概率统计大题题型总结(理)学生版

合集下载

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结

2024高考数学压轴题——概率与统计高考常见题型解题思路及知识点总结2024高考数学压轴题——概率与统计的挑战与应对随着高考的临近,数学科目的复习也进入了关键阶段。

2024年的高考数学压轴题将会涉及到概率与统计的内容,这不仅考察学生的基本数学知识,更侧重于考察学生的逻辑思维能力、实际应用能力和问题解决能力。

本文将针对这一部分的常见题型、解题思路和知识点进行总结,希望能为广大考生提供一些帮助和指导。

一、常见题型的解题思路1、概率计算:在解决概率计算问题时,学生需要明确事件的独立性、互斥性和概率公式的应用。

尤其是古典概率和条件概率的计算,需要学生熟练掌握。

对于涉及多个事件的概率计算,学生需要理清事件的关联关系,采用加法、乘法或全概率公式进行计算。

2、随机变量及其分布:这部分要求学生掌握离散型和连续型随机变量的分布律及分布函数,理解并掌握几种常见的分布,如二项分布、泊松分布和正态分布等。

对于随机变量的数字特征,如期望、方差和协方差等,学生需要理解其含义并掌握计算方法。

3、统计推断:在统计推断问题中,学生需要掌握参数估计和假设检验的基本方法。

对于点估计,学生需要理解矩估计法和最大似然估计法的原理,并能够进行计算。

对于假设检验,学生需要理解显著性检验的原理,掌握单侧和双侧检验的方法。

4、相关与回归分析:相关与回归分析要求学生能够读懂散点图,理解线性相关性和线性回归的概念,掌握回归方程的拟合方法和拟合优度的评估方法。

二、概率与统计的相关知识点总结1、概率的基本概念:事件、样本空间、事件的概率、互斥事件、独立事件等。

2、随机变量及其分布:离散型随机变量和连续型随机变量,二项分布、泊松分布和正态分布等。

3、统计推断:参数估计、假设检验、点估计、置信区间、单侧和双侧检验等。

4、相关与回归分析:线性相关性和线性回归的概念,回归方程的拟合方法和拟合优度的评估方法。

三、示例分析下面我们通过一个具体的示例来演示如何分析和解决一道概率与统计的压轴题。

高考数学概率与统计题型解析与答题技巧

高考数学概率与统计题型解析与答题技巧

高考数学概率与统计题型解析与答题技巧在高考数学中,概率与统计是一个重要的板块,它不仅考查学生的数学知识和技能,还培养学生的数据分析和推理能力。

对于很多同学来说,这部分内容既有一定的挑战性,又充满了得分的机会。

下面我们就来详细解析高考数学中概率与统计的常见题型以及相应的答题技巧。

一、概率题型1、古典概型古典概型是概率中最基础的题型之一。

它的特点是试验结果有限且等可能。

例如,从装有若干个红球和白球的袋子中摸球,计算摸到某种颜色球的概率。

答题技巧:首先,确定总的基本事件数和所求事件包含的基本事件数。

然后,利用古典概型的概率公式 P(A)=所求事件包含的基本事件数÷总的基本事件数进行计算。

2、几何概型几何概型与古典概型不同,它的试验结果是无限的。

常见的有长度型、面积型、体积型几何概型。

比如,在一个区间内随机取一个数,求满足某个条件的概率。

答题技巧:对于几何概型,关键是要正确确定几何度量。

例如,长度型就计算长度,面积型就计算面积,体积型就计算体积。

然后,按照几何概型的概率公式 P(A)=构成事件 A 的区域长度(面积或体积)÷试验的全部结果所构成的区域长度(面积或体积)进行求解。

3、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率。

题目中通常会给出一些条件,让我们计算在这些条件下的概率。

答题技巧:利用条件概率公式 P(A|B)= P(AB)÷P(B),先求出 P(AB)和 P(B),再计算条件概率。

4、相互独立事件与互斥事件相互独立事件是指一个事件的发生与否对另一个事件的发生概率没有影响;互斥事件则是指两个事件不能同时发生。

答题技巧:对于相互独立事件,它们同时发生的概率用乘法计算,即 P(AB)= P(A)×P(B);对于互斥事件,它们至少有一个发生的概率用加法计算,即 P(A∪B)= P(A)+ P(B)。

二、统计题型1、抽样方法包括简单随机抽样、分层抽样和系统抽样。

概率与统计题型归纳总结

概率与统计题型归纳总结

概率与统计题型归纳总结在学习概率与统计的过程中,我们不可避免地要接触到各种各样的题型。

在这些题型中,有的看似简单却需要一定思考,有的则需要我们具备一定的数学基础。

本文将围绕这些题型展开,帮助大家更好地总结归纳概率与统计中的题型。

一、基本概率基本概率是概率学习中最基础的部分,要求我们计算某一事件发生的可能性,其公式为:P(A)=n(A)/n(S)。

其中,P(A)表示事件A发生的概率,n(A)表示事件A出现的次数,n(S)表示总体出现的次数。

二、条件概率条件概率是建立在基本概率之上的,要求我们在已知某一事件发生的情况下,计算其他事件发生的概率。

其公式为:P(A|B)=P(B∩A)/P(B)。

其中,P(A|B)表示在B发生的前提下,A发生的概率,P(B∩A)表示A与B同时发生的概率,P(B)表示B发生的概率。

三、贝叶斯定理贝叶斯定理是一种利用先验信息来更新后验概率的方法。

其公式为:P(A|B)=P(B|A)P(A)/P(B)。

其中,P(A)为先验概率,P(B|A)为A发生的情况下,B发生的概率,P(B)为后验概率。

四、独立事件独立事件是指两个或多个事件,其中任意一个事件的发生与其他事件的发生无关。

其公式为:P(A∩B)=P(A)P(B)。

其中,P(A)和P(B)分别表示事件A和事件B各自发生的概率,P(A∩B)表示A和B同时发生的概率。

五、全概率公式全概率公式是用来计算某一事件在多种情况下的概率的公式。

其公式为:P(A)=∑(i=1)^(n)P(A|B_i)P(B_i)。

其中,B_1,B_2...B_n是一组互不相交的事件,且它们包含了所有可能的情况。

P(A)表示事件A的概率,P(A|B_i)表示在B_i发生的前提下,A发生的概率,P(B_i)表示B_i 发生的概率。

六、随机变量随机变量是指某一随机事件在其过程中所反映的变量。

在统计学中,我们常常会用随机变量来描述概率分布。

常见的随机变量有离散随机变量和连续随机变量。

概率与统计高考常见题型解题思路及知识点总结

概率与统计高考常见题型解题思路及知识点总结

概率与统计高考常见题型解题思路及知识点总结一、解题思路(一)解题思路思维导图(二)常见题型及解题思路1.正确读取统计图表的信息典例1:(2017全国3卷理科3)某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图,根据该折线图,下列结论错误的是().A .月接待游客量逐月增加B .年接待游客量逐年增加C .各年的月接待游客量高峰期大致在7,8月份D .各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳 【解析】由题图可知,2014年8月到9月的月接待游客量在减少,则A 选项错误,选A.2.古典概型概率问题 典例2:(全国卷理科)我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,如.在不超过30的素数中,随机选取两个不同的数,其和等于30的概率是 A.B.C.D.解:不超过30的素数有2,3,5,7,11,13,17,19,23,29,共10个,随机选取两个不同的数,共有种方法,因为,所以随机选取两个不同的数,其和等于30的有3种方法,故概率为,选C.典例3: (2014全国2卷理科5)某地区空气质量监测资料表明,一天的空气质量为优良的概率是0.75,连续两天为优良的概率是0.6,已知某天的空气质量为优良,则随后一天的空气质量为优良的概率是 ( ) A. 0.8 B. 0.75 C. 0.6D. 0.45解:设某天空气质量优良,则随后一天空气质量也优良的概率为p,则据条件概率公式得p =0.60.75=0.8,故选A.3.几何概型问题典例4:(2016全国1卷理科4)某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是 ( ) A.13 B.12C.23 D.34解:如图所示,画出时间轴:小明到达的时间会随机地落在图中线段AB 中,而当他到达时间落在线段AC 或DB 时,才能保证他等车的时间不超过10分钟,根据几何概型,所求概率P=101040+=12.选B.4.类似超几何分布的离散型随机变量分布列问题(古典概型求概率)5.类似二项分布的离散型随机变量分布列问题(频率估计概率,相互独立事件概率计算)典例5(超几何分布与二项分布辨析):某工厂为检验其所生产的产品的质量,从所生产的产品中随机抽取10件进行抽样检验,检测出有两件次品.(1)从这10件产品中随机抽取3件,其中次品件数为X ,求X 分布列和期望;(2)用频率估计概率,若所生产的产品按每箱100件装箱,从一箱产品中随机抽取3件,其中次品件数为Y ,求Y 分布列和期望;(3)用频率估计概率,从所生产的产品中随机抽取3件,其中次品件数为Z ,求Z 分布列和期望.分析:第(1)问中,抽取产品的总体N=10,所含次品件数M=2,都是明确的,所以该随机变量的分布为超几何分布。

概率统计常见题型及方法总结

概率统计常见题型及方法总结

常见大题:1. 全概率公式和贝叶斯公式问题 B 看做“结果”,有多个“原因或者条件iA ”可以导致B 这个“结果”发生,考虑结果B 发生的概率,或者求在B 发生的条件下,源于某个原因i A 的概率问题全概率公式:()()()1B |ni i i P B P A P A ==∑贝叶斯公式:1(|)()()()()ni i i jjj P A B P A P B A P A P BA ==∑||一〔12分〕今有四个口袋,它们是甲、乙、丙、丁,每个口袋中都装有a 只红球和b 只白球。

先从甲口袋中任取一只球放入乙口袋,再从乙口袋中任取一只球放入丙口袋,然后再从丙口袋中任取一只球放入丁口袋,最后从丁口袋中任取一球,问取到红球的概率为多少? 解 i B 表示从第i 个口袋放入第1+i 个口袋红球,4,3,2,1=ii A 表示从第i 个口袋中任取一个球为红球, 2分则ba aB P +=)(1, 2分 )()()()()(1111111B A P B P B A P B P A P +=111++++++++=b a ab a b b a a b a a ba a += 2分依次类推 2分ba aA P i +=)( 二〔10分〕袋中装有m 只正品硬币,n 只次品硬币〔次品硬币的两面均印有国徽〕,在袋中任取一只,将它投掷r 次,已知每次都出现国徽,问这只硬币是次品的概率为多少?、解 记B ={取到次品},B ={取到正品},A ={将硬币投掷r 次每次都出现国徽} 则()(),n mP B P B m n m n==++,()1P A B =,()12r P A B =―—5分()()1()212()()()()12r rrnP B P A B n m n P B A n m n m P B P A B P B P A B m n m n ⨯+===++⨯+⨯++三、〔10分〕一批产品共100件,其中有4件次品,其余皆为正品。

概率统计常见题型及方法总结

概率统计常见题型及方法总结
竽可 88•件的柢卓
常见大题: A 全概率公式和贝叶斯公式问题 呂看做“结果”,有多个“原因或者条件宀”可以 导 致呂这个“结果”发生,考虑结果呂发生的概率, 或者求 在号发生的条件下,源于某个原因宀的概率问 题
全概率公式:
P(B) = f P(AJP(BI4)
/-I
贝叶斯公式:
P(4IB) = P(A)P(3l
Fv (x)二 P{X <x}=

< =£}二①(二
aa
a
② 若 X〜Ng a2\ Y = 士上〜N(0」)
a
P(a<X < b) =
<Y< 匕纬
(7
(7
“b-卩、“ci_ 卩、
=0(― )-0(―)
aቤተ መጻሕፍቲ ባይዱ
a
二、分布函数的性质 F(x) = P{X < x}
离散型
连续型
0 < F(x) < 1 (— oc < x < +x)
(/)求收到模糊信号“X’的概率;
(刃当收到模糊信号时,以译成哪个信号为好?为什么?
解 设发出信号汁(/=04), P(A0 ) = 0.6, p(Aj = 0・4,
收到信号汁(i = 0 丄 X)。由题意知
」 P(B 4J) = 0・2, P(BV I ^) = 0.1 o
(/)由全概率公式得
P(B J = P(Bxl A0)P(A)) + P(BX I A)P(A)
a + b a + b+ \ a + h a + b+ \ a + b
页■内客力
依次类推
竽可 88•件的柢卓 纟分

高中数学概率统计解题技巧

高中数学概率统计解题技巧

高中数学概率统计解题技巧概率统计是高中数学中的一门重要课程,也是考试中常见的题型。

掌握好解题技巧,能够帮助学生提高解题效率,更好地应对考试。

本文将从几个常见的概率统计题型入手,分析其考点和解题方法,帮助学生掌握解题技巧。

一、排列组合题排列组合是概率统计中常见的题型,它要求我们计算某种情况下的可能性。

例如,某班有10个学生,要从中选出3个学生组成一个小组,问有多少种不同的选法?这类题目的关键在于确定组合的方式。

对于上述问题,我们可以使用组合公式C(n,m) = n!/(m!(n-m)!)来计算。

其中,n表示总数,m表示选取的个数。

二、事件概率题事件概率题是概率统计中最基础的一类题型,它要求我们计算某个事件发生的概率。

例如,抛一枚骰子,问出现奇数的概率是多少?解决这类问题的关键在于确定样本空间和事件发生的可能性。

对于上述问题,骰子的样本空间为{1,2,3,4,5,6},而出现奇数的事件为{1,3,5},所以概率为3/6=1/2。

三、条件概率题条件概率题是概率统计中较为复杂的一类题型,它要求我们在给定某个条件下计算事件发生的概率。

例如,某班有30个学生,其中20个是男生,10个是女生。

从中随机选取一个学生,问选到女生的概率是多少?解决这类问题的关键在于确定条件下的样本空间和事件发生的可能性。

对于上述问题,在给定条件下,样本空间为{男生,女生},而选到女生的事件为{女生},所以概率为10/30=1/3。

四、独立事件题独立事件题是概率统计中常见的一类题型,它要求我们计算多个事件同时发生的概率。

例如,某班有30个学生,其中20个是男生,10个是女生。

从中随机选取两个学生,问选到两个女生的概率是多少?解决这类问题的关键在于确定事件的独立性和事件发生的可能性。

对于上述问题,选到第一个女生的概率为10/30=1/3,选到第二个女生的概率为9/29。

由于两个事件是相互独立的,所以选到两个女生的概率为(1/3)*(9/29)=3/29。

2024高考数学概率统计知识点总结与题型分析

2024高考数学概率统计知识点总结与题型分析

2024高考数学概率统计知识点总结与题型分析概率统计作为数学课程的一个重要分支,在高考中占有重要的一席之地。

它是一个与现实生活息息相关的学科,旨在通过收集、整理和分析数据,帮助我们做出正确的判断和决策。

本文对2024高考数学概率统计的知识点进行了总结,并对可能出现的题型进行了分析。

一、基本概念和公式1. 随机事件:指在一次试验中可能发生也可能不发生的事件。

2. 样本空间:指一个试验所有可能结果的集合。

3. 必然事件:指在一次试验中一定会发生的事件。

4. 不可能事件:指在一次试验中一定不会发生的事件。

5. 事件的概率:指随机事件发生的可能性大小。

6. 加法原理:对于两个互不相容的事件A和B,它们的和事件A∪B的概率等于各个事件的概率之和。

P(A∪B) = P(A) + P(B)7. 乘法原理:对于两个相互独立的事件A和B,它们的积事件A∩B的概率等于各个事件的概率之积。

P(A∩B) = P(A) × P(B)二、概率计算1. 事件的概率计算:对于离散型随机事件,概率可通过频率估计和计数原理计算。

对于连续型随机事件,概率可通过定积分计算。

2. 事件的互斥与独立:如果两个事件A和B互斥(即不能同时发生),则它们的和事件A∪B的概率等于各自事件的概率之和。

如果两个事件A和B相互独立(即一个事件的发生不受另一个事件发生与否的影响),则它们的积事件A∩B的概率等于各自事件的概率之积。

三、排列组合与概率计算1. 排列:排列是从n个不同元素中取出m个元素(m≤n),并有顺序地排成一列的方式。

排列的计算公式为:A(n,m) = n! / (n-m)!2. 组合:组合是从n个不同元素中取出m个元素(m≤n),不考虑顺序地组成一个集合的方式。

组合的计算公式为:C(n,m) = n! / [m! × (n-m)!]3. 概率计算中的排列组合:当事件A与某个事件B相关时,在计算A的概率时,需要考虑B 发生的不同排列组合情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

统计概率大题题型总结题型一 频率分布直方图与茎叶图例1.(2013广东理17)某车间共有12名工人,随机抽取6名,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数.(Ⅰ) 根据茎叶图计算样本均值;(Ⅱ) 日加工零件个数大于样本均值的工人为优秀工人,根据茎叶图推断该车间12名工人中有几名优秀工人;(Ⅲ) 从该车间12名工人中,任取2人,求恰有名优秀工人的概率.例2.(2013新课标Ⅱ理)经销商经销某种农产品,在一个销售季度内,每售出t 该产品获利润500元,未售出的产品,每t 亏损300元.根据历史资料,得到销售季度内市场需求量的频率分布直方图,如图所示.经销商为下一个销售季度购进了130t 该农产品,以X (单位:t,150100≤≤X )表示下一个销售季度内的市场需求量,T (单位:元)表示下一个销售季度内销商该农产品的利润.(Ⅰ)将T 表示为X 的函数;(Ⅱ)根据直方图估计利润T 不少于57000元的概率;1 7 92 0 1 53 0第17题图(Ⅲ)在直方图的需求量分组中,以各组的区间中点值代表该组的各个值,需求量落入该区间的频率作为需求量取该区间中点值的概率(例如:若[100,110)X ∈,则取105X =,且105X =的概率等于需求量落入[100,110)的概率),求利润T 的数学期望.变式1. 【2015高考重庆,理3】重庆市2013年各月的平均气温(o C )数据的茎叶图如下:0891258200338312则这组数据的中位数是( )A 、19B 、20C 、21.5D 、23变式2.【2015高考新课标2,理18】(本题满分12分)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A 地区:62 73 81 92 95 85 74 64 53 76 78 86 95 66 97 78 88 82 76 89B 地区:73 83 62 51 91 46 53 73 64 82 93 48 65 81 74 56 54 76 65 79(Ⅰ)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,得出结论即可);(Ⅱ)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记时间C :“A 地区用户的满意度等级高于B 地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C 的概率.A 地区B 地区4 5 6 7 8 9变式3.(2012辽宁理)电视传媒公司为了了解某地区电视观众对某类体育节目的收视情况,随机抽取了100名观众进行调查.下面是根据调查结果绘制的观众日均收看该体育节目时间的频率分布直方图;将日均收看该体育节目时间不低于40分钟的观众称为“体育迷”.(Ⅰ)根据已知条件完成下面的22列联表,并据此资料你是否认为“体育迷”与性别有关?(Ⅱ)将上述调查所得到的频率视为概率.现在从该地区大量电视观众中,采用随机抽样方法每次抽取1名观众,抽取3次,记被抽取的3名观众中的“体育迷”人数为X.若每次抽取的结果是相互独立的,求X的分布列,期望()E X和方差()D X.变式4 【2014新课标Ⅰ理18】(本小题满分12分)从某企业的某种产品中抽取500件,测量这些产品的一项质量指标值,由测量结果得如下频率分布直方图:(Ⅰ)求这500件产品质量指标值的样本平均数x 和样本方差2s (同一组数据用该区间的中点值作代表);(Ⅱ)由频率分布直方图可以认为,这种产品的质量指标值Z 服从正态分布2(,)N μδ,其中μ近似为样本平均数x ,2δ近似为样本方差2s . (i) 利用该正态分布,求(187.8212.2)P Z <<;(ii) 某用户从该企业购买了100件这种产品,记X 表示这100件产品中质量指标值为于区间(187.8,212.2)的产品件数,利用(i )的结果,求EX .150若Z ~2(,)N μδ,则()P Z μδμδ-<<+=0.6826,(22)P Z μδμδ-<<+=0.9544.题型二抽样问题例【2015高考广东,理17】某工厂36名工人的年龄数据如下表:(1)用系统抽样法从36名工人中抽取容量为9的样本,且在第一分段里用随机抽样法抽到的年龄数据为44,列出样本的年龄数据;(2)计算(1)中样本的平均值x和方差2s;(3)36名工人中年龄在sx-与sx+之间有多少人?所占的百分比是多少(精确到0.01%)?变式(2009天津卷文)为了了解某工厂开展群众体育活动的情况,拟采用分层抽样的方法从A,B,C三个区中抽取7个工厂进行调查,已知A,B,C区中分别有18,27,18个工厂(Ⅰ)求从A,B,C区中分别抽取的工厂个数;(Ⅱ)若从抽取的7个工厂中随机抽取2个进行调查结果的对比,用列举法计算这2个工厂中至少有1个来自A区的概率。

题型三 古典概型 有限等可能事件的概率在一次实验中可能出现的结果有n 个,而且所有结果出现的可能性都相等。

如果事件A 包含的结果有m 个,那么P (A )=nm。

这就是等可能事件的判断方法及其概率的计算公式。

高考常借助不同背景的材料考查等可能事件概率的计算方法以及分析和解决实际问题的能力。

例题1【2015高考天津,理16】(本小题满分13分)为推动乒乓球运动的发展,某乒乓球比赛允许不同协会的运动员组队参加.现有来自甲协会的运动员3名,其中种子选手2名;乙协会的运动员5名,其中种子选手3名.从这8名运动员中随机选择4人参加比赛.(I)设A 为事件“选出的4人中恰有2名种子选手,且这2名种子选手来自同一个协会”求事件A 发生的概率;(II)设X 为选出的4人中种子选手的人数,求随机变量X 的分布列和数学期望.例2【2015高考安徽,理17】已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束. (Ⅰ)求第一次检测出的是次品且第二次检测出的是正品的概率;(Ⅱ)已知每检测一件产品需要费用100元,设X 表示直到检测出2件次品或者检测出3件正品时所需要的检测费用(单位:元),求X 的分布列和均值(数学期望).变式1【2015高考重庆,理17】端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个。

(1)求三种粽子各取到1个的概率;(2)设X表示取到的豆沙粽个数,求X的分布列与数学期望变式2 (2013天津理)一个盒子里装有7张卡片, 其中有红色卡片4张, 编号分别为1, 2, 3, 4;白色卡片3张, 编号分别为2, 3, 4. 从盒子中任取4张卡片(假设取到任何一张卡片的可能性相同).(Ⅰ) 求取出的4张卡片中, 含有编号为3的卡片的概率.(Ⅱ) 再取出的4张卡片中, 红色卡片编号的最大值设为X, 求随机变量X的分布列和数学期望.题型四 几何概型----无线等可能事件发生的概率例1【2015高考湖北,理7】在区间[0,1]上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“1||2x y -≤”的概率,3p 为事件“12xy ≤”的概率,则 ( ) A .123p p p << B .231p p p << C .312p p p <<D .321p p p <<变式1【2015高考福建,理13】如图,点A 的坐标为()1,0 ,点C 的坐标为()2,4 ,函数()2f x x = ,若在矩形ABCD 内随机取一点,则此点取自阴影部分的概率等于 .变式2(2012年高考(北京理))设不等式组0202x y ≤≤⎧⎨≤≤⎩表示的平面区D .在区域D 内随机取一个点,则此点到坐标原点的距离大于2的概率是( ) A .4π B .22π- C .6π D .44π-题型五 相互独立事件发生概率计算事件A (或B )是否发生对事件B (或A )发生的概率没有影响,则A 、B 叫做相互独立事件,它们同时发生的事件为B A ⋅。

用概率的乘法公式()()()B P A P B A P ⋅=⋅计算。

例1(2013辽宁数学理)现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.(I)求张同学至少取到1道乙类题的概率;(II)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是35,答对每道乙类题的概率都是45,且各题答对与否相互独立.用X 表示张同学答对题的个数,求X的分布列和数学期望.例2(2013山东理)甲、乙两支排球队进行比赛,约定先胜3局者获得比赛的胜利,比赛随即结束,除第五局甲队获胜的概率是12外,其余每局比赛甲队获胜的概率都是23,假设各局比赛结果相互独立.(Ⅰ)分别求甲队以3:0,3:1,3:2胜利的概率;(Ⅱ)若比赛结果为3:0或3:1,则胜利方得3分,对方得0分;若比赛结果为3:2,则胜利方得2分、对方得1分.求乙队得分X的分布列及数学期望.变式1 (2012年高考(山东理))先在甲、乙两个靶.某射手向甲靶射击一次,命中的概率为3 4 ,命中得1分,没有命中得0分;向乙靶射击两次,每次命中的概率为23,每命中一次得2分,没有命中得0分.该射手每次射击的结果相互独立.假设该射手完成以上三次射击. (Ⅰ)求该射手恰好命中一次得的概率;(Ⅱ)求该射手的总得分X的分布列及数学期望EX.变式2(2012重庆理)(本小题满分13分,(Ⅰ)小问5分,(Ⅱ)小问8分.)甲、乙两人轮流投篮,每人每次投一球,.约定甲先投且先投中者获胜,一直到有人获胜或每人都已投球3次时投篮结束.设甲每次投篮投中的概率为13,乙每次投篮投中的概率为12,且各次投篮互不影响.(Ⅰ) 求甲获胜的概率;(Ⅱ) 求投篮结束时甲的投篮次数ξ的分布列与期望题型六 n 次独立重复试验的概率 ----二项分布若在n 次重复试验中,每次试验结果的概率都不依赖其它各次试验的结果,则此试验叫做n 次独立重复试验。

若在1 次试验中事件A 发生的概率为P ,则在n 次独立惩处试验中,事件A 恰好发生k 次的概率为()()1n kk kn nP k C P P -=-。

高考结合实际应用问题考查n 次独立重复试验中某事件恰好发生k 次的概率的计算方法和化归转化、分类讨论等数学思想方法的应用。

例1【2015高考湖南,理18】某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.(1)求顾客抽奖1次能获奖的概率;(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为X ,求X 的分布列和数学期望.例2【2014辽宁理18】(本小题满分12分)一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望()E X 及方差()D X.变式1(2012四川理)某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和B在任意时刻发生故障的概率分别为110和p.(Ⅰ)若在任意时刻至少有一个系统不发生故障的概率为4950,求p的值;(Ⅱ)设系统A在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望Eξ.题型七 离散型随变量概率分布列 设离散型随机变量的分布列为它有下面性质:①),2,1(0 =≥i P i ②,121=++++ i p p p 即总概率为1;③期望;11 +++=i i P x P x E ξ方差 +-++-=i i P E x P E x D 2121)()(ξξξ 离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和. 高考常结合应用问题对随机变量概率分布列及其性质的应用进行考查. 例题1 (2010天津理)某射手每次射击击中目标的概率是23,且各次射击的结果互不影响。

相关文档
最新文档