材料力学公式汇总

合集下载

材料力学公式汇总

材料力学公式汇总

1材料力学公式汇总一、应力与强度条件 1、拉压 []max maxN A σσ=≤横截2、剪切 []maxQ A ττ=≤受剪挤压 P A σσ⎡⎤=≤⎣⎦挤压挤压挤压挤压投3、圆轴扭转[]max max maxT T P P M M I W ρττ⎛⎞⎛⎞==≤ 4、平面弯曲 ①[]max nmaxn M W σσ=≤②[]max max max nz z M y I σσ+++=≤[]max maxmax nz zM y I σσ−−−=≤③[]ττ≤⋅=bI S Q z *max z max max ⎜⎟⎜⎟⎝⎠⎝⎠5、斜弯曲[]nynz maxnz nymaxM M W W σσ=+≤;6、拉(压)弯组合[]maxmaxn nM N A W σσ=+≤;[]max max z nz M N y A I σσ+++=+≤;[]nz max max z M N y I Aσσ−−−=−≤. 注:“5,6”两式仅供参考.7、轴向拉压斜截面上应力:2cos ;sin 22αασσσατ==横横α8、圆轴弯扭组合: ①第三强度理论[]eq3nnσσ===≤②第四强度理论[]eq4nnσσ===≤9、圆轴拉(压)弯扭组合:①第三强度理论 []eq3σσ=≤ ②第四强度理论 []eq4σσ=≤ 二、变形及刚度条件1、拉压 ∑∫===ΔLEAxx ) N EAL N EANLL d (ii 2、扭转 ()()弧度; T T i i T p p pM x dx M L M LGI GI GI Φ==Σ=∫0180p T L GI θπΦ==⋅(m /D ) 3、弯曲(1)积分法:()'''()();()()()d ;()()d d .n n nEIy x M x EIy x EI x M x x C EIy x M x x x Cx D θ===+=+∫∫∫+边界条件:铰支:挠度为零;固支:挠度和转角都为零。

材料力学公式汇总

材料力学公式汇总

材料力学公式汇总一、应力与强度条件 1、 拉压 []σσ≤=maxmax AN2、 剪切 []ττ≤=AQ max挤压 []挤压挤压挤压σσ≤=AP3、 圆轴扭转 []ττ≤=W tT max4、 平面弯曲 ①[]σσ≤=maxzmax W M②[]max t max t maxmax σσ≤=y I M zt max c max max y I Mzc =σ[]cnax σ≤③[]ττ≤⋅=bI S Q z *max z max max5、斜弯曲 []σσ≤+=maxyyz z max W M W M6、拉(压)弯组合 []σσ≤+=maxmax zW M A N[]t max t z max t σσ≤+=y I M A N z []c max c z z max c σσ≤-=ANy I M 注意:“5”与“6”两式仅供参考 7、圆轴弯扭组合:①第三强度理论 []στσσ≤+=+=z2n2w 2n2wr34W M M②第四强度理论[]στσσ≤+=+=z2n2w 2n2wr475.03W M M二、变形及刚度条件1、 拉压 ∑⎰===∆LEAxx N EAL N EANL L d )(ii EA 为拉伸(压缩)刚度2、 扭转()⎰=∑==Φpp i i p GI dx x T GI L T GI TLGI为抗扭刚度πφ0180⋅=Φ=p GI T L (m / )3、 弯曲 (1)积分法:)()(''x M x E I y =C x x M x EI x EIy +==⎰d )()()('θD Cx x x x M x EIy ++=⎰⎰d ]d )([)((2)叠加法:()21,P P f …=()()21P f P f ++…, ()21,P P θ=()()++21P P θθ…(3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)EI ML B =θ EI PL B 22=θ EIqL B 63=θ EIML f B 22=EI PL f B 33= EI qL f B 84=EI ML B 3=θ,EIML A 6=θ EIPL A B 162==θθ EIqL A B 243==θθ EI ML f c 162=EIPL f c 483=EIqL f c 3844= (4)弹性变形能(注:以下只给出弯曲构件的变形能,并忽略剪力影响,其他变形与此相似,不予写出)EIL M U 22==ii i EI L M 22∑=()⎰EIdx x M 22 (5)卡氏第二定理(注:只给出线性弹性弯曲梁的公式)=∂∂=∆ii P U()()⎰∂∂∑dx P x M EI x M i三、应力状态与强度理论 1、 二向应力状态斜截面应力ατασσσσσα2sin 2cos 22xy yx yx --++=ατασστα2c o s 2sin 2xy yx +-=2、 二向应力状态极值正应力及所在截面方位角22min max )2(2xyy x y x τσσσσσσ+-±+=yx xyσστα--=22tg 0PAB MAB A BqL LLLL3、 二向应力状态的极值剪应力22max )2(xyyx τσστ+-=注:极值正应力所在截面与极值剪应力所在截面夹角为4504、 三向应力状态的主应力:321σσσ≥≥最大剪应力:231max σστ-=5、二向应力状态的广义胡克定律(1)、表达形式之一(用应力表示应变))(1y x x Eμσσε-= )(1x y y Eμσσε-= )(y x z Eσσμε+-= Gxy xy τγ=(2)、表达形式之二(用应变表示应力))(12y x x E μεεμσ+-= )(12x y y Eμεεμσ+-= 0=z σ xy xy G γτ=6、三向应力状态的广义胡克定律()[]z y x x Eσσμσε+-=1()z y x ,, Gxyxyτγ=()zx yz xy ,,7、强度理论 (1)[]111σσσ≤=r ()3212σσμσσ+-=r []σ≤[]bb n σσ=(2)[]σσσσ≤-=313r()()()[]213232221421σσσσσσσ-+-+-=r []σ≤ []ss n σσ=8、平面应力状态下的应变分析 (1)αγαεεεεεα2sin 22cos 22⎪⎪⎭⎫⎝⎛---++=xyyx yx+-=⎪⎭⎫ ⎝⎛-αεεγα2s i n 22yx αγ2c o s 2⎪⎪⎭⎫⎝⎛-xy(2)22min max 222⎪⎪⎭⎫⎝⎛+⎪⎪⎭⎫ ⎝⎛-±+=xy y x yx γεεεεεεyx xyεεγα-=02tg 四、压杆稳定1、临界压力与临界应力公式(若把直杆分为三类)①细长受压杆 p λλ≥ ()2m i n 2cr L EI P μπ= 22cr λπσE=②中长受压杆 s p λλλ≥≥ λσb a -=cr ③短粗受压杆s λλ≤ “cr σ”=s σ或 b σ2、关于柔度的几个公式 i L μλ= p2p σπλE= ba s s σλ-=3、惯性半径公式AI i z= (圆截面4di z =,矩形截面12min b i =(b 为短边长度))五、动载荷(只给出冲击问题的有关公式) 能量方程 U V T ∆=∆+∆冲击系数 std 211∆++=hK (自由落体冲击)st20d ∆=g v K (水平冲击)六、截面几何性质1、 惯性矩(以下只给出公式,不注明截面的形状)⎰=dA I P 2ρ=324d π ()44132απ-D D d=α⎰==6442d dA y I z π ()44164απ-D 123bh 123hb323maxd y I W zz π==()43132απ-D62bh 62hb2、惯性矩平移轴公式A a I I 2zc z +=。

材料力学公式完全版

材料力学公式完全版

材料力学公式完全版材料力学是研究材料在外力作用下的力学性质和变形行为的一门学科。

在材料力学中,有很多的公式被广泛应用于计算和分析材料的力学行为。

下面是一些常见的材料力学公式:1. 应力(Stress):应力是单位面积上的力,通常用σ 表示,计算公式为:σ = F / A,其中 F 是力的大小,A 是面积。

2. 应变(Strain):应变是物体在受力作用下发生变形的程度,通常用ε 表示,计算公式为:ε = ΔL / L,其中ΔL 是长度的变化量,L 是初始长度。

3. 弹性模量(Young's modulus):弹性模量是衡量材料抵抗变形的能力的物理量,通常用 E 表示,计算公式为:E = σ / ε。

4. 剪切应力(Shear stress):剪切应力是垂直方向上的切应力,通常用τ 表示,计算公式为:τ = F / A,其中 F 是切力的大小,A 是垂直于切力方向的面积。

5. 剪切应变(Shear strain):剪切应变是物体在受剪切力作用下的变形程度,通常用γ 表示,计算公式为:γ = tanθ,其中θ 是切变角度。

6. 泊松比(Poisson's ratio):泊松比是衡量材料横向收缩相对于纵向伸长的程度的物理量,通常用ν 表示,计算公式为:ν = -ε横 /ε纵。

7. 屈服强度(Yield strength):屈服强度是材料开始产生塑性变形的临界点,通常用σy 表示。

8. 极限强度(Ultimate strength):极限强度是材料在破坏前能承受的最大应力,通常用σu 表示。

9. 可延性(Elonagation):可延性是材料在断裂前的拉伸变形量,通常用δ 表示,计算公式为:δ = (L - L0) / L0。

10. 硬度(Hardness):硬度是材料抵抗划伤或压痕的能力,常用的硬度测量方法有布氏硬度、维氏硬度等。

11. 柯尔摩根关系(Hooke's law):柯尔摩根关系是描述弹性固体在小应变下的力学行为的线性关系,计算公式为:σ = Eε,其中 E 是杨氏模量,σ 是应力,ε 是应变。

材料力学公式大全

材料力学公式大全

材料力学公式大全材料力学是研究材料在外力作用下的变形、破坏和稳定性等力学性能的学科。

在工程实践中,材料力学公式是工程师们进行材料设计、分析和计算的重要工具。

本文将为大家介绍一些常用的材料力学公式,希望能对大家有所帮助。

1. 应力和应变。

在材料力学中,应力和应变是最基本的概念。

应力是单位面积上的内力,通常用σ表示,其公式为:σ = F/A。

其中,F为受力,A为受力面积。

应变是材料单位长度的变形量,通常用ε表示,其公式为:ε = ΔL/L。

其中,ΔL为长度变化量,L为原始长度。

2. 弹性模量。

弹性模量是材料在弹性阶段的应力和应变关系的比例系数,通常用E表示,其公式为:E = σ/ε。

3. 餐极限。

屈服极限是材料在受力作用下开始发生塑性变形的应力值,通常用σy表示。

4. 断裂韧性。

断裂韧性是材料在破坏前所能吸收的能量,通常用K表示,其公式为:K = σ√πc。

其中,σ为应力,c为裂纹长度。

5. 疲劳强度。

疲劳强度是材料在交变应力作用下能够承受的最大应力值,通常用σf表示。

6. 塑性体积变形。

塑性体积变形是材料在塑性变形过程中体积的变化,通常用ΔV表示,其公式为:ΔV = V(ε1-ε2+ε3)。

其中,V为原始体积,ε1、ε2、ε3分别为三个主应变。

7. 岛壳理论。

岛壳理论是用于计算薄壁结构的强度和稳定性的理论,通常用T表示,其公式为:T = P/A。

其中,P为受力,A为受力面积。

8. 塑性流动理论。

塑性流动理论是用于描述金属材料在塑性变形过程中的流动规律的理论,通常用ε表示,其公式为:ε = ln(ε0/εf)。

其中,ε0为初始应变,εf为终止应变。

以上就是一些常用的材料力学公式,希望对大家有所帮助。

在工程实践中,我们可以根据具体情况选择合适的公式进行分析和计算,以保证工程设计的安全可靠性。

材料力学是一个复杂而又有趣的领域,希望大家能够在学习和工作中不断深入研究,提升自己的专业能力。

材料力学公式大全

材料力学公式大全

材料⼒学公式⼤全材料⼒学常⽤公式1.外⼒偶矩计算公式(P功率,n转速)2.弯矩、剪⼒和荷载集度之间的关系式3.轴向拉压杆横截⾯上正应⼒的计算公式(杆件横截⾯轴⼒F N,横截⾯⾯积A,拉应⼒为正)4.轴向拉压杆斜截⾯上的正应⼒与切应⼒计算公式(夹⾓a 从x 轴正⽅向逆时针转⾄外法线的⽅位⾓为正)5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)6.纵向线应变和横向线应变7.泊松⽐8.胡克定律9.受多个⼒作⽤的杆件纵向变形计算公式?10.承受轴向分布⼒或变截⾯的杆件,纵向变形计算公式11.轴向拉压杆的强度计算公式12.许⽤应⼒,脆性材料,塑性材料13.延伸率14.截⾯收缩率15.剪切胡克定律(切变模量G,切应变g )16.拉压弹性模量E、泊松⽐和切变模量G之间关系式17.圆截⾯对圆⼼的极惯性矩(a)实⼼圆(b)空⼼圆18.圆轴扭转时横截⾯上任⼀点切应⼒计算公式(扭矩T,所求点到圆⼼距离r)19.圆截⾯周边各点处最⼤切应⼒计算公式20.扭转截⾯系数,(a)实⼼圆(b)空⼼圆21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应⼒计算公式22.圆轴扭转⾓与扭矩T、杆长l、扭转刚度GH p的关系式23.同⼀材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或24.等直圆轴强度条件25.塑性材料;脆性材料26.扭转圆轴的刚度条件? 或27.受内压圆筒形薄壁容器横截⾯和纵截⾯上的应⼒计算公式,28.平⾯应⼒状态下斜截⾯应⼒的⼀般公式,29.平⾯应⼒状态的三个主应⼒,,30.主平⾯⽅位的计算公式31.⾯内最⼤切应⼒32.受扭圆轴表⾯某点的三个主应⼒,,33.三向应⼒状态最⼤与最⼩正应⼒ ,34.三向应⼒状态最⼤切应⼒35.⼴义胡克定律36.四种强度理论的相当应⼒37.⼀种常见的应⼒状态的强度条件,38.组合图形的形⼼坐标计算公式,39.任意截⾯图形对⼀点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式40.截⾯图形对轴z和轴y的惯性半径? ,41.平⾏移轴公式(形⼼轴z c与平⾏轴z1的距离为a,图形⾯积为A)42.纯弯曲梁的正应⼒计算公式43.横⼒弯曲最⼤正应⼒计算公式44.矩形、圆形、空⼼圆形的弯曲截⾯系数? ,,45.⼏种常见截⾯的最⼤弯曲切应⼒计算公式(为中性轴⼀侧的横截⾯对中性轴z的静矩,b为横截⾯在中性轴处的宽度)46.矩形截⾯梁最⼤弯曲切应⼒发⽣在中性轴处47.⼯字形截⾯梁腹板上的弯曲切应⼒近似公式48.轧制⼯字钢梁最⼤弯曲切应⼒计算公式49.圆形截⾯梁最⼤弯曲切应⼒发⽣在中性轴处50.圆环形薄壁截⾯梁最⼤弯曲切应⼒发⽣在中性轴处51.弯曲正应⼒强度条件52.⼏种常见截⾯梁的弯曲切应⼒强度条件53.弯曲梁危险点上既有正应⼒σ⼜有切应⼒τ作⽤时的强度条件或,54.梁的挠曲线近似微分⽅程55.梁的转⾓⽅程56.梁的挠曲线⽅程?57.轴向荷载与横向均布荷载联合作⽤时杆件截⾯底部边缘和顶部边缘处的正应⼒计算公式58.偏⼼拉伸(压缩)59.弯扭组合变形时圆截⾯杆按第三和第四强度理论建⽴的强度条件表达式,60.圆截⾯杆横截⾯上有两个弯矩和同时作⽤时,合成弯矩为61.圆截⾯杆横截⾯上有两个弯矩和同时作⽤时强度计算公式62.63.弯拉扭或弯压扭组合作⽤时强度计算公式64.剪切实⽤计算的强度条件65.挤压实⽤计算的强度条件66.等截⾯细长压杆在四种杆端约束情况下的临界⼒计算公式67.压杆的约束条件:(a)两端铰⽀µ=l(b)⼀端固定、⼀端⾃由µ=2(c)⼀端固定、⼀端铰⽀µ=(d)两端固定µ=68. 压杆的长细⽐或柔度计算公式,69. 细长压杆临界应⼒的欧拉公式70. 欧拉公式的适⽤范围传动轴所受的外⼒偶矩通常不是直接给出,⽽是根据轴的转速n 与传递的功率P 来计算。

材料力学公式大全

材料力学公式大全

材料力学公式大全材料力学是研究材料在外力作用下的力学性能和变形规律的学科,是材料科学的重要组成部分。

在工程实践中,材料力学公式是工程师们设计和分析结构、零部件等工程问题时必不可少的工具。

本文将为大家介绍一些常用的材料力学公式,希望能对大家的工程实践有所帮助。

1. 应力公式。

在材料力学中,应力是指单位面积上的力的大小,通常用σ表示,其公式为:\[ \sigma = \frac{F}{A} \]其中,F为受力,A为受力面积。

2. 应变公式。

应变是指材料在受力作用下产生的变形程度,通常用ε表示,其公式为:\[ \varepsilon = \frac{\Delta L}{L} \]其中,ΔL为长度变化量,L为原始长度。

3. 弹性模量公式。

弹性模量是材料抵抗形变的能力,通常用E表示,其公式为:\[ E = \frac{\sigma}{\varepsilon} \]4. 剪切应力公式。

在材料力学中,剪切应力是指垂直于受力方向的力,通常用τ表示,其公式为:\[ \tau = \frac{F}{A} \]其中,F为受力,A为受力面积。

5. 剪切应变公式。

剪切应变是指材料在受剪切力作用下产生的变形程度,通常用γ表示,其公式为:\[ \gamma = \frac{\Delta x}{h} \]其中,Δx为位移,h为原始长度。

6. 泊松比公式。

泊松比是材料在拉伸或压缩时,在垂直方向上的收缩或膨胀程度的比值,通常用ν表示,其公式为:\[ \nu = -\frac{\varepsilon_{y}}{\varepsilon_{x}} \]其中,εy为垂直方向的应变,εx为拉伸或压缩方向的应变。

7. 弯曲应力公式。

在材料力学中,弯曲应力是指材料在受弯曲力作用下的应力,其公式为:\[ \sigma = \frac{M \cdot c}{I} \]其中,M为弯矩,c为截面到中性轴的距离,I为惯性矩。

8. 弯曲应变公式。

弯曲应变是指材料在受弯曲力作用下产生的变形程度,其公式为:\[ \varepsilon = \frac{M \cdot c}{E \cdot I} \]其中,M为弯矩,c为截面到中性轴的距离,E为弹性模量,I为惯性矩。

材料力学常用公式

材料力学常用公式

材料力学常用公式材料力学是研究材料在受力下的力学性质和变形行为的学科,它在工程领域中有着广泛的应用。

常用的材料力学公式包括应力、应变、热应变、应力-应变关系等。

下面是一些常用的材料力学公式的介绍:1. 应力(Stress)公式:应力定义为单位面积上的力,常用公式为:σ=F/A其中,σ为应力,F为受力,A为受力面积。

2. 应变(Strain)公式:应变定义为材料单位长度的变化,常用公式为:ε=ΔL/L其中,ε为应变,ΔL为长度变化,L为原始长度。

3. 霍克定律(Hooke's Law):霍克定律描述了弹性固体在小应变下应力和应变的线性关系,常用公式为:σ=Eε其中,σ为应力,ε为应变,E为材料的弹性模量。

4. 应力-应变关系(Stress-Strain Relationship):应力-应变关系用来描述材料在受力下的变形行为,通常用应力与应变的曲线来表示。

其中弹性阶段遵循霍克定律,塑性阶段存在应力和应变不再线性相关的情况。

5.等效应力(von Mises Stress):等效应力是衡量材料在多轴载荷作用下发生破坏的临界值,常用公式为:σ_eq = √(σ_x^2 + σ_y^2 + σ_z^2 - σ_xσ_y - σ_yσ_z -σ_zσ_x + 3τ^2)其中,σ_eq为等效应力,σ_x、σ_y、σ_z为主应力,τ为主应力间的剪应力。

6. 拉伸强度(Tensile Strength):拉伸强度是材料在拉伸状态下破坏前的最大抗拉应力,常用公式为:σ_u = P_max / A_0其中,σ_u为拉伸强度,P_max为最大拉伸力,A_0为原始横截面积。

7. 弯曲应力(Bending Stress):当材料受弯曲作用时,所产生的应力称为弯曲应力,常用公式为:σ_b=(M*y)/I其中,σ_b为弯曲应力,M为弯矩,y为材料中点位置,I为截面惯性矩。

8. 剪切应力(Shear Stress):剪切应力是材料在剪切载荷作用下的应力,常用公式为:τ=F/A其中,τ为剪切应力,F为剪切力,A为剪切面积。

材料力学公式大全

材料力学公式大全

材料力学公式大全一、轴向拉伸与压缩。

1. 内力 - 轴力(N)- 截面法:N = ∑ F_外(外力沿杆件轴线方向的代数和)2. 应力 - 正应力(σ)- σ=(N)/(A),其中A为杆件的横截面面积。

3. 变形 - 轴向变形(Δ l)- 胡克定律:Δ l=(NL)/(EA),其中L为杆件的原长,E为材料的弹性模量。

4. 应变 - 线应变(varepsilon)- varepsilon=(Δ l)/(l)二、剪切。

1. 内力 - 剪力(V)- 截面法:V=∑ F_外(垂直于杆件轴线方向外力的代数和)2. 应力 - 切应力(τ)- τ=(V)/(A)(A为剪切面面积)3. 剪切胡克定律。

- τ = Gγ,其中G为材料的切变模量,γ为切应变。

三、扭转。

1. 内力 - 扭矩(T)- 截面法:T=∑ M_外(外力偶矩的代数和)2. 应力 - 切应力(τ)- 对于圆轴扭转:τ=(Tρ)/(I_p),在圆轴表面ρ = R时,τ_max=(TR)/(I_p),其中R为圆轴半径,I_p=(π D^4)/(32)(对于实心圆轴,D为直径),I_p=(π(D^4 - d^4))/(32)(对于空心圆轴,d为内径)。

3. 变形 - 扭转角(φ)- φ=(TL)/(GI_p)(单位为弧度)四、弯曲内力。

1. 剪力(V)和弯矩(M)- 截面法:V=∑ F_外(垂直于梁轴线方向外力的代数和),M=∑ M_外(外力对所求截面形心的力矩代数和)- 剪力图和弯矩图的绘制规则:- 无荷载段:V为常数,M为一次函数(斜直线)。

- 均布荷载段:V为一次函数(斜直线),M为二次函数(抛物线)。

- 集中力作用处:V图有突变(突变值等于集中力大小),M图有折角。

- 集中力偶作用处:V图无变化,M图有突变(突变值等于集中力偶大小)。

五、弯曲应力。

1. 正应力(σ)- 对于梁的纯弯曲:σ=(My)/(I_z),其中y为所求点到中性轴的距离,I_z为截面对中性轴z的惯性矩。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

M
A
L
B
θB
=
ML EI

fB
=
ML2 2EI

P
A
L
B
θB
=
PL2 2EI

fB
=
PL3 3EI

q
A
L
B
θB
=
qL3 6EI

fB
=
qL4 8EI

A
C
BM
P
A
B
C
q
A
B
C
L
L/2
L/2
θB
=
ML 3EI
,θ A
=
ML 6EI
fc
=
ML2 16EI
θB
=θA
=
PL2 16EI
fc
=
PL3 48EI

[ ] [ ] [ ] 6、拉(压)弯组合σmax =
N + Mn ≤ A Wn max
σ
;
σ
+ max
= N + Mnz A Iz
y+ max

σ
+
;
σ− max
=
Mnz Iz
y− max

N A

σ
−.
注:“5,6”两式仅供参考.
7、轴向拉压斜截面上应力: σ α
=σ横
cos2 α;τα
=
σ横 2
sin 2α
8、圆轴弯扭组合:
①第三强度理论σ eq3 = σ 2 + 4τ 2 =
M
2 n
+
M
2 T
=
Wn
[ ] M 2 nxoy
+
M2 nxoz
+
M
2 T

σ
Wn
[ ] ②第四强度理论σ eq4 = σ 2 + 3τ 2 =
M
2 n
+
0.75M
2 T
=
Wn
M2 nxoy
+
M2 nxoz
+
0.75M
dx
+
N (x)N 0 (x) dx
L
EI
L
GI P
L EA
(8) 刚度条件:待考察点的位移不超过允许值
三、应力状态与强度理论
1、二向应力状态斜截面应力
σα
=
σx
+σ y 2
+σx
−σ y 2
cos 2α
− τ xy sin 2α
τα
=
σx
−σ y 2
sin 2α
+ τ xy cos 2α
注:使截面受拉的正应力为正;使单元体顺时针转的剪应力为正; x 轴逆时针转α角与截面
能量方程: ΔT + ΔV = ΔU
冲击系数:
Kd =1+
1 + 2h (自由落体冲击) Δ st
六、截面几何性质
Kd =
v02 (水平冲击) gΔ st
1、 极惯性矩与惯性矩:
∫ ( ) ( ) IP =
A
ρ
2
dA;I P空圆
=
π D4 32
1−α4
,WP空圆
=
πD 16
3
1−α4

∫ ∫ 其中α
∂M T ∂Pi
+
NL EA
∂N ∂Pi
∑ ∑ ∑ =
k
⎛ ⎜ ⎝
M nk Lk Ek Ik
∂M nk ∂Pi
⎞ ⎟
+

k
⎛ ⎜ ⎝
M Tk Gk I
Lk
Pk
∂M Tk ∂Pi
⎞ ⎟
+

k
⎛ ⎜ ⎝
Nk Lk Ek Ak
∂Nk ∂Pi
⎞ ⎟ ⎠
∫ ∫ ∫ = M n (x) ∂M n (x) dx + MT (x) ∂MT (x) dx + N (x) ∂N (x) dx
边界条件:铰支:挠度为零;固支:挠度和转角都为零。
(2)叠加法:
载荷分解法: f ( P1, P2...) = f (P1 )+ f (P2 ) +…, θ ( P1, P2...) =θ (P1 ) +θ (P2 ) + …
1
逐段刚化法:载荷引起弹性体位移等于将弹性体逐段刚化后该载荷引起位移的叠加。 (3)基本变形表(注意:以下各公式均指绝对值,使用时要根据具体情况赋予正负号)
[σ ] = σ b
nb
3
—脆性断裂强度理论
[ ] (2)σeq3 =σ1 −σ 3≤ σ ;σeq4 =
1 2
⎡⎣(σ1
−σ2
)2
+(σ2
−σ3
)2
+(σ3
−σ
)2
1
⎤ ⎦
≤[σ];
[σ]
=
σs ns
—塑性屈服强度理论
四、压杆稳定
1、临界应力与临界轴压力公式(把直杆分为三类)
①细长受压杆: λ ≥ λp;
;
λp =
π 2E ;
σp
λs
=
a −σ s b
(圆截面
iz
=
d 4
,矩形截面 imin
=
b (b 为短边长度)) 12
4、 μ 的取值:固支-自由 2.0;铰支-铰支 1.0;固支-铰支 0.7;固支-固支 0.5
5、稳定性计算: σ cr σ max实
≥[nst ]
五、动载荷(只给出冲击问题的有关公式)
(4)弹性杆系变形能(注:以下忽略剪力影响)
L
θB
=θA
=
qL3 24EI
fc
=
qL4 384EI
∫ ∫ U弯曲
=
M
2 n
L
2EI
=
Σ
M
2 ni
Li
2EIi
=
L
M
2 n
(
x)dx
2EI
;U扭转
=
M
2 T
L
2GI P
=
Σ
M
2 Ti
Li
2GI Pi
=
M
2 T
(
x)dx
;
L 2GIP
∫ U拉压
=
N2L 2EA
外法线重合的角α为正(-π≤α≤π).
2
2、二向应力状态极值正应力及所在截面方位角
σ max = σ x + σ y ±
σ min
2
σ (
x
−σ 2
y
)2

2 xy
;
tg2α p
=
−2τ xy σx −σy
σ ;
x
σx
−σ y −σ y
≥ <
0,α p最大值角 0,α p最小值角
3、二向应力状态的极值剪应力(面内极值剪应力)及所在截面方位角
σ cr
=
π 2E λ2
max
;
Pcr
=
π 2 EI min
(μL)2
②中长受压杆: λp ≥ λ ≥ λs; σ cr = a − bλ
③短粗受压杆: λ ≤ λs ; σ cr =σ s 或 σ b
2、关于柔度的几个公式: 3、惯性半径公式: i = I z
A
λmax
=
⎛ ⎜⎝
μL i
⎞ ⎟⎠ max
−σ2 )2
+ (σ2
−σ3 )2
+ (σ3

σ
1
)2
⎤ ⎦
;
U
= UV
+ Ud
Θ
=
1− 2μ E
(σ1
+σ2
+ σ3);
K
=
3(1
E − 2μ
)
;
σ
=
σ1
+σ2 3
+σ3
;
σ = KΘ
9、四个强度理论及相当应力
[ ] (1)σ eq1 = σ1 ≤ σ1 ;
σ eq2 = σ1 − μ (σ 2 + σ 3 ) ≤ [σ ];
2 T

σ
Wn
9、圆轴拉(压)弯扭组合:①第三强度理论
σ eq3
=
1 Wn
⎛ ⎜Mn ⎝
+
N
D(1+ α 2 ) ⎞2
8
⎟ ⎠
+ MT2
≤ [σ ]
二、变形及刚度条件
②第四强度理论
σ eq4
=
1 Wn
⎛ ⎜Mn ⎝
+
N
D(1+ α 2 ) ⎞2
8
⎟ ⎠
+
0.75M
2 T
≤ [σ ]
1、拉压 2、扭转 3、弯曲
一、应力与强度条件
材料力学公式汇总
[ ] 1、拉压
σ max =
N≤ A横截 max
σ
[ ] 4、平面弯曲
① σ max
=
Mn Wn
max

σ
[ ] 2、剪切
τ max =
Q A受剪

τ
挤压
σ 挤压 =
P挤压 A挤压投
≤ ⎡⎣σ 挤压 ⎤⎦
[ ] 3、圆轴扭转τmax
=
⎛ ⎜

MT ρ IP
⎞ ⎟ ⎠max
=
相关文档
最新文档