字作答).[解析](1)法一(直接法):由题意,可分三类考虑:第1类,男生甲入选,女生乙不入选的方法种数为:C13C24+C23C14+C33=31;第2类,男生甲不入选,女生乙入选的方法种数为:C14C23+C24C13+C34=34;第3类,男生甲入选,女生乙入选的方法种数为:C23+C14C13+C24=21.所以男生甲与女生乙至少有1人入选的方法种数为31+34+21=86.法二(间接法):从5名男生和4名女生中任意选出4人,男、女生都有的选法有C49-C45-C44=120种;男、女生都有,且男生甲与女生乙都没有入选的方法有C47-C44=34种.所以男生甲与女生乙至少有1人入选的方法种数为120-34=86.(2)易知|x1|+|x2|+|x3|+|x4|+|x5|=1或2或3,下面分三种情况讨论.其一:|x1|+|x2|+|x3|+|x4|+|x5|=1,此时,从x1,x2,x3,x4,x5中任取一个让其等于1或-1,其余等于0,于是有C15C12=10种情况;其二:|x1|+|x2|+|x3|+|x4|+|x5|=2,此时,从x1,x2,x3,x4,x5中任取两个让其都等于1或都等于-1或一个等于1、另一个等于-1,其余等于0,于是有2C25+C25C12=40种情况;其三:|x1|+|x2|+|x3|+|x4|+|x5|=3,此时,从x1,x2,x3,x4,x5中任取三个让其都等于1或都等于-1或两个等于1、另一个等于-1或两个等于-1、另一个等于1,其余等于0,于是有2C35+C25C13+C15C24=80种情况.所以满足条件的元素个数为10+40+80=130.(3)从8人中选出4人,且至少有1名女学生的选法种数为C 48-C 46=55.从4人中选出队长1人,副队长1人,普通队员2人的选法为A 24=12种.故总共有55×12=660种选法.[答案] (1)B (2)A (3)660[方法技巧] 有限制条件的组合问题的解法组合问题的限制条件主要体现在取出元素中“含”或“不含”某些元素,或者“至少”或“最多”含有几个元素:(1)“含有”或“不含有”某些元素的组合题型.“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中去选取.(2)“至少”或“最多”含有几个元素的题型.考虑逆向思维,用间接法处理.分组分配问题先分组后分配.关于分组问题,有整体均分、部分均分和不等分三种,无论分成几组,都应注意只要有一些组中元素的个数相等,就存在均分现象.[例3] (1)教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.(2)某科室派出4名调研员到3个学校,调研该校高三复习备考近况,要求每个学校至少一名,则不同的分配方案种数为________.(3)若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.[解析] (1)先把6个毕业生平均分成3组,有C 26C 24C 22A 33种方法,再将3组毕业生分到3所学校,有A 33=6种方法,故将6个毕业生平均分到3所学校,共有C 26C 24C 22A 33·A 33=90种不同的分派方法.(2)分两步完成:第一步,将4名调研员按2,1,1分成三组,其分法有C 24C 12C 11A 22种;第二步,将分好的三组分配到3个学校,其分法有A 33种,所以满足条件的分配方案有C 24C 12C 11A 22·A 33=36种.(3)将6名教师分组,分三步完成: 第1步,在6名教师中任取1名作为一组,有C 16种分法;第2步,在余下的5名教师中任取2名作为一组,有C 25种分法;第3步,余下的3名教师作为一组,有C 33种分法.根据分步乘法计数原理,共有C 16C 25C 33=60种分法.再将这3组教师分配到3所中学,有A 33=6种分法, 故共有60×6=360种不同的分法. [答案] (1)90 (2)36 (3)360[方法技巧] 分组分配问题的三种类型及求解策略[全练题点]1.[考点一]某工程队有6项工程需要单独完成,其中工程乙必须在工程甲完成后才能进行,工程丙必须在工程乙完成后才能进行,工程丁必须在工程丙完成后立即进行.则安排这6项工程的不同方法种数为( )A .10B .20C .30D .40 解析:选B 因为工程丙完成后立即进行工程丁,若不考虑与其他工程的顺序,则安排这6项工程的不同方法数为A 55,对于甲、乙、丙、丁所处位置的任意排列有且只有一种情况符合要求,因此,符合条件的安排方法种数为A 55A 33=5×4=20.2.[考点三]世界华商大会的某分会场有A ,B ,C 三个展台,将甲、乙、丙、丁共4名“双语”志愿者分配到这三个展台,每个展台至少1人,其中甲、乙两人被分配到同一展台的不同分法的种数为( )A .12B .10C .8D .6解析:选D ∵甲、乙两人被分配到同一展台,∴可以把甲与乙捆在一起,看成一个人,然后将3个人分到3个展台上进行全排列,即有A 33种,∴甲、乙两人被分配到同一展台的不同分法的种数为A 33=6.3.[考点三]某局安排3名副局长带5名职工去3地调研,每地至少去1名副局长和1名职工,则不同的安排方法总数为( )A .1 800B .900C .300D .1 440解析:选B 分三步:第一步,将5名职工分成3组,每组至少1人,则有⎝⎛⎭⎫C 35C 12C 11A 22+C 15C 24C 22A 22种不同的分组方法;第二步,将这3组职工分到3地有A 33种不同的方法;第三步,将3名副局长分到3地有A 33种不同的方法.根据分步乘法计数原理,不同的安排方案共有⎝⎛⎭⎫C 35C 12C 11A 22+C 15C 24C 22A 22·A 33A 33=900(种),故选B. 4.[考点一、二](·天津高考)用数字1,2,3,4,5,6,7,8,9组成没有重复数字,且至多有一个数字是偶数的四位数,这样的四位数一共有________个.(用数字作答)解析:(1)有一个数字是偶数的四位数有C 14C 35A 44=960个. (2)没有偶数的四位数有A 45=120个. 故这样的四位数一共有960+120=1 080个. 答案:1 0805.[考点二]现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为________.解析:第一类,含有1张红色卡片,不同的取法有C 14C 212=264种.第二类,不含有红色卡片,不同的取法有C 312-3C 34=220-12=208种.由分类加法计数原理,不同的取法种数为264+208=472.答案:472[全国卷5年真题集中演练——明规律] 1.(·全国卷Ⅱ)安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种解析:选D 第一步:将4项工作分成3组,共有C 24种分法. 第二步:将3组工作分配给3名志愿者,共有A 33种分配方法,故共有C 24·A 33=36种安排方法.2.(·全国卷Ⅱ)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24 B.18C.12 D.9解析:选B分两步:第一步,从E→F,有6条可以选择的最短路径;第二步,从F→G,有3条可以选择的最短路径.由分步乘法计数原理可知有6×3=18条可以选择的最短路径.故选B.3.(·全国卷Ⅲ)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有()A.18个B.16个C.14个D.12个解析:选C当m=4时,数列{a n}共有8项,其中4项为0,4项为1,要满足对任意k≤8,a1,a2,…,a k中0的个数不少于1的个数,则必有a1=0,a8=1,a2可为0,也可为1.(1)当a2=0时,分以下3种情况:①若a3=0,则a4,a5,a6,a7中任意一个为0均可,则有C14=4种情况;②若a3=1,a4=0,则a5,a6,a7中任意一个为0均可,有C13=3种情况;③若a3=1,a4=1,则a5必为0,a6,a7中任意一个为0均可,有C12=2种情况;(2)当a2=1时,必有a3=0,分以下2种情况:①若a4=0,则a5,a6,a7中任一个为0均可,有C13=3种情况;②若a4=1,则a5必为0,a6,a7中任一个为0均可,有C12=2种情况.综上所述,不同的“规范01数列”共有4+3+2+3+2=14(个),故选C.4.(·全国大纲卷)有6名男医生、5名女医生,从中选出2名男医生、1名女医生组成一个医疗小组.则不同的选法共有()A.60种B.70种C.75种D.150种解析:选C从6名男医生中选出2名有C26种选法,从5名女医生中选出1名有C15种选法,由分步乘法计数原理得不同的选法共有C26·C15=75(种).故选C.[课时达标检测][小题对点练——点点落实]对点练(一)两个计数原理1.集合P={x,1},Q={y,1,2},其中x,y∈{1,2,3,…,9},且P⊆Q.把满足上述条件的一个有序整数对(x,y)作为一个点的坐标,则这样的点的个数是()A.9B.14C.15 D.21解析:选B当x=2时,x≠y,点的个数为1×7=7个.当x≠2时,由P⊆Q,∴x =y,∴x可从3,4,5,6,7,8,9中取,有7种方法,因此满足条件的点的个数是7+7=14.2.(·云南调研)设集合A={-1,0,1},集合B={0,1,2,3},定义A*B={(x,y)|x∈A∩B,y∈A∪B},则A*B中元素的个数是()A.7 B.10C.25D.52解析:选B因为集合A={-1,0,1},集合B={0,1,2,3},所以A∩B={0,1},A∪B={-1,0,1,2,3},所以x有2种取法,y有5种取法,所以根据分步乘法计数原理得有2×5=10(个).3.某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位朋友,每位朋友一本,则不同的赠送方法共有()A.4种B.10种C.18种D.20种解析:选B赠送1本画册,3本集邮册.需从4人中选取1人赠送画册,其余赠送集邮册,有4种方法.赠送2本画册,2本集邮册,只需从4人中选出2人赠送画册,其余2人赠送集邮册,有6种方法.由分类加法计数原理,不同的赠送方法有4+6=10(种).4.(·绍兴模拟)用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为() A.243 B.252C.261 D.279解析:选B0,1,2,…,9共能组成9×10×10=900个三位数,其中无重复数字的三位数有9×9×8=648个,∴有重复数字的三位数的个数为900-648=252.5.有4件不同颜色的衬衣,3件不同花样的裙子,另有2套不同样式的连衣裙.需选择一套服装参加“五一”节歌舞演出,则不同的选择方式种数为()A.24 B.14C.10 D.9解析:选B第一类:一件衬衣,一件裙子搭配一套服装有4×3=12种方式;第二类:选2套连衣裙中的一套服装有2种选法,由分类加法计数原理,共有12+2=14种选择方式.6.如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,则不同的染色方法总数为________.解析:先染顶点S,有5种染法,再染顶点A有4种染法,染顶点B有3种染法,顶点C的染法有两类:若C与A同色,则顶点D有3种染法;若C与A 不同色,则C有2种染法,D有2种染法,所以共有5×4×3×3+5×4×3×2×2=420种染色方法.答案:420对点练(二)排列、组合问题1.(·福建漳州八校联考)有六人排成一排,其中甲只能在排头或排尾,乙、丙两人必须相邻,则满足要求的排法有()A.34种B.48种C.96种D.144种解析:选C特殊元素优先安排,先让甲从头、尾中选取一个位置,有C12种选法,乙、丙相邻,捆绑在一起看作一个元素,与其余三个元素全排列,最后乙、丙可以换位,故共有C12·A44·A22=96种排法,故选C.2.将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么互不相同的安排方法的种数为()A.10 B.20C.30 D.40解析:选B将5名学生分配到甲、乙两个宿舍,每个宿舍至少安排2名学生,那么必然是一个宿舍2名,而另一个宿舍3名,共有C35C22A22=20(种).3.“住房”“医疗”“教育”“养老”“就业”成为现今社会关注的五个焦点.小赵想利用国庆节假期调查一下社会对这些热点的关注度.若小赵准备按照顺序分别调查其中的4个热点,则“住房”作为其中的一个调查热点,但不作为第一个调查热点的种数为()A.13 B.24C.18 D.72解析:选D可分三步:第一步,先从“医疗”“教育”“养老”“就业”这4个热点中选出3个,有C34种不同的选法;第二步,在调查时,“住房”安排的顺序有A13种可能情况;第三步,其余3个热点调查的顺序有A33种排法.根据分步乘法计数原理可得,不同调查顺序的种数为C34A13A33=72.4.(·舟山二模)将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.18种B.24种C.36种D.72种解析:选C1个路口3人,其余路口各1人的分配方法有C13A33种.1个路口1人,2个路口各2人的分配方法有C23A33种,由分类加法计数原理知,甲、乙在同一路口的分配方案为C13A33+C23A33=36(种).5.(·豫南九校联考)某医院拟派2名内科医生、3名外科医生和3名护士共8人组成两个医疗分队,平均分到甲、乙两个村进行义务巡诊,其中每个分队都必须有内科医生、外科医生和护士,则不同的分配方案有()A.72种B.36种C.24种D.18种解析:选B A12(C23C13+C13C23)=36(种).6.7位身高均不等的同学排成一排照相,要求中间最高,依次往两端身高逐渐降低,共有________种排法.解析:先排最中间位置有1种排法,再排左边3个位置,由于顺序一定,共有C36种排法,再排剩下右边三个位置,共1种排法,所以排法种数为C36=20.答案:207.把座位编号为1,2,3,4,5的五张电影票全部分给甲、乙、丙、丁四个人,每人至少一张,至多两张,且分得的两张票必须是连号,那么不同的分法种数为________(用数字作答).解析:先将票分为符合条件的4份,由题意,4人分5张票,且每人至少一张,至多两张,则三人每人一张,一人2张,且分得的票必须是连号,相当于将1,2,3,4,5这五个数用3个板子隔开,分为四部分且不存在三连号.在4个空位插3个板子,共有C34=4种情况,再对应到4个人,有A44=24种情况,则共有4×24=96种情况.答案:968.若把英语单调“good”的字母顺序写错了,则可能出现的错误种数共有________种.解析:把g,o,o,d 4个字母排一行,可分两步进行,第一步:排g和d,共有A24种排法;第二步:排两个o,共1种排法,所以总的排法种数为A24=12种.其中正确的有一种,所以错误的共A24-1=12-1=11(种).答案:11[大题综合练——迁移贯通]1.从4名男同学中选出2人,6名女同学中选出3人,并将选出的5人排成一排.(1)共有多少种不同的排法?(2)若选出的2名男同学不相邻,共有多少种不同的排法?(用数字表示)解:(1)从4名男生中选出2人,有C24种选法,从6名女生中选出3人,有C36种选法,根据分步乘法计数原理知选出5人,再把这5个人进行排列共有C24C36A55=14 400(种).(2)在选出的5个人中,若2名男生不相邻,则第一步先排3名女生,第二步再让男生插空,根据分步乘法计数原理知共有C24C36A33A24=8 640(种).2.有5个男生和3个女生,从中选出5人担任5门不同学科的科代表,求分别符合下列条件的选法数:(1)有女生但人数必须少于男生;(2)某女生一定担任语文科代表;。
高三数学一轮(北师大版)第十一章+计数原理与概率(理)

[规范解答] (1)从8人中选出日语、俄语和韩语志愿者各1 名,其一切可能的结果组成的基本事件有
(A1 , B1 , C1) , (A1 , B1 , C2) , (A1 , B2 , C1) , (A1 , B2 , C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1, C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3, C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B2, C2),(A3,B3,C1),(A3,B3,C2)共18个基本事件.
在半径为 1 的圆内一条直径上任取一点,过这个 点作垂直于直径的弦,求弦长超过圆内接等边三角形边长的概 率.
[规范解答] 如图,三角形 ACD 是圆内 接等边三角形,点 M、N 关于圆心 O 对称, 则过点 M 和 N 且与直径 AB 垂直的弦的弦 长等于内接三角形的边长,则 OM=ON=12.
试验所含的基本事件构成的区域为线 段 AB(不包含端点),其长度为 2.
求互斥事件、对立事件的概率
要分清互斥事件与对立事件的概念,对立事件是互斥事件 的一种特殊情况.对立事件一定是互斥事件,而互斥事件不一 定是对立事件.
甲、乙两人参加普法知识竞赛,共有 10 个不同 的题目,其中选择题 6 个,判断题 4 个,甲、乙两人依次各抽 一题.
(1)甲抽到选择题,乙抽到判断题的概率是多少? (2)甲、乙两人中至少有一人抽到选择题的概率是多少? [规范解答] (1)从 10 个题中依次各抽一题有 10×9 种结 果.其中甲抽到选择题,乙抽到判断题有 6×4=24 种结果, ∴所求事件的概率是:P=102×4 9=145.
由于-N 包含的基本事件有(A1,B1,C1),(A2,B1,C1),(A3, B1,C1),事件-N 由 3 个基本事件组成,
2021高考数学一轮复习 第11章 计数原理、概率、随机变量及其分布 第1节 两个计数原理、排列与组

第11章计数原理、概率、随机变量及其分布全国卷五年考情图解高考命题规律把握1.考查形式高考在本章一般命制1道小题或者1道解答题,分值占5~17分.2.考查内容计数原理常与古典概型综合考查;几何概型均以选择题的形式单独考查;对二项式定理的考查主要是利用通项公式求特定项;对正态分布的考查,可能单独考查也可能在解答题中出现;以实际问题为背景,考查分布列、期望等是高考的热点题型.3.备考策略从2019年高考试题可以看出,概率统计试题的阅读量和信息量都有所加强,考查角度趋向于应用概率统计知识对实际问题作出决策.[最新考纲] 1.理解分类加法计数原理和分步乘法计数原理.2.能正确区分“类”和“步”,并能利用两个原理解决一些简单的实际问题.3.理解排列的概念及排列数公式,并能利用公式解决一些简单的实际问题.4.理解组合的概念及组合数公式,并能利用公式解决一些简单的实际问题.1.分类加法计数原理完成一件事,可以有n类办法,在第一类办法中有m1种方法,在第二类办法中有m2种方法,…,在第n类办法中有m n种方法.那么,完成这件事共有N=m1+m2+…+m n种方法.(也称加法原理)2.分步乘法计数原理完成一件事需要经过n个步骤,缺一不可,做第一步有m1种方法,做第二步有m2种方法,…,做第n步有m n种方法.那么,完成这件事共有N=m1×m2×…×m n种方法.3.排列、组合的定义排列的定义从n个不同元素中取出m(m≤n)按照一定的顺序排成一列组合的定义个元素合成一组排列数组合数定义从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数公式A m n=n(n-1)(n-2)…(n-m+1)=n!n-m!C m n=A m nA m m=n n-1n-2…n-m+1m!性质A n n=n!,0!=1C m n=C n-mn,C m n+C m-1n=Cmn+1一、思考辨析(正确的打“√”,错误的打“×”)(1)所有元素完全相同的两个排列为相同排列.( )(2)在分类加法计数原理中,每类方案中的方法都能直接完成这件事.( )(3)在分步乘法计数原理中,每个步骤中完成这个步骤的方法是各不相同的.( )(4)k C k n=n C k-1n-1.( )[答案] (1)×(2)√(3)√(4)√二、教材改编1.图书馆的一个书架有三层,第一层有3本不同的数学书,第二层有5本不同的语文书,第三层有8本不同的英语书,现从中任取1本书,不同的取法有( ) A.12 B.16C.64 D.120B[书架上共有3+5+8=16本不同的书,从中任取一本共有16种不同的取法,故选B.]2.用数字1,2,3,4,5组成无重复数字的四位数,其中偶数的个数为( )A.8 B.24C.48 D.120C[末位只能从2,4中选一个,其余的三个数字任意排列,故这样的偶数共有A34C12=4×3×2×2=48个.故选C.]3.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为( )A.144 B.120C.72 D.24D[“插空法”,先排3个空位,形成4个空隙供3人选择就座,因此任何两人不相邻的坐法种数为A34=4×3×2=24.]4.五名学生报名参加四项体育比赛,每人限报一项,则不同的报名方法的种数为________.五名学生争夺四项比赛的冠军(冠军不并列),则获得冠军的可能性有________种. (用数字作答)4554[五名学生参加四项体育比赛,每人限报一项,可逐个学生落实,每个学生有4种报名方法,共有45种不同的报名方法.五名学生争夺四项比赛的冠军,可对4个冠军逐一落实,每个冠军有5种获得的可能性,共有54种获得冠军的可能性.]考点1 两个计数原理的综合应用利用两个基本计数原理解决问题的步骤第一步,审清题意,弄清要完成的事件是怎样的.第二步,分析完成这件事应采用分类、分步、先分类后分步、先分步后分类这四种方法中的哪一种.第三步,弄清在每一类或每一步中的方法种数.第四步,根据两个基本计数原理计算出完成这件事的方法种数.(1)如果一个三位正整数如“a1a2a3”满足a1<a2,且a2>a3,则称这样的三位数为凸数(如120,343,275等),那么所有凸数的个数为( )A.240 B.204C.729 D.920(2)(2016·全国卷Ⅱ)如图,小明从街道的E处出发,先到F处与小红会合,再一起到位于G处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为( )A.24 B.18C.12 D.9(3)如图所示的五个区域中,现有四种颜色可供选择,要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同的涂色方法种数为( )A.24 B.48C.72 D.96(1)A(2)B(3)C[(1)如果这个三位数含0,则0必在末位,共有这样的凸数C29个;如果这个三位数不含0,则这样的凸数共有C39A22+C29个.即共有2C29+C39A22=240个.(2)从E到G需要分两步完成:先从E到F,再从F到G.从F到G的最短路径,只要考虑纵向路径即可,一旦纵向路径确定,横向路径即可确定,故从F到G的最短路径共有3条.如图,从E到F的最短路径有两类:先从E到A,再从A到F,或先从E到B,再从B 到F.因为从A到F或从B到F都与从F到G的路径形状相同,所以从A到F,从B到F最短路径的条数都是3,所以从E到F的最短路径有3+3=6(条).所以小明到老年公寓的最短路径条数为6×3=18.(3)法一:(以位置为主考虑)分两种情况:①A,C不同色,先涂A有4种,C有3种,E有2种,B,D各有1种,有4×3×2=24种涂法.②A,C同色,先涂A有4种,E有3种,C有1种,B,D各有2种,有4×3×2×2=48种涂法.故共有24+48=72种涂色方法.法二:(以颜色为主考虑)分两类.(1)取4色:着色方法有2A44=48(种).(2)取3色:着色方法有A34=24(种).所以共有着色方法48+24=72(种).](1)应用两个计数原理的难点在于明确是分类还是分步:分类要做到“不重不漏”,正确把握分类标准是关键;分步要做到“步骤完整”,步步相连才能将事件完成.(2)较复杂的问题可借助图表来完成.(3)对于涂色问题:①分清元素的数目以及在不相邻的区域内是否可以使用同类元素;②注意对每个区域逐一进行,分步处理.[教师备选例题]1.甲、乙、丙三人踢毽子,互相传递,每人每次只能踢一下,由甲开始踢,经过4次传递后,毽子又被踢回给甲,则不同的传递方式共有( )A.4种B.6种C.10种D.16种B[分两类:甲第一次踢给乙时,满足条件的有3种传递方式(如图);同理,甲第一次踢给丙时,满足条件的也有3种传递方式.由分类加法计数原理可知,共有3+3=6(种)传递方式.]2.如图所示的几何体是由三棱锥PABC与三棱柱ABCA1B1C1组合而成,现用3种不同颜色对这个几何体的表面涂色(底面A1B1C1不涂色),要求相邻的面均不同色,则不同的涂色方案共有( )A.6种B.9种C.12种D.36种C[先涂三棱锥PABC的三个侧面,有3×2=6(种)涂法;然后涂三棱柱的三个侧面,有2×1=2(种)涂法.共有6×2=12(种)不同的涂法.]1.一个旅游景区的游览线路如图所示,某人从P点处进,Q点处出,沿图中线路游览A,B,C三个景点及沿途风景,则不同(除交汇点O外)的游览线路有( ) A.6种B.8种C.12种D.48种D[从点P处进入后,参观第一个景点时,有6个路口可以选择,从中任选一个,有C16种选法,参观完第一个景点,参观第二个景点时,有4个路口可以选择,从中任选一个,有C14种选法,参观完第二个景点,参观第三个景点时,有2个路口可以选择,从中任选一个,有C12种选法,则共有C16C14C12=48(种)线路.故选D.]2.(2019·河北六校联考)甲与其四位同事各有一辆私家车,车牌尾数分别是9,0,2,1,5,为遵守当地某月5日至9日5天的限行规定(奇数日车牌尾数为奇数的车通行,偶数日车牌尾数为偶数的车通行),五人商议拼车出行,每天任选一辆符合规定的车,但甲的车最多只能用一天,则不同的用车方案种数为( )A.64 B.80C.96 D.120B[5日至9日,日期尾数分别为5,6,7,8,9,有3天是奇数日,2天是偶数日.第一步,安排偶数日出行,每天都有2种选择,共有2×2=4(种);第二步,安排奇数日出行,分两类,第一类,选1天安排甲的车,另外2天安排其他车,有3×2×2=12(种),第二类,不安排甲的车,每天都有2种选择,共有23=8(种),共计12+8=20(种).根据分步乘法计数原理,不同的用车方案种数为4×20=80.]考点2 排列问题求解排列应用问题的6种常用方法直接法把符合条件的排列数直接列式计算优先法优先安排特殊元素或特殊位置捆绑法相隔问题把相邻元素看作一个整体与其他元素一起排列,同时注意捆绑元素的内部排列插空法对不相邻问题,先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空当中定序问题除法处理对于定序问题,可先不考虑顺序限制,排列后,再除以定序元素的全排列间接法正难则反、等价转化的方法3名女生和5名男生排成一排.(1)若女生全排在一起,有多少种排法?(2)若女生都不相邻,有多少种排法?(3)[一题多解]若女生不站两端,有多少种排法?(4)其中甲必须排在乙左边(可不邻),有多少种排法?(5)[一题多解]其中甲不站最左边,乙不站最右边,有多少种排法?[解] (1)(捆绑法)由于女生排在一起,可把她们看成一个整体,这样同5名男生合在一起有6个元素,排成一排有A66种排法,而其中每一种排法中,3名女生之间又有A33种排法,因此共有A66·A33=4 320种不同排法.(2)(插空法)先排5名男生,有A55种排法,这5名男生之间和两端有6个位置,从中选取3个位置排女生,有A36种排法,因此共有A55·A36=14 400种不同排法.(3)法一(位置分析法):因为两端不排女生,只能从5名男生中选2人排,有A25种排法,剩余的位置没有特殊要求,有A66种排法,因此共有A25·A66=14 400种不同排法.法二(元素分析法):从中间6个位置选3个安排女生,有A36种排法,其余位置无限制,有A55种排法,因此共有A36·A55=14 400种不同排法.(4)8名学生的所有排列共A 88种,其中甲在乙左边与乙在甲左边的各占12,因此符合要求的排法种数为12A 88=20 160. (5)甲、乙为特殊元素,左、右两边为特殊位置.法一(特殊元素法):甲在最右边时,其他的可全排,有A 77种不同排法;甲不在最右边时,可从余下6个位置中任选一个,有A 16种.而乙可排在除去最右边位置后剩余的6个中的任一个上,有A 16种,其余人全排列,共有A 16·A 16·A 66种不同排法.由分类加法计数原理知,共有A 77+A 16·A 16·A 66=30 960种不同排法.法二(特殊位置法):先排最左边,除去甲外,有A 17种排法,余下7个位置全排,有A 77种排法,但应剔除乙在最右边时的排法A 16·A 66种,因此共有A 17·A 77-A 16·A 66=30 960种排法.法三(间接法):8名学生全排列,共A 88种,其中,不符合条件的有甲在最左边时,有A 77种排法,乙在最右边时,有A 77种排法,其中都包含了甲在最左边,同时乙在最右边的情形,有A 66种排法.因此共有A 88-2A 77+A 66=30 960种排法.(1)对于有限制条件的排列问题,分析问题时有位置分析法、元素分析法,在实际进行排列时一般采用特殊元素优先原则,即先安排有限制条件的元素或有限制条件的位置,对于分类过多的问题可以采用间接法.(2)对相邻问题采用捆绑法、不相邻问题采用插空法、定序问题采用倍缩法是解决有限制条件的排列问题的常用方法.1.把5件不同的产品摆成一排,若产品A 与产品B 相邻,且产品A 与产品C不相邻,则不同的摆法有________种.36 [(捆绑法和插空法的综合应用)记其余两种产品为D ,E .将A ,B 视为一个元素,先与D ,E 进行排列,有A 22A 33种方法,再将C 插入,每种排列均只有3个空位可选, 故不同的摆法共有A 22A 33×3=2×6×3=36(种).]2.(2019·衡水高三大联考)现有一圆桌,周边有标号为1,2,3,4的四个座位,甲、乙、丙、丁四位同学坐在一起探讨一个数学课题,每人只能坐一个座位,甲先选座位,且甲、乙不能相邻,则所有选座方法有________种.(用数字作答)8 [先按排甲,其选座方法有C 14种,由于甲、乙不能相邻,所以乙只能坐甲对面,而丙、丁两位同学坐另两个位置的坐法有A 22种,所以共有坐法种数为C 14·A 22=4×2=8种.]考点3 组合问题组合问题的常见类型与处理方法(1)“含有”或“不含有”某些元素的组合题型:“含”,则先将这些元素取出,再由另外元素补足;“不含”,则先将这些元素剔除,再从剩下的元素中选取.(2)“至少”或“至多”含有几个元素的题型:若直接法分类复杂时,逆向思维,间接求解.某课外活动小组共13人,其中男生8人,女生5人,并且男、女生各有一名队长.现从中选5人主持某种活动,依下列条件各有多少种选法?(1)只有一名女生当选;(2)两队长当选;(3)至少有一名队长当选;(4)至多有两名女生当选.[解] (1)只有一名女生当选等价于有一名女生和四名男生当选.故共有C15·C48=350种.(2)两队长当选,共有C22·C311=165种.(3)至少有一名队长当选含有两类:只有一名队长当选,有两名队长当选.故共有C12·C411+C22·C311=825种.(或采用排除法:C513-C511=825(种)).(4)至多有两名女生当选含有三类:有两名女生当选,只有一名女生当选,没有女生当选.故选法共有C25·C38+C15·C48+C58=966种.含有附加条件的组合问题通常用直接法或间接法,应注意“至少”“最多”“恰好”等词的含义的理解.1.某单位拟安排6位员工在今年6月9日至11日值班,每天安排2人,每人值班1天.若6位员工中的甲不值9日,乙不值11日,则不同的安排方法共有( ) A.30种B.36种C.42种D.48种C[若甲在11日值班,则在除乙外的4人中任选1人在11日值班,有C14种选法,9日、10日有C24C22种安排方法,共有C14C24C22=24(种)安排方法;若甲在10日值班,乙在9日值班,余下的4人有C14C13C22种安排方法,共有12种安排方法;若甲、乙都在10日值班,则共有C24C22=6(种)安排方法.所以总共有24+12+6=42(种)安排方法.]2.现有16张不同的卡片,其中红色、黄色、蓝色、绿色卡片各4张,从中任取3张,要求这3张卡片不能是同一种颜色,且红色卡片至多1张,不同取法的种数为( ) A.232 B.252C.472 D.484C[分两类:第一类,含有1张红色卡片,不同的取法共有C14C212=264(种);第二类,不含有红色卡片,不同的取法共有C312-3C34=220-12=208(种).由分类加法计数原理知,不同的取法有264+208=472(种).]考点4 分组、分配问题分组、分配问题是排列组合的综合问题,解题思想是先分组后分配.(1)分组问题属于“组合”问题,常见的分组方法有三种:①完全均匀分组,每组元素的个数都相等;②部分均匀分组,应注意不要重复;③完全非均匀分组,这种分组不考虑重复现象.(2)分配问题属于“排列”问题,常见的分配方法有三种:①相同元素的分配问题,常用“挡板法”;②不同元素的分配问题,利用分步乘法计数原理,先分组,后分配;③有限制条件的分配问题,采用分类求解.整体均分问题国家教育部为了发展贫困地区教育,在全国重点师范大学免费培养教育专业师范生,毕业后要分到相应的地区任教.现有6个免费培养的教育专业师范毕业生要平均分到3所学校去任教,有________种不同的分派方法.90 [先把6个毕业生平均分成3组,有C 26C 24C 22A 33种方法,再将3组毕业生分到3所学校,有A 33=6种方法,故6个毕业生平均分到3所学校,共有C 26C 24C 22A 33·A 33=90种分派方法.] 本题属于整体均分问题,解题时要注意分组后,不管它们的顺序如何,都是一种情况,所以分组后一定要除以A nn (n 为均分的组数),避免重复计数.部分均分问题将6本不同的书分给甲、乙、丙、丁4个人,每人至少1本的不同分法共有________种.(用数字作答)1 560 [把6本不同的书分成4组,每组至少1本的分法有2种.①有1组3本,其余3组每组1本,不同的分法共有C 36C 13C 12C 11A 33=20(种); ②有2组每组2本,其余2组每组1本,不同的分法共有C 26C 24A 22·C 12C 11A 22=45(种). 所以不同的分组方法共有20+45=65(种).然后把分好的4组书分给4个人,所以不同的分法共有65×A 44=1 560(种).]本题属于局部均分问题,解题时注意重复的次数是均匀分组的阶乘数,即若有m 组元素个数相等,则分组时应除以m !,一个分组过程中有几个这样的均匀分组就要除以几个这样的全排列数.(2019·淄博模拟)第二届“一带一路”国际合作高峰论坛于2019年4月25日至27日在北京举行,为了保护各国元首的安全,将5个安保小组全部安排到指定三个区域内工作,且这三个区域每个区域至少有一个安保小组,则这样的安排方法共有( )A .96种B .100种C .124种D .150种D [因为三个区域每个区域至少有一个安保小组,所以可以把5个安保小组分成三组,有两种分组的情况:一种是1,1,3,另一种是1,2,2.当按照1,1,3来分时,共有N 1=C 15C 14C 33A 22·A 33=60(种),当按照1,2,2来分时,共有N 2=C 25C 23C 11A 22·A 33=90(种),根据分类加法计数原理知N =N 1+N 2=150种.]不等分问题(1)若将6名教师分到3所中学任教,一所1名,一所2名,一所3名,则有________种不同的分法.(2)把8个相同的小球全部放入编号为1,2,3,4的四个盒中,则不同的放法种数为( )A .35B .70C .165D .1 860 (1)360 (2)C [(1)将6名教师分组,分三步完成:第1步,在6名教师中任取1名作为一组,有C 16种分法;第2步,在余下的5名教师中任取2名作为一组,有C 25种分法;第3步,余下的3名教师作为一组,有C 33种分法.根据分步乘法计数原理,共有C 16C 25C 33=60种分法.再将这3组教师分配到3所中学,有A 33=6种分法,故共有60×6=360种不同的分法.(2)根据题意,分4种情况讨论:①没有空盒,将8个相同的小球排成一列,排好后,各球之间共有7个空位,在7个空位中任选3个,插入隔板,将小球分成4组,顺次对应4个盒子,有C 37=35种放法;②有1个空盒,在4个盒中任选3个,放入小球,有C 34=4种选法,将8个相同的小球排成一列,排好后,各球之间共有7个空位,在7个空位中任选2个,插入隔板,将小球分成3组,顺次对应3个盒子,有C 27=21种分组方法,则有4×21=84种放法; ③有2个空盒,在4个盒中任选2个,放入小球,有C 24=6种选法,将8个相同的小球排成一列,排好后,各球之间共有7个空位,在7个空位中任选1个,插入隔板,将小球分成2组,顺次对应2个盒子,有C 17=7种分组方法,则有6×7=42种方法;④有3个空盒,即将8个小球全部放进1个盒子,有4种放法.故一共有35+84+42+4=165种放法.]本题属于不等分问题,只需先分组,后排列,注意分组时任何组中元素的个数都不相等,所以不需要除以全排列数.1.将甲、乙等5名交警分配到三个不同路口疏导交通,每个路口至少一人,且甲、乙在同一路口的分配方案共有( )A.18种B.24种C.36种D.72种C[1个路口3人,其余路口各1人的分配方法有C13C22A33种.1个路口1人,2个路口各2人的分配方法有C23C22A33种,由分类加法计数原理知,甲、乙在同一路口的分配方案为C13C22A33+C23C22A33=36种.]2.(2019·唐山二模)将六名教师分配到甲、乙、丙、丁四所学校任教,其中甲校至少分配两名教师,其它三所学校至少分配一名教师,则不同的分配方案共有________种.(用数字作答)660 [若甲校2人,乙、丙、丁其中一校2人,共有C26C24A33种,若甲校3人,乙、丙、丁每校1人,共有C36A33种,则不同的分配方案共有C26C24A33+C36A33=660种.]。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年高考数学一轮总复习第十一章计数原理和概率题组训练82古典概型理1.将一个骰子抛掷一次,设事件A 表示向上的一面出现的点数不超过3,事件B 表示向上的一面出现的点数不小于4,事件C 表示向上的一面出现奇数点,则( ) A .A 与B 是对立事件 B .A 与B 是互斥而非对立事件 C .B 与C 是互斥而非对立事件 D .B 与C 是对立事件答案 A解析 由题意知,事件A 包含的基本事件为向上点数为1,2,3,事件B 包含的基本事件为向上的点数为4,5,6.事件C 包含的点数为1,3,5.A 与B 是对立事件,故选A. 2.从一堆产品(其中正品与次品都多于2件)中任取2件,下列事件是互斥事件但不是对立事件的是( )A .恰好有1件次品和恰好有2件次品B .至少有1件次品和全是次品C .至少有1件正品和至少有1件次品D .至少有1件次品和全是正品 答案 A解析 依据互斥和对立事件的定义知,B ,C 都不是互斥事件;D 不但是互斥事件而且是对立事件;只有A 是互斥事件但不是对立事件.3.(xx·广东茂名模拟)在{1,3,5}和{2,4}两个集合中各取一个数字组成一个两位数,则这个数能被4整除的概率是( ) A.13 B.12 C.16 D.14答案 D解析 符合条件的所有两位数为12,14,21,41,32,34,23,43,52,54,25,45,共12个,能被4整除的数为12,32,52,共3个,故所求概率P =312=14.4.4张卡片上分别写有数字1,2,3,4,若从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的概率为( ) A.13 B.12 C.23 D.34答案 C解析 从4张卡片中抽取2张的方法有6种,和为奇数的情况有4种,∴P =23.5.从存放的号码分别为1,2,3,…,10的卡片的盒子中,有放回地取100次,每次取一张卡片并记下号码,统计结果如下:A .0.53B .0.5C .0.47D .0.37答案 A解析 取到号码为奇数的卡片的次数为:13+5+6+18+11=53,则所求的频率为53100=0.53,故选A.6.(xx·天津改编)甲、乙两人下棋,和棋的概率为12,乙获胜的概率为13,则甲获胜的概率和甲不输的概率分别为( ) A.16,16 B.12,23 C.16,23 D.23,12答案 C解析 “甲获胜”是“和棋或乙胜”的对立事件,所以“甲获胜”的概率P =1-12-13=16.设事件A 为“甲不输”,则A 可看作是“甲胜”与“和棋”这两个互斥事件的并事件,所以P(A)=16+12=23.(或设事件A 为“甲不输”,则A 可看作是“乙胜”的对立事件.所以P(A)=1-13=23)7.(xx·陕西文)对一批产品的长度(单位:毫米)进行抽样检测,如图为检测结果的频率分布直方图.根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品,在区间[10,15)和[30,35]上为三等品.用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是( )A .0.09B .0.20C .0.25D .0.45答案 D解析 由频率分布直方图的性质可知,样本数据在区间[25,30)上的频率为1-5×(0.02+0.04+0.06+0.03)=0.25,则二等品的频率为0.25+0.04×5=0.45,故任取1件为二等品的概率为0.45.8.我国古代有着辉煌的数学研究成果.《周髀算经》、《九章算术》、《海岛算经》、《孙子算经》……《缉古算经》等10部专著,有着丰富多彩的内容,是了解我国古代数学的重要文献.这10部专著中有7部产生于魏晋南北朝时期.某中学拟从这10部名著中选择的2部作为“数学文化”校本课程学习内容,则所选的2部名著中至少有1部是魏晋南北朝时期的名著的概率为 ( ) A.1415 B.1315C.29D.79答案 A解析 方法一:从10部名著中选择2部名著的方法数为C 102=45,所选的2部都为魏晋南北朝时期的名著的方法数为C 72=21,只有1部为魏晋南北朝时期的名著的方法数为C 71×C 31=21,于是事件“所选的2部名著中至少有1部是魏晋南北朝时期的名著”的概率P =4245=1415.故选A.方法二:从10部名著中选择2部名著的方法数为C 102=45,所选的2部都不是魏晋南北朝时期的名著的方法数为C 32=3,由对立事件的概率计算公式得P =1-345=1415.故选A.9.将一枚骰子抛掷两次,若先后出现的点数分别为b ,c ,则方程x 2+bx +c =0有实根的概率为( ) A.1936 B.12 C.59 D.1736答案 A解析 若方程有实根,则Δ=b 2-4c≥0,当有序实数对(b ,c)的取值为(6,6),(6,5),…,(6,1),(5,6),(5,5),…,(5,1),(4,4),…,(4,1),(3,2),(3,1),(2,1)时方程有实根,共19种情况,而(b ,c)等可能的取值共有36种情况,所以,方程有实根的概率为P =1936.10.若将一颗质地均匀的骰子(一种各面上分别标有1,2,3,4,5,6个点的正方体玩具)先后抛掷2次,则出现向上的点数之和为4的概率是________. 答案112解析 本题基本事件共6×6个,点数和为4的有3个事件为(1,3),(2,2),(3,1),故P =36×6=112. 11.据统计,某食品企业在一个月内被消费者投诉次数为0,1,2的概率分别为0.4,0.5,0.1.则该企业在一个月内被消费者投诉不超过1次的概率为________. 答案 0.9解析 方法一:记“该食品企业在一个月内被消费者投诉的次数为0”为事件A ,“该食品企业在一个月内被消费者投诉的次数为1”为事件B ,“该食品企业在一个月内被消费者投诉的次数为2”为事件C ,“该食品企业在一个月内被消费者投诉的次数不超过1”为事件D ,而事件D 包含事件A 与B ,所以P(D)=P(A)+P(B)=0.4+0.5=0.9.方法二:记“该食品企业在一个月内被消费者投诉的次数为2”为事件C ,“该食品企业在一个月内被消费者投诉不超过一次”为事件D ,由题意知C 与D 是对立事件,所以P(D)=1-P(C)=1-0.1=0.9.12.(xx·江苏苏北四市调研)从1,2,3,4,5,6这六个数中一次随机地取两个数,则所取两个数的和能被3整除的概率为________. 答案 13解析 从六个数中一次随机地取两个数,有15种等可能的结果,而所取两个数的和能被3整除包含5种结果,即(1,2),(1,5),(2,4),(3,6),(4,5),∴所取两个数的和能被3整除的概率为515=13.13.某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:(1)(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4 000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4 000元的概率.答案(1)0.27 (2)0.24解析(1)设A表示事件“赔付金额为3 000元”,B表示事件“赔付金额为4 000元”,以频率估计概率得P(A)=1501 000=0.15,P(B)=1201 000=0.12.由于投保金额为2 800元,赔付金额大于投保金额对应的情形是3 000元和4 000元,所以其概率为P(A)+P(B)=0.15+0.12=0.27.(2)设C表示事件“投保车辆中新司机获赔4 000元”,由已知,样本车辆中车主为新司机的有0.1×1 000=100辆,而赔付金额为4 000元的车辆中,车主为新司机的有0.2×120=24辆.所以样本车辆中新司机车主获赔金额为4 000元的频率为24100=0.24,由频率估计概率得P(C)=0.24.14.下表为某班的英语及数学成绩,全班共有学生50人,成绩分为1~5分五个档次.例如表中所示英语成绩为4分的学生共14人,数学成绩为5分的共5人.设x,y分别表示英语成绩和数学成绩.(1)x=4(2)x=2的概率是多少?a+b的值是多少?答案(1)725,750,710(2)15,3解析 (1)P(x =4)=1+0+7+5+150=725;P(x =4且y =3)=750,P (x≥3)=P(x =3)+P(x =4)+P(x =5)=2+1+0+9+350+725+1+3+1+0+150=710.(2)P(x =2)=1-P(x =1)-P(x≥3)=1-110-710=15.又∵P(x=2)=1+b +6+0+a 50=15,∴a +b =3.15.(xx·辽宁六盘山高级中学一模)某中学有初中学生1 800人,高中学生1 200人.为了解学生本学期课外阅读时间,现采用分层抽样的方法,从中抽取了100名学生,先统计了他们课外阅读时间,然后按“初中学生”和“高中学生”分为两组,再将每组学生的阅读时间(单位:小时)分为5组:[0,10),[10,20),[20,30),[30,40),[40,50],并分别加以统计,得到如图所示的频率分布直方图.(1)写出a 的值;(2)试估计该校所有学生中,阅读时间不少于30个小时的学生人数;(3)从阅读时间不足10个小时的样本学生中随机抽取2人,求至少抽到1名高中生的概率. 答案 (1)0.03 (2)870 (3)0.7 解析 (1)由题意得a =0.03.(2)∵初中生中,阅读时间不少于30个小时的学生频率为(0.020+0.005)×10=0.25. ∴所有初中生中,阅读时间不少于30个小时的学生约有0.25×1 800=450人. 同理,高中生中,阅读时间不少于30个小时的学生频率为(0.03+0.005)×10=0.35, ∴所有高中生中.阅读时间不少于30个小时的学生约有0.35×1 200=420人. ∴该校所有学生中,阅读时间不少于30个小时的学生人数约有450+420=870.(3)由分层抽样知,抽取的初中生有60名,高中生有40名.记“从阅读时间不足10个小时的样本学生中随机抽取2人,至少抽到1名高中生”为事件A.初中生中,阅读时间不足10个小时的学生频率为0.005×10=0.05,样本人数为0.05×60=3.高中生中,阅读时间不足10个小时的学生频率为0.005×10=0.05,样本人数为0.05×40=2.记这3名初中生为A 1,A 2,A 3,这2名高中生为B 1,B 2.则从阅读时间不足10个小时的样本学生中随机抽取2人,所有可能的情况有C 52=10种 其中至少有一名高中生的情况有C 52-C 32=7种 ∴所求概率为710=0.7.16.(xx·四川成都一诊)已知国家某5A 级大型景区对拥挤等级与每百游客数量n(单位:百人)的关系有如下规定:当n∈[0,100)时,拥挤等级为“优”;当n∈[100,200)时,拥挤等级为“良”;当n∈[200,300)时,拥挤等级为“拥挤”;当n≥300时,拥挤等级为“严重拥挤”.该景区对6月份的游客数量作出如图的统计数据.(1)下面是根据统计数据得到的频率分布表,求出a ,b 的值,并估计该景区6月份游客人数的平均值(同一组中的数据用该组区间的中点值作代表);游客数量 (单位:百人)[0,100) [100,200) [200,300) [300,400]天数 a 10 4 1 频率b13215130(2)客拥挤等级均为“优”的概率. 答案 (1)15,12,120(百人) (2)310解析 (1)由题图知游客人数在[0,100)范围内共有15天,∴a =15,b =1530=12.游客人数的平均数为50×12+150×13+250×215+350×130=120(百人).(2)设A 表示事件“2天遇到的游客拥挤等级均为‘优’”.从5天中任选2天的选择方法有(1,2),(1,3),(1,4),(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5),共10个基本事件,其中事件A 包括(1,4),(1,5),(4,5),共3个基本事件,∴P(A)=310.即他这2天遇到的游客拥挤等级均为“优”的概率为310. 17.(xx·课标全国Ⅲ,文)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y(单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率. 答案 (1)0.6 (2)0.8解析 (1)这种酸奶一天的需求量不超过300瓶,当且仅当最高气温低于25 ℃.由表格数据知,最高气温低于25 ℃的频率为2+16+3690=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25 ℃,则Y =6×450-4×450=900;若最高气温位于区间[20,25),则Y =6×300+2×(450-300)-4×450=300; 若最高气温低于20 ℃,则Y =6×200+2×(450-200)-4×450=-100. 所以,Y 的所有可能值为900,300,-100.Y 大于零当且仅当最高气温不低于20 ℃,由表格数据知,最高气温不低于20 ℃的频率为36+25+7+490=0.8,因此Y 大于零的概率的估计值为0.8.1.从装有红球、白球和黑球各2个的口袋内一次取出2个球,则与事件“两球都为白球”互斥而非对立的事件是以下事件:①两球都不是白球;②两球恰有一个白球;③两球至少有一个白球.中的哪几个( ) A .①② B .①③ C .②③ D .①②③答案 A解析 从口袋内一次取出2个球,这个试验的基本事件空间Ω={(白,白),(红,红),(黑,黑),(红,白),(红,黑),(黑,白)},包含6个基本事件,当事件A“两球都为白球”发生时,①②不可能发生,且A 不发生时,①不一定发生,②不一定发生,故非对立事件,而A 发生时,③可以发生,故不是互斥事件.2.(xx·江西)集合A ={2,3},B ={1,2,3},从A ,B 中各任意取一个数,则这两数之和等于4的概率是( ) A.23 B.12 C.13 D.16答案 C解析 从A 、B 中各取一个数有(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共6种情况,其中和为4的有(2,2),(3,1),共2种情况,所求概率P =26=13,选C.3.4位同学各自在周六、周日两天中任选一天参加公益活动,则周六、周日都有同学参加公益活动的概率为( ) A.18 B.38 C.58 D.78答案 D解析 方法一:4位同学各自在周六、周日任选一天参加公益活动,共有24=16(种)结果,而周六、周日都有同学参加公益活动有两种情况:①一天一人,另一天三人,C 41A 22=8(种);②每天二人,有C 42=6(种),所以P =8+616=78.方法二(间接法):4位同学各自在周六、周日任选一天参加公益活动,共有24=16(种)结果,而4人都选周六或周日有2种结果,所以P =1-216=78.。