数据挖掘-基于关联的分类方法

合集下载

数据挖掘方法——关联规则(自己整理)

数据挖掘方法——关联规则(自己整理)

6
四、关联规则的分类
按照不同情况,关联规则可以进行分类如下: 1.基于规则中处理的变量的类别,关联规则可以分为布尔型和数值型。 布尔型关联规则处理的值都是离散的、种类化的,它显示了这些变量之间的关系;而数值 型关联规则可以和多维关联或多层关联规则结合起来,对数值型字段进行处理,将其进行动 态的分割,或者直接对原始的数据进行处理,当然数值型关联规则中也可以包含种类变量。 例如:性别=“女”=>职业=“秘书” ,是布尔型关联规则;性别=“女”=>avg(收入)= 2300,涉及的收入是数值类型,所以是一个数值型关联规则。 2.基于规则中数据的抽象层次,可以分为单层关联规则和多层关联规则。 在单层的关联规则中,所有的变量都没有考虑到现实的数据是具有多个不同的层次的;而 在多层的关联规则中,对数据的多层性已经进行了充分的考虑。例如:IBM台式机=>Sony打 印机,是一个细节数据上的单层关联规则;台式机=>Sony打印机,是一个较高层次和细节层 次之间的多层关联规则。 3.基于规则中涉及到的数据的维数,关联规则可以分为单维关联规则和多维关联规则。 在单维的关联规则中,我们只涉及到数据的一个维,如用户购买的物品;而在多维的关联 规则中,要处理的数据将会涉及多个维。换成另一句话,单维关联规则是处理单个属性中的 一些关系;多维关联规则是处理各个属性之间的某些关系。例如:啤酒=>尿布,这条规则 只涉及到用户的购买的物品;性别=“女”=>职业=“秘书”,这条规则就涉及到两个字段 的信息,是两个维上的一条关联规则。
小结:Apriori算法可以分为频繁项集的生成和关联规则的生成两 大步骤;FP-Growth算法可以分成FP-Tree的生成,频繁项集的生成和 关联规则的生成3大步骤。
Copyright © 2009, MANAGEMENT SCIENCE ASSOCIATES, INC.

数据挖掘分类的名词解释

数据挖掘分类的名词解释

数据挖掘分类的名词解释数据挖掘是一门涉及从大量数据中发现模式、关联和信息的学科。

它使用统计学、机器学习和数据库系统等技术,通过对数据进行分析和解释来揭示潜在的知识和见解。

而数据挖掘的分类是对这门学科的不同方面和方法进行了系统的归类和整理,以便更好地理解和应用这些技术。

1. 关联规则挖掘关联规则挖掘是数据挖掘中最常见的一种分类方法。

它旨在发现数据集中的项之间的相关性。

通过分析事务数据,揭示其中的共同模式和规律。

关联规则可以被表示为“A如果B”的形式,其中A和B是数据项的集合。

例如,超市销售数据中的关联规则可能是“购买尿布的人也购买啤酒”。

这种方法可以帮助超市了解消费者倾向,从而进行有效的市场营销和产品布局。

2. 分类分类是数据挖掘的另一个重要方面。

它旨在根据已有样本的特征和类别,建立一个模型,可以将新数据分类到合适的类别中。

常见的分类算法包括决策树、朴素贝叶斯、支持向量机等。

例如,在邮件过滤中,可以使用分类算法将邮件分为垃圾邮件和正常邮件,以便自动过滤垃圾邮件。

3. 聚类聚类是将数据分组成有相似特征的集合的过程。

聚类算法试图将数据划分为不同的簇,使得同一簇内的数据相似度最大,而不同簇之间的相似度最小。

它有助于发现不同群体、市场细分、社交网络等领域的模式和结构。

例如,通过对顾客消费行为的聚类分析,可以发现不同人群的消费偏好和购买习惯,从而定向推销特定的产品或服务。

4. 异常检测异常检测是寻找与大多数样本显著不同的数据点的过程。

它用于识别数据集中的异常或异常行为,帮助我们发现潜在的问题或异常情况。

异常检测的应用领域广泛,包括金融欺诈检测、网络安全监控、故障检测等。

例如,在信用卡欺诈检测中,根据用户的消费习惯和模式,可以使用异常检测来识别可能的欺诈行为。

5. 文本挖掘文本挖掘是从大量的文本数据中自动发现有趣的模式和知识的过程。

它包括文本分类、情感分析、关键词提取等技术。

文本挖掘广泛应用于社交媒体分析、舆情监测、新闻报道等领域。

一种基于关联分析的装配质量数据挖掘方法

一种基于关联分析的装配质量数据挖掘方法
中图分类号 :T P 3 9 1 文献 标识码 :A 文章编 号 :1 0 0 9 - 0 1 3 4 ( 2 0 1 3 ) 0 8 ( 下) -0 0 7 7 - 0 4
D o i :1 0 . 3 9 6 9 / J . i s s n . 1 0 0 9 - 0 1 3 4 . 2 0 1 3 . o 8 ( 下) . 2 3

装 配质 量 : : = { 部件 号 , 产 品号, 日期 , 检 查 内容 , 规
定, 操作 者, 检 验 员, 班 长, 实际} 式 中 ,实 际 表 示 具 体 的生 产 记 录 值 , 受其 他
质 量 分 量 影 响 。 为 了 便 于 数 据 项 之 间 的 对 比 分 析 ,将 规 定 值 和 实 际值 进 行计 算 组 合 ,形 成 一 致 的 质 量 指 标 ,用 指 标 体 系 { 好, 较好, 一般, 差} 来 描 述 。具 体 计 算 方 法 参 考 实 际值 在 规 定 值 范 围 中的 位 置 和 领 域 专 家 的意 见 。检 查 内容 是 对 检 验 步 骤
质量数 据的关联 分析方法 。通过 属性消减 降低 了数 据的维度 ,用离散 的质量 指标 和符号 对数 据进行 了规范化 。根据 质量指标 的特点 ,对关联规 则进行 了分 析评价 。最后 ,以航空发 动机 装配质量数据分析为例 ,进行 了关联分 析方 法应用。 关键 词 :装配质量数据 ;数据挖掘 ;关联分 析 ;数据仓 库 ;航空发动机
内容 ,一 张典 型的装 配检 验表如 表 1 所示。
表 1 装配检验表
部件号 : 产 品号 : 日期 :
内近 年 来随 着C I MS 应 用工 程 和ME S 应 用 工程 的 实 施 ,一 些 学 者 开 始 针 对 自动 化 程 度 较 高 的 流 程

数据挖掘算法种类

数据挖掘算法种类

数据挖掘算法种类数据挖掘是从大量数据中发现有用的信息和模式的过程,而数据挖掘算法是实现这一过程的核心工具。

随着数据的不断增长和业务需求的提升,数据挖掘算法也不断发展和完善。

本文将介绍几种常见的数据挖掘算法。

一、分类算法分类算法是数据挖掘中最常用的算法之一。

它通过对已知数据集进行学习,构建一个分类模型,然后使用该模型对未知数据进行分类。

常见的分类算法有决策树、朴素贝叶斯、逻辑回归、支持向量机等。

决策树算法是一种基于树结构的分类方法,它通过对属性的选择和划分建立一棵决策树,从而实现对数据的分类。

朴素贝叶斯算法基于贝叶斯定理和特征条件独立性假设,通过计算后验概率来进行分类。

逻辑回归算法是一种广义线性模型,通过对输入与输出之间的关系进行建模,实现对数据的分类。

支持向量机算法通过构建一个最优超平面,将数据进行分割,从而实现对数据的分类。

二、聚类算法聚类算法是将数据按照其相似性进行分组的一种方法。

它通过计算数据对象之间的距离或相似度,将相似的对象划分到同一簇中。

常见的聚类算法有k-means、层次聚类、DBSCAN等。

k-means算法是一种基于距离的聚类算法,它通过迭代计算数据对象与簇中心之间的距离,将数据划分到最近的簇中。

层次聚类算法将数据对象逐步合并或分割,构建一个层次化的聚类结构。

DBSCAN算法是一种基于密度的聚类算法,它通过计算数据对象的邻域密度来确定簇的形状。

三、关联规则算法关联规则算法用于发现数据中的关联规则,即一个事件或项集与另一个事件或项集之间的关系。

常见的关联规则算法有Apriori、FP-Growth等。

Apriori算法是一种频繁项集挖掘算法,它通过迭代计算数据中的频繁项集,然后生成关联规则。

FP-Growth算法是一种基于前缀树的关联规则挖掘算法,它通过构建一个FP树来高效地挖掘频繁项集。

四、回归算法回归算法用于建立一个输入变量与输出变量之间的关系模型,从而预测未知数据的输出值。

数据挖掘(第2版)-课件 第5章关联规则

数据挖掘(第2版)-课件 第5章关联规则
• 如:规则{尿布}—>{啤酒}表示尿布和啤酒的销售之间存在关联—— “啤酒与尿布”的故事。
• 关联分析用以发现事物间存在的关联性,除了购物篮分析外,有广泛应用, 如:辅助决策——挖掘商场销售数据、发现商品间的联系;医疗诊断—— 用于发现某些症状与某种疾病之间的关联;网页挖掘——用于发现文档集 合中某些词之间的关联,发现主题词演化模式、学科发展趋势;电子商 务——进行产品的关联推荐等。
频繁项集
支持度不小于最小支持度阈值的项集
强关联规则
根据用户预先定义的支持度和置信度阈值,支持度不小于最小支持度阈值 并且置信度不小于最小置信度阈值的规则
5.2.1 基本概念(4)
关联分析挖掘的关联规则分类 根据处理值分类
布尔关联规则 量化关联规则
根据涉及维度分类
单维关联规则 多维关联规则
支持度 (support)
事务数据库D中包含项A和B的事务占所有 事务的百分比
可表示为:support(A,B ) P(A B ) (A B )/ N
5.2.1 基本概念(3)
置信度
事务数据库D中同时包含项A和B的事务占包含项A的事务的百分比
条件概率表示为: confindence(A,B ) P(B | A) (A B )/ (A)
根据数据抽象层次分类
单层关联规则 多层关联规则
【例5-1】 设有事务集合如表5-1,计算规则{bread,milk tea} 的支持度、置信度。
交易号TID
顾客购买的商品
ห้องสมุดไป่ตู้
交易号TID
T1
bread, cream, milk, tea
T6
T2
bread, cream, milk
T7

数据挖掘方法——关联规则(自己整理)

数据挖掘方法——关联规则(自己整理)

小结:Apriori算法可以分为频繁项集的生成和关联规则的生成两 大步骤;FP-Growth算法可以分成FP-Tree的生成,频繁项集的生成和 关联规则的生成3大步骤。
Copyright © 2009, MANAGEMENT SCIENCE ASSOCIATES, INC.
9
五、关联规则挖掘的相关算法
Copyright © 2009, MANAGEMENT SCIENCE ASSOCIATES, INC.
Copyright © 2009, MANAGEMENT SCIENCE ASSOCIATES, INC.
7
五、关联规则挖掘的相关算法
1.Apriori算法:使用候选项集找频繁项集 Apriori算法是一种最有影响的挖掘布尔关联规则频繁项集的算法。其核心是 基于两阶段频集思想的递推算法。该关联规则在分类上属于单维、单层、布尔关 联规则。在这里,所有支持度大于最小支持度的项集称为频繁项集,简称频集。 该算法的基本思想是:首先找出所有的频集,这些项集出现的频繁性至少和 预定义的最小支持度一样。然后由频集产生强关联规则,这些规则必须满足最小 支持度和最小可信度。然后使用第1步找到的频集产生期望的规则,产生只包含集 合的项的所有规则,其中每一条规则的右部只有一项,这里采用的是中规则的定 义。一旦这些规则被生成,那么只有那些大于用户给定的最小可信度的规则才被 留下来。为了生成所有频集,使用了递推的方法。 Apriori算法可以产生相对较小的候选项目集,扫描数据库的次数由最大频繁 项目集的项目数决定。因此,该算法适合于最大频繁项目集相对较小的数据集中 的关联规则挖掘问题。 Apriori算法的两大缺点:1.可能产生大量的候选集;2.可能需要重复扫描数据库。
关联分析的目的:找出数据库中隐藏的关联网。一般用Support(支 持度)和Confidence(可信度)两个阀值来度量关联规则的相关性,引入 lift(提高度或兴趣度)、相关性等参数,使得所挖掘的规则更符合需求。

数据挖掘的四大方法

数据挖掘的四大方法

数据挖掘的四大方法随着大数据时代的到来,数据挖掘在各行各业中的应用越来越广泛。

对于企业来说,掌握数据挖掘的技能可以帮助他们更好地分析数据、挖掘数据背后的价值,从而提升企业的竞争力。

数据挖掘有很多方法,在这篇文章中,我们将讨论四种常见的方法。

一、关联规则挖掘关联规则挖掘是数据挖掘中常用的方法之一。

它的基本思想是在一组数据中挖掘出两个或多个项目之间的相关性或关联性。

在购物中,关联规则挖掘可以被用来识别哪些产品常常被同时购买。

这样的信息可以帮助商家制定更好的促销策略。

关联规则挖掘的算法主要有 Apriori 和 FP-Growth 两种。

Apriori 算法是一种基于候选集搜索的方法,其核心思路是找到频繁项集,然后在频繁项集中生成关联规则。

FP-Growth 算法则是一种基于频繁模式树的方法,通过构建 FP-Tree 实现高效挖掘关联规则。

二、聚类分析聚类分析是另一种常用的数据挖掘方法。

它的主要目标是将数据集合分成互不相同的 K 个簇,使每个簇内的数据相似度较高,而不同簇内的数据相似度较低。

这种方法广泛应用于市场营销、医学、环境科学、地理信息系统等领域。

聚类分析的算法主要有 K-Means、二分 K-Means、基于密度的DBSCAN 等。

其中,K-Means 是一种较为简单的方法,通过随机初始化 K 个初始中心点,不断将数据点归类到最近的中心点中,最终形成 K 个簇。

DBSCAN 算法则是一种基于密度的聚类方法,而且在数据分布比较稀疏时表现较好。

三、分类方法分类方法是一种利用标记过的数据来训练一个分类模型,然后使用该模型对新样本进行分类的方法。

分类方法的应用非常广泛,例如将一封电子邮件分类为垃圾邮件或非垃圾邮件等。

常见的分类方法有决策树、朴素贝叶斯、支持向量机等。

决策树是一种易于理解、适用于大数据集的方法,通过分类特征为节点进行划分,构建一颗树形结构,最终用于样本的分类。

朴素贝叶斯是一种基于贝叶斯定理的分类方法,其核心思想是计算不同类别在给定数据集下的概率,从而进行分类决策。

数据挖掘的方法和工具

数据挖掘的方法和工具

数据挖掘的方法和工具随着计算机技术的快速发展,数据的存储和获取变得越来越容易。

随之而来的是一个庞大的数据集,其中包含了各式各样的信息。

大数据时代的到来,使得针对这些海量数据的分析和挖掘工作显得格外重要。

数据挖掘技术,作为一种高效的数据处理方法,成为了当今实现数据价值、探讨未知领域的工具之一。

数据挖掘技术的目的数据挖掘技术通过大数据的分析、整合和挖掘,从中发现其中存在的潜在模式、关系和趋势。

从而对数据集的结构和特征进行分析和评估,为数据决策提供支撑和保障。

为了达成这一目标,需采用一系列方法和工具。

下面我们将介绍一些常用的数据挖掘方法和工具。

基于聚类的数据挖掘方法基于聚类的数据挖掘方法,是将大量数据集中在一起,类似于物以类聚,依据数据之间的相似性以及差异性,将其归属到不同的类别之中。

这种方法可以从大量的数据中提取有用的信息,从而为数据分析和决策提供支撑。

在实际应用中,一些聚类算法,如k-means算法、DBSCAN算法、层次聚类算法等,被广泛应用于数据分组和数据分类领域。

基于关联规则的数据挖掘方法基于关联规则的数据挖掘方法,通过分析大量数据之间的关联关系,建立各组数据之间的关联规则,从而利用判断和推理方式对各种数据进行预测和分析。

该方法可以有效地发现数据之间的极强关联,并为数据分析和决策提供一定的支撑。

Apriori算法、FP-growth算法等,是主流的关联规则数据挖掘算法。

基于分类的数据挖掘方法通过分类算法描述数据样本之间的客观差异和相似性,然后将数据分类,并对其进行相关性、差异性分析,从而找出数据的属性和属性值,并使用分类器将该数据应用于相应的分类或预测中。

这种方法适用于数据建模、分类、预测、聚类和分类验证等常见领域。

朴素贝叶斯算法、决策树算法、支持向量机等,是主流的基于分类的数据挖掘算法。

数据挖掘工具与上述算法相关的数据挖掘工具,可以帮助用户高效的进行数据分析和挖掘。

例如R语言具有强大的统计分析功能,是进行数据统计和分析的首选工具之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

7.7.4 粗糙集方法
• 例子:
• 假设有8个积木构成了一个集合A,我们记: A={x1,x2,x3,x4,x5,x6,x7,x8},每个积木块都有颜色 属性,按照颜色的不同,我们能够把这堆积木分成 R1={红,黄,蓝}三个大类,那么所有红颜色的积木 构成集合X1={x1,x2,x6},黄颜色的积木构成集合 X2={x3,x4},蓝颜色的积木是:X3={x5,x7,x8}。按 照颜色这个属性我们就把积木集合A进行了一个划 分(所谓A的划分就是指对于A中的任意一个元素必 然属于且仅属于一个分类),那么我们就说颜色属 性就是一种知识。
有最高置信度的规则作为可能规则(PR),代表该 集合
7.6 基于源于关联规则挖掘概念的分类
例如:
2挖.关掘联高支分持类度和高置Cyo信=uC度nd的se规t=则{a1,a2,a3,a4}
(1)找出所有频繁的,精确地可能规则(PR)集合。 算法使用迭代方法,类似于6.2.1小节介绍的Apriori 使用的方法,先验知识用于裁减规则搜索。 (2)使用一种启发式方法构造分类。这里,发现的 规则根据支持度和置信度按递减的优先次序组织。
繁殖(包括子代突变) 带有较高适应度值的那些染色体更可能产生后代( 后代产生后也将发生突变)。后代是父母的产物,他 们由来自父母的基因结合而成,这个过程被称为“杂 交”。
7.7.3 遗传算法
下一代 如果新的一代包含一个解,能产生一个充分接近或等
于期望答案的输出,那么问题就已经解决了。如果情况 并非如此,新的一代将重复他们父母所进行的繁衍过程 ,一代一代演化下去,直到达到期望的解为止。 并行计算
7.7.3 遗传算法
建初始状态 初始种群是从解中随机选择出来的,将这些解比喻
为染色体或基因,该种群被称为第一代,这和符号人 工智能系统的情况不一样,在那里问题的初始状态已 经给定了。 评估适应度
对每一个解(染色体)指定一个适应度的值,根据问 题求解的实际接近程度来指定(以便逼近求解问题的 答案)。不要把这些“解”与问题的“答案”混为一 谈,可以把它理解成为要得到答案,系统可能需要利 用的那些特性。 繁殖
7.6 基于源于关联规则挖掘概念的分类
• 3.CAEP(通过聚集显露模式分类)
• CAEP如何使用EP建立分类法?
• 在对一个新样本X分类时,对于每个类C,对出现在X 中的类C的EP的区分能力聚集,得到C的得分,然后 对得分规格化。具有最大规格化得分的类决定X的类 标号。
7.6基于源于关联规则挖掘概念的分 类
7.6 基于源于关联规则挖掘概念的分类
• 1.基于聚类挖掘关联规则(ARCS)
• (1)ARCS挖掘形如Aquant1∧Aquant2=>Acat的 关联规则
• (2)用ARCS产生的聚类关联规则用于分类
age(X,”34”) income(X,”30K - 40K”) buys(X,”high resolution TV”) (1)
• 如果案例用图描绘 • 这涉及搜索类似于新案例的子图。基于案例的推理
试图组合临近的训练案例,提出新案例的解。如
• 果解之间出现不相容,可能需要退回搜索其它解。 基于案例的推理可能使用背景知识和 Nhomakorabea题求解策
• 略,以便提出可行的组合解。 • 基于案例的推理存在的挑战包括找到一个好的相似
矩阵(例如,为匹配子图),开发对训练案 • 例索引的有效技术和组合解的方法。
(3)对一个新的样本进行分类时,满足该样本的第一 个规则用于对它分类。分类法也包含省缺规则,它具 有最低的优先次序,用来为不被分类法中其它规则满 足的新样本指定一个省缺的类。
7.6 基于源于关联规则挖掘概念的分类
• 3.CAEP(通过聚集显露模式分类) • 使用项集支持度挖掘显露模式(EP)构造分类。
非常容易将遗传算法用到并行计算和群集环境中。一 种方法是直接把每个节点当成一个并行的种群看待。然 后有机体根据不同的繁殖方法从一个节点迁移到另一个 节点。另一种方法是“农场主/劳工”体系结构,指定 一个节点为“农场主”节点,负责选择有机体和分派适 应度的值,另外的节点作为“劳工”节点,负责重新组 合、变异和适应度函数的评估。
7.7.5 模糊集方法
• 基于规则的分类系统有一个缺点:对于连续属性,它 们有陡峭的截断。
• IF(year_employed>=2)∧(income>=50K)THEN credit=“approved”(7.21)
• 根据规则(7.21),一个至少工作两年的顾客将得到信 用卡,如果他的收入是$50K;但是,如果他的收入是 $49K,他将得不到。这种苛刻的阈值看来可能不公平 。替换地,可以将模糊逻辑引入系
7.7.3 遗传算法
• 遗传算法(Generation Algorithm GA):基于类似于 生物进化的思想
• 每个规则用一个二进位串表示 • 创建一个由随机产生的规则组成的初始群体 • 例如.,IF A1and Not A2then C2可以用“100” • 编码
根据适者生存的原则,形成由当前群体中最合适的 规则组成的新的群体,以及这些规则的后代规则的适 合度用它对训练本集的分类准确率评估 • 通过交叉和变异来产生后代
2020/8/3
2020/8/3
7.6 基于源于关联规则挖掘概念的分类
• 基于关联规则分类: (1)关联规则聚类系统(ARCS): 量化关联规 则挖掘和关联规则聚类
• (2)关联分类:它挖掘形如“cond_set=>y”具有高 支持度和高置信度的规则,这里y是一个类标号
• 挖掘关联规则使用的支持度概念分类: • (3)通过聚集显露模式分类( CAEP ) • 基于最小支持度和增长率挖掘显露模式(Eps)
age(X,”35”) income(X,”30K - 40K”) buys(X,”high resolution TV”) (2)
age(X,”34”) income(X,”40K - 50K”) buys(X,”high resolution TV”) (3)
age(X,”34-35”) income(X,”30K - 50K”) buys(X,”high resolution TV”) (5)
• 针对连续值,返回计算k个最近邻居的平均值 • 对于离散值,返回最近的k个训练样例的最公共的值
2020/8/3
7.7.2 基于案例的推理(case-based
reasoning CBR)
待分类案例
基于案例的推理
找到
NO YES
训练样本集:CBR存放的样本或返回“类案似例案例”是复返杂回的该案符例号的描解 述。
7.7.4 粗糙集方法
• 一种对集合A的划分就对应着关于A中元素的 一个知识,假如还有其他的属性,比如还有 形状R2={三角,方块,圆形},大小R3={大,中, 小},这样加上R1属性对A构成的划分分别为 : A/R1={X1,X2,X3}={{x1,x2,x6},{x3,x4},{x5,x7, x8}} (颜色分类) A/R2={Y1,Y2,Y3}={{x1,x2},{x5,x8},{x3,x4,x6, x7}} (形状分类) A/R3={Z1,Z2,Z3}={{x1,x2,x5},{x6,x8},{x3,x4, x7}} (大小分类)
7.7.4 粗糙集方法
• 选择了“蓝色的大方块或 者蓝色的小圆形”这个概 念:{x5,x7}作为X的下近 似。选择“三角形或者蓝 色的”{x1,x2,x5,x7,x8}作 为它的上近似,值得注意 的是,下近似集是在那些 所有的包含于X的知识库 中的集合中求并得到的, 而上近似则是将那些包含 X的知识库中的集合求交 得到的。
• 统,允许定义“模糊”阈值或边界。
7.7.5 模糊集方法
• 模糊逻辑使用0.0和 1.0之间的真值表示 一个特定的值是一个 给定类成员的程度, 而不是用类或集合的 精确截断。因而,使 用模糊逻辑,我们可 以断言:在某种程度 上,$49K的收入是高 的,尽管没有$50K的 收入高。
7.7.5 模糊集方法
将属性值转换成模糊值。图7.14展示 如何将连续属性income的值映射到离 散分类{low,mediu,high}上,以及如 何计算模糊成员关系或真值。通常, 模糊逻辑系统在这一步提供图形工具 ,支持用户。 对于给定的新样本,可以使用多个模 糊规则。每个可用规则为分类的成员 关系贡献一票。通常对每个预测分类 的真值进行求和。组合上面得到的和 ,得到一个系统返回的值。这一过程 可以这样做:用每个分类的真值和加 权并乘以每个分类的平均真值。所涉 及的计算可能更复杂,这取决于模糊 成员关系图的复杂性。
7.7其它分类方法 -7.7.1 k-最临近分类 -7.7.2基于案例的推理 -7.7.3遗传算法 -7.7.4粗糙集方法 -7.7.5模糊集方法
7.7.1 k-最临近分类
训练样本集:n维空间向量
未知样本:k-最临近分类法搜索n维空间,找出最 接近未知样本的k个训练样本。这k个训练样本是未 知样本的k个“近邻”。
• 显露模式(EP):是一个项集(项的集合),其支 持度由一个类到另一个类显著增加。两个支持度的 比称作EP的增长率。
• 例如,假定我们有顾客数据集,包含类 buys_computer=“yes”或C1和 buys_computer=“no”或C2。
• 项集{age=“<=30”,students=“no”}是一个典型 的EP,其支持度由在C1中的0.2%增长到在C2中的 57.6%,增长率57.6%/0.2%=288.如果一个新样本X 包含在上面的EP中,我们可以说X属于C2的几率为 57.6%/(0.2+57.6%)=99.6%。
age(X,”35”) income(X,”40K - 50K”) buys(X,”high resolution TV”) (4)
7.6 基于源于关联规则挖掘概念的分类
相关文档
最新文档