流水线技术.概要
流水线技术概述

流⽔线技术概述本⽂是对流⽔线技术地基本概念、冒险处理、硬件实现的基本概述。
⾸先我们介绍流⽔线的⼯作原理、组成要求、分类和性能指标,接下来讨论流⽔线的冒险处理,最后我们以MIPS为例,介绍流⽔线数据通路和控制器的实现。
⽬录1. 流⽔线概念针对串⾏执⾏过程中的冗余和瓶颈,我们提出,可以将指令执⾏过程划分为多个阶段,各个阶段可以同时处理操作,这样,每条指令按序通过各段,不同指令的执⾏过程重叠,得到的就是流⽔线。
流⽔线由多个功能段按序组成。
例如,在RISC中,通常包括IF,ID,EX,MEM,WB五个功能段,⽽在CISC中,通常包括IF,ID,OF,EX,WB五个功能段。
理想状况下,流⽔线可以对程序执⾏起到显著的加速作⽤。
例如,有n条指令在m段流⽔线上执⾏,串⾏执⾏的时间为mnt,⽽采⽤流⽔线后,其执⾏时间为(m+n-1)t。
流⽔线在组成上,有三个基本要求。
第⼀,各个段的操作要相互独⽴、相互分离。
因此,每个段的源数据必须来⾃时序部件,结果也要存到时序部件。
实现上,我们设置段间寄存器,其中保存本段的所有后续段需要的本段的数据、地址、命令等。
第⼆,各个流⽔段的操作要同步执⾏。
实现上,我们会设置公共拍时钟,使得段间寄存器被同时写⼊。
拍时钟的周期需要取为各个段长的最⼤值。
第三,各个流⽔段的操作必须⽆冲突,以保证结果正确。
具体⽽⾔,就是消除冒险。
实现上,通过增设部件和控制器,来消除各种冒险。
流⽔线可以按其属性进⾏多种分类。
按处理的级别,可以分为操作级流⽔线、指令级流⽔线、处理机级流⽔线。
按功能,可以分为单功能和多功能流⽔线。
多功能流⽔线的各流⽔段可以进⾏不同的连接,从⽽完成不同的功能。
按⼯作⽅式,可以分为静态流⽔线和动态流⽔线。
静态流⽔线在进⾏功能切换时,必须排空。
显然,动态流⽔线⼀定是多功能流⽔线。
按结构,可以分为线性流⽔线和⾮线性流⽔线。
所谓⾮线性流⽔线,就是其中有部件的复⽤。
按流⼊流出的次序,可以分为顺序流⽔线和乱序流⽔线。
计算机系统结构第3章流水线技术

流水线调度
根据指令的依赖关系和资源可用性,动态调 度指令到不同的流水线阶段。
GPU设计中的流水线技术
线程级并行
通过划分线程块和线程束,实现线程级并行执行。
数据级并行
将数据划分为多个块,每个块在GPU的多个处理单元上并行处理。
指令级并行
通过指令调度和分支预测,实现指令级并行执行。
硬件资源共享
01
硬件资源共享是指流水线中的多个操作共享相同的硬件资源, 如寄存器、缓冲区等。
02
硬件资源共享能够提高资源利用率,减少硬件开销,降低成本。
需要注意的是,硬件资源。
流水线的性能指标
01
吞吐量
流水线每单位时间内完成的操作数 或任务数。
流水线调度
根据子任务的依赖关系和资源需求,动态调 度子任务到不同的计算节点。
THANKS
感谢观看
将执行结果写回寄 存器或内存。
02
流水线的工作原理
数据流驱动
1
数据流驱动是指流水线中的操作按照数据流动的 方向依次执行,每个操作在完成前需要等待前一 个操作的结果。
2
数据流驱动的优点是能够充分利用数据依赖关系, 减少等待时间,提高流水线的吞吐量。
3
需要注意的是,数据流驱动需要精确控制数据流 动的顺序,以避免出现数据相关和冒险问题。
调试和维护困难
由于流水线中各个阶段是并行处 理的,调试和维护可能会比串行 系统更加困难。
05
流水线技术的应用
CPU设计中的流水线技术
指令划分
将指令划分为多个阶段,每个阶段对应一个 功能单元,从而并行执行多个指令。
数据路径设计
流水线技术-向量处理机

向量处理机概述
向量处理机是一种专门用于处理大规模向量运算的计算机系 统。它通过并行处理多个数据元素,能够高效地完成矩阵运 算、信号处理、图像处理等计算密集型任务。
流水线并行处理
01
02
03
数据并行
将数据划分为多个子集, 每个子集在流水线的一个 阶段进行处理,实现数据 并行处理。
任务并行
将任务划分为多个子任务, 每个子任务在流水线的一 个阶段进行处理,实现任 务并行处理。
指令并行
在同一时间内,流水线可 以执行多个指令,实现指 令并行处理。
流水线冲突解决
数据冲突
并行处理单元
增加并行处理单元,如多核处理器、GPU等,进一步提高计算性能。
05
流水线技术-向量处理机的应用场景
科学计算
数值模拟
向量处理机在科学计算中广泛应用于数 值模拟,如流体动力学、气象预报、地 震数据处理等。
VS
统计分析
向量处理机能够高效处理大规模数据集, 适用于统计分析、数据挖掘等领域。
图像处理
图像增强
向量处理机能够并行处理像素数据,适用于 图像增强技术,如锐化、色彩校正等。
图像分析
在图像识别和目标检测等任务中,向量处理 机能够加速特征提取和比对过程。
机器学习
模型训练
向量处理机能够高效处理大规模数据和矩阵运算,适用于机器学习模型的训练和推理。
并行算法
向量处理机支持并行算法,能够加速机器学习算法的实现和优化。
向量处理机通常采用特殊的硬件架构和指令集,以最大化并 行处理能力。它通过将数据存储在特殊的向量寄存器中,并 执行一组长指令来处理这些数据,从而实现高效的向量计算 。
高性能计算中的流水线技术分析(四)

高性能计算中的流水线技术分析近年来,计算机科学和技术领域发展迅猛,高性能计算成为了许多领域的研究热点。
在高性能计算中,流水线技术被广泛应用于提高计算机的性能和效率。
本文将重点分析高性能计算中的流水线技术,并探讨其优点和应用。
一、流水线技术的基本原理流水线技术是一种通过将任务拆分为多个子任务,并且这些子任务同时进行,以提高计算机的整体性能的方法。
其基本原理是将任务分解为多个子任务,并将这些子任务分别交由不同的硬件单元处理。
每个子任务的处理时间约等于一个硬件操作完成的时间,这样可以使得整个任务的完成时间明显缩短。
二、流水线技术的优点1. 提高计算机的吞吐量:流水线技术将一个任务分解为多个子任务,每个子任务由不同的硬件单元处理,使得不同任务的执行可以重叠,从而提高了计算机的吞吐量。
2. 增加计算机的并行性:流水线技术充分发挥了硬件单元的并行能力,使得不同的计算单元可以同时处理不同的任务,从而提高了计算机的并行性。
3. 提高计算机的资源利用率:流水线技术使得计算机的各个硬件单元可以在同一时刻处理不同的任务,减少了硬件资源的闲置时间,提高了计算机的资源利用率。
4. 减少任务延迟:流水线技术将任务拆解为多个子任务后,每个子任务可以立即开始执行,从而减少了任务的延迟时间。
三、流水线技术在高性能计算中的应用1. 高性能计算机的体系结构中广泛应用了流水线技术。
例如,在超级计算机中,将计算任务分解为多个子任务,并将这些子任务分别交由不同的处理单元处理,以提高计算机的整体性能和计算速度。
2. 流水线技术在图像和视频处理中也得到了广泛应用。
图像和视频处理通常需要对数据进行多次处理,而流水线技术可以将数据处理过程拆解为多个子任务,并采用不同的处理单元分别处理。
这样可以提高图像和视频处理的速度和效率。
3. 在大规模数据处理和分析中,流水线技术可以将数据处理过程拆解为多个子任务,不同的处理单元同时进行数据处理,从而加快数据处理和分析的速度。
什么是流水线技术pipeline

什么是流水线技术pipeline/uid-9185047-id-445171.html2010流水线(Pipeline)技术是目前广泛应用于微处理芯片(CPU)中的一项关键技术,但对许多非专业性的读者来说,这个名词过于抽象,加上P6(高能奔腾)应用的超流水线(Super Pipeline)技术,更令人一头雾水,不知所云。
本文以简单、形象、非专业的语言来介绍这一技术,加深大家对其的理解。
流水线技术指的是对CPU内部的各条指令的执行方式的一种形容,要了解它,就必须先了解指令及其执行过程。
一、计算机指令及其执行过程计算机指令,就是告诉CPU要做什么事的一组特定的二进制集合。
如果我们将CPU比喻成一个加工厂,那么,一条指令就好比一张订单,它引发了CPU__加工厂的一系列动作,最后分别得到了运算结果和产品。
那么,它们到底是怎样工作的呢?首先,要有一个接收订单的部门——CPU的取指令机构;其次,还要有完成订单的车间——CPU的执行指令机构。
在工厂中,一张订单上的产品被分成了许多道工序,而指令亦在CPU中转换成了许多条对应的微操作,依次完成它们,就执行完了整条指令。
二、执行指令的方式及流水线技术在低档的CPU中,指令的执行是串行的,简单地说,就是执行完了一条指令后,再执行下一条指令,好比我们上面提到的那个加工厂在创业之初,只有一间小车间及孤军奋战的老板,那么,当他接到一张订单之后,他必然忙于完成第1张订单,而没有能力去接第2张订单。
这样接订单→完成订单→接订单→……取指令→执行指令→取指令→……是一个串行的过程。
后来,老板发现接受订单不费太多时间,而且他还有了一个帮工,他们可以相互独立地工作,这样,老板就在完成上张订单产品的同时,接受下一张订单的订货。
这表现在CPU上就是取指令机构与执行指令机构的分开,这样从CPU整体来看,CPU在执行上条指令的同时,又在并行地取下条指令。
这在CPU技术上是一个质的飞跃,它使得CPU从串行工作变为并行工作,从而具有了流水线的雏型。
计算机系统结构之流水线技术(205页)

入 求阶差
△t
对阶 △t
尾数相加 △t
出 规格化
△t
▲
31/206
1. 时空图 ➢ 时空图从时间和空间两个方面描述了流水线的工作 过程。时空图中,横坐标代表时间,纵坐标代表流 水线的各个段。 ➢ 4段指令流水线的时空图:
空间
存结果
123456
执行 译码
123456
5
123 45 6
取指令 1
2
3
4
k…+…1 k+j
已经由指令分析器预处理完成,存放在先行操作栈中的 RR*型指令,指令所需要的操作数已经读到先行读数栈中
k…+…j+1 k+j+n
已经由指令分析器预处理完成,存放在先行操作栈中,指 令所需要的操作数还没有读到先行读数栈中
k+j+n+1 正在指令分析器中进行分析和预处理的指令
k…+…j+n+2 已经从主存储器中预取到先行指令缓冲栈中的指令 k+j+n+m
1
2
3
…
1
2
3
…n
1
2
3
…
n
2
3
k
ti
i1
…n (n-1)t2
Tk 各段执行时间不相等的流水线及其时空图
n
时间
▲
33/206
2 流水线的基本概念
➢ 流水线每一个功能部件的后面都要有一个缓冲寄 存器(锁存器),称为流水寄存器。
站的某个存储单元(设其地址为j),同时用j替换原来指令
中的目标地址码字段。
✓ 立即数型指令:把指令中的立即数送入读数站(设为第l个 存储单元),同样也用l替换原来指令中的立即数字段。
计算机组成原理基础知识流水线技术和超标量处理器

计算机组成原理基础知识流水线技术和超标量处理器计算机组成原理基础知识:流水线技术和超标量处理器计算机组成原理是指计算机硬件的基本组成和工作原理。
在计算机科学与技术领域,流水线技术和超标量处理器是两个重要的概念。
本文将介绍这两种技术的基本原理和应用。
一、流水线技术流水线技术是指将一个复杂的操作分解成多个简单的子操作,并将这些子操作连续地执行,以提高计算机的指令执行效率。
在传统的自顶向下的设计方法中,计算机硬件主要包括控制器、运算器等单一功能模块,而在流水线技术中,计算机硬件被划分成多个阶段,每个阶段执行一个特定的功能子模块。
经典的流水线包括取指、译码、执行、访存和写回等阶段。
在取指阶段,计算机从存储器中读取指令;在译码阶段,计算机对指令进行解码并读取相应的操作数;在执行阶段,计算机执行相应的操作;在访存阶段,计算机对数据进行读写操作;在写回阶段,计算机将执行结果写回到寄存器或存储器。
流水线技术的优点是可以充分利用计算机硬件资源,提高指令的并行执行程度。
但是,流水线技术也存在一些问题,例如数据的相关性和冒险问题,需要通过一些技术手段来解决。
二、超标量处理器超标量处理器是一种在流水线技术基础上的改进方案。
传统的流水线技术中,每个阶段只能执行一个指令,而超标量处理器允许在同一个时钟周期内执行多个指令,以进一步提高计算机的执行效率。
超标量处理器主要依靠两个关键技术来实现多指令并行执行:乱序执行和动态调度。
乱序执行是指根据指令之间的依赖关系,按照合理的顺序执行指令,而不是按照指令在程序中的顺序执行。
动态调度是指通过硬件对指令进行调度,在不改变程序语义的前提下,尽可能地重排指令的执行顺序,以提高指令的并行度。
超标量处理器的工作原理可以简单描述为:在取指阶段,计算机从存储器中读取多个指令;在译码阶段,计算机对这些指令进行解码;在执行阶段,计算机并行执行多个指令;在访存阶段,计算机同时进行多个数据的读写操作;在写回阶段,计算机将执行结果写回到寄存器或存储器。
流水线技术

DLX的基本流水线
DLX的一种简单实现 首先讨论在不流水的情况下,如何实现DLX。
1. 实现DLX指令的一种简单数据通路
2.取指令周期(IF) IR ← Mem[PC] NPC ← PC+4
(2) 每个子过程由专用的功能段实现;
(3) 各个功能段所需时间应尽量相等,否则,时间长 的功能段将成为流水线的瓶颈,会造成流水线的 “堵塞”和“断流”。这个时间一般为一个时钟
周期(拍); (4) 流水线需要有“通过时间”(第一个任务流出结果 所需的时间),在此之后流水过程才进入稳定工作状 态,每一个时钟周期(拍)流出一个结果;
◆ Load 指令
6
26
Regs[IR11操.作.1码5] ← LMD与 PC 相加的偏移量
跳转,跳转并链接,从异常(exception)处自陷和返回。
图 2.13 DLX 的指令格式布局
寄存器―寄存器型 ALU 指令 Regs[IR16 ..20] ← ALUOutput
寄存器―立即值型 ALU 指令 Regs[IR11 ..15] ← ALUOutput
16 ..31寄存器-寄存器 ALU 操作:rdrs1 func rs2;
操作
函数对数据的操作进行编码:加、减、; 对特殊寄存器的读/写和移动。
指令译码和读寄存器是并行J进类型行指令的。之所
以能做到这一点,是因为在DLX操指作6 码令格式中与,PC
26 相加的偏移量
操作码在固定位置。这种技术也称跳转,为跳转固并链定接,字从异段常(exception)处自陷和返回。
Load 指令 Regs[IR11 ..15] ← LMD
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
I 类型指令 6 操作码 5 rs1 5 rd 16 立即值
(5)写回周期(WB)
字节、半字、字的载入和储存; rdrs1 op 立即值。
不同指令在该周期完成的工作也不一样。 R 类型指令
6 5 5 ◆ 寄存器―寄存器型 ALU 指令 操作码 rs1 rs2 5 rd 11 Func
Regs[IR16寄存器-寄存器 ALUOutput ..20] ← ALU 操作:rdrs1 func rs2;
Mem[500+Regs[R4]] ←32 Regs[R3]
◆ 分支操作
if(cond)PC ← ALUOutput else PC ← NPC
BEQZ R4 ,name
“等于0”分支
if (Regs[R4]==0) PC ← name; ((PC+4)-215) ≤ name ≤((PC+4)+215)
◆ 没有考虑 PC 问题
流水线为了能够每个时钟周期启动一条 新的指令,就必须在每个时钟周期进行PC值 的加4操作,并保留新的PC值。这种操作必 须在IF段完成,以便为取下一条指令做好准 备。
图 2.13
DLX 的指令格式布局
寄存器―寄存器型 ALU 指令 Regs[IR16 ..20] ← ALUOutput
寄存器―立即值型 ALU 指令 Regs[IR11 ..15] ← ALUOutput
Load 指令 Regs[IR11 ..15] ← LMD
DLX的基本流水线
按时间错开的数据通路序列
流水线技术
指令流水线
把指令的解释过程分解为“分析”和“执行”
两个子过程,并让这两个子过程分别用独立的分 析部件和执行部件来实现。
理想情况:速度提高一倍
流水技术
流水技术是指:将一个重复的时序过程分解 成为若干个子过程,而每个子过程都可有效地在 其专用功能段上与其他子过程同时执行。
流水技术的特点
(1) 流水过程由多个相联系的子过程组成,每个 子过程称为流水线的“级”或“段”。“段” 的数目称为流水线的“深度”。 (2) 每个子过程由专用的功能段实现;
DLX的基本流水线
DLX的一种简单实现 首先讨论在不流水的情况下,如何实现DLX。 1. 实现DLX指令的一种简单数据通路
2. 一条DLX指令最多需要以下5个时钟周期: (1) 取指令周期(IF) IR ← Mem[PC] NPC ← PC+4 操作
I 类型指令 6 操作码 5 rs1 5 rd 16 立即值
(3) 各个功能段所需时间应尽量相等,否则,时间长 的功能段将成为流水线的瓶颈,会造成流水线的 “堵塞”和“断流”。这个时间一般为一个时钟 周期(拍); (4) 流水线需要有“通过时间”(第一个任务流出结果 所需的时间),在此之后流水过程才进入稳定工作状 态,每一个时钟周期(拍)流出一个结果;
(5) 流水技术适合于大量重复的时序过程,只有输入 端能连续地提供任务,流水线的效率才能充分发 挥。
(2)指令译码/读寄存器周期(ID) 字节、半字、字的载入和储存;
A ← Regs[IR6 ..10]
B ← Regs[IR11 ..15] 操作
rdrs1 op 立即值。 R 类型指令 6 操作码 5 rs1 5 rs2 5 rd 11 Func
Imm ← (IR16)16 ## IR16 ..31寄存器-寄存器 ALU 操作:rdrs1 func rs2;
◆ 分支操作
ALUOutput ← NPC+Imm Cond ← (A op 0)
◆ 存储器访问
LMD ← Mem[ALUOutput] 或
LW R1, 30 (R2)
Mem [ALUOutput] ← B
Regs[R1] ←32 Mem[30+Regs[R2]]
载入整型字
SW
500 (R4), R3 储存整型字
ALUOutput ← A op Imm
寄存器-寄存器 ALU 操作:rdrs1 func rs2; 函数对数据的操作进行编码:加、减、; 对特殊寄存器的读/写和移动。 J 类型指令 6 操作码 26 与 PC 相加的偏移量
跳转,跳转并链接,从异常(exception)处自陷和返回。
图 2.13 DLX 的指令格式布局
采用流水技术还应解决好以下几个问题:
(1)应保证不会在同一个时钟周期内在同一数据 通路资源上做不同的操作。 例如,不能要求一个ALU同时既做有效 地址计算,又做减法操作。 上述简单DLX流水线中:
◆ 指令存储器(IM)和数据存储器(DM)分
开,避免了访存冲突。 ◆ ID段和WB段都要访问同一寄存器文件。 ID段:读 WB段:写 如何解决对同一寄存器的访问冲突?
函数对数据的操作进行编码:加、减、; 对特殊寄存器的读/写和移动。 J 类型指令 指令译码和读寄存器是并行进行的。之所 6 26 以能做到这一点,是因为在DLX指令格式中, 操作码 与 PC 相加的偏移量
操作码在固定位置。这种技术也称为固定字段 跳转,跳转并链接,从异常(exception)处自陷和返回。 译码。
◆ 寄存器―立即值型 ALU 指令 对特殊寄存器的读 /写和移动。
函数对数据的操作进行编码:加、减、; 类型指令 Regs[IR11J..15 ] ← ALUOutput ◆ Load 指令 6 26 操作码 与 PC 相加的偏移量 Regs[IR11 ..15] ← LMD 跳转,跳转并链接,从异常(exception)处自陷和返回。
R1, R2, R3
ALUOutput ← A op B
Regs[R1] ← Regs[R2] + Regs[R3]
I 类型指令 6 操作码 5 rs1 5 rd 16 立即值
◆ 寄存器―立即值 ALU 操作
字节、半字、字的载入和储存; rdrs1 op 立即值。 R 类型指令 6 操作码 5 rs1 5 rs2 5 rd 11 Func
图 2.13 DLX 的指令格式布局
(3)执行/有效地址计算周期(EX) 在这个周期,不同的指令有不同的操作。
◆ 存储器访问
LW
R1, 30 (R2) Regs[R1] ←32 Mem[30+Regs[R2]]
载入整型字
ALUOutput ← A+Imm
◆ 寄存器―寄存器 ALU 操作
Add