t分布和实用标准正态分布

合集下载

t分布标准

t分布标准

t分布的标准形式是自由度为n的t分布,其中n是自由度,即样本的独立性程度。

t分布的概率密度函数具有一个参数,即自由度n。

随着自由度的增加,t分布越来越接近于标准正态分布。

特别的,当自由度n=1时,t分布就是柯西分布;而当自由度n趋于无穷大时,t分布趋近于标准正态分布。

在统计学中,t分布常用于抽样分布、枢轴量、回归模型等方面。

对于给定的α,可以通过查表或计算得出t(n)分布的上α分位数,用于操作区间估计和假设检验。

在回归模型中,t 分布可以用于描述回归系数的统计性质。

总之,t分布的标准形式是自由度为n的t分布,其概率密度函数具有一个参数即自由度n。

随着自由度的增加,t分布越来越接近于标准正态分布。

正态分布 t分布

正态分布 t分布

未知时,以样本标准差 S 代替 σ 所得到的统 计量
xμ S/ n
态分布,而是服从 t 分布(t-distribution)。 它的概率分布密度函数如下:
t 分布概率密度曲线特点: 1、t 分布受自由度的制约,每一个自由度都有一条 t 分布概率密度曲线。 2、t 分布概率密度曲线以纵轴为对称轴,左右对称, 且在t=0时,取得最大值。 3、与标准正态分布曲线相比,t 分布曲线顶部略低, 两尾部稍高而平。df 越小这种趋势越明显。df 越大,t 分布越趋近于标准正态分布。当n >50时,t 分布与标 准正态分布的区别很小;n >100时,t 分布基本与标准 正态分布相同;n→+∞时,t 分布与标准正态分布完全 一致。
-6
-5
-4
-3
-2
-1
0
1
2
3
4
5
6
x=
1 2
x
-3 -2 -1 0
x=
1 2 3 x
x=
不同均数 均值 反映随机变量的平均水平(位置参数),向 右平移表示逐渐增大,向左平移表示逐渐减小。
(1)曲线在x 轴的上方,与x 轴永不相交 (2)曲线是单峰的,它关于直线 x=μ对称 1 (3)曲线在 x=μ 处达到峰值(最高点) σ 2π (4)曲线与横轴 x所夹面积为1
例3 某地1986年120名8岁男孩身高均数为 X =123.02cm ,标准差为S=4.79cm,试估 计: (1)该地8岁男孩身高在130cm以上者占该地8 岁男孩总数的百分比; (2)身高在120cm~128cm者占该地8岁男孩总 数的百分比; (3)该地80%的男孩身高集中在哪个范围?
t 分布
利用公式,查附表得: (1) P(x<1.64) =Φ(1.64) =0.9495 (2) P (x≥2.58) =1-Φ(2.58) =1-0.9951 =0.0049 (3) P (│x│≥2.56) =2-2Φ(2.56) =2-2×0.9948 =0.0104 (4) P (0.34<x≤1.53) =Φ(1.53)-Φ(0.34) = 0.9370-0.6331=0.3039 (5) P(x<-1.82) =1-Φ(1.82) =1-0.9656 =0.0344

(完整版)t分布的概念及表和查表方法

(完整版)t分布的概念及表和查表方法

t分布介绍在概率论和统计学中,学生t-分布(t-distribution),可简称为t分布,用于根据小样本来估计呈正态分布且方差未知的总体的均值。

如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。

t分布曲线形态与n(确切地说与自由度df)大小有关。

与标准正态分布曲线相比,自由度df越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度df愈大,t分布曲线愈接近正态分布曲线,当自由度df=∞时,t分布曲线为标准正态分布曲线。

目录1历史2定义3扩展4特征5置信区间6计算历史在概率论和统计学中,学生t-分布(Student's t-distribution)经常应用在对呈正态分布的总体的均值进行估计。

它是对两个样本均值差异进行显著性测试的学生t测定的基础。

t检定改进了Z检定(en:Z-test),不论样本数量大或小皆可应用。

在样本数量大(超过120等)时,可以应用Z检定,但Z检定用在小的样本会产生很大的误差,因此样本很小的情况下得改用学生t检定。

在数据有三组以上时,因为误差无法压低,此时可以用变异数分析代替学生t检定。

当母群体的标准差是未知的但却又需要估计时,我们可以运用学生t-分布。

学生t-分布可简称为t分布。

其推导由威廉·戈塞于1908年首先发表,当时他还在都柏林的健力士酿酒厂工作。

因为不能以他本人的名义发表,所以论文使用了学生(Student)这一笔名。

之后t检验以及相关理论经由罗纳德·费雪的工作发扬光大,而正是他将此分布称为学生分布。

定义由于在实际工作中,往往σ是未知的,常用s作为σ的估计值,为了与u变换区别,称为t变换,统计量t 值的分布称为t分布。

假设X服从标准正态分布N(0,1),Y服从分布,那么的分布称为自由度为n 的t分布,记为。

分布密度函数,其中,Gam(x)为伽马函数。

扩展正态分布(normal distribution)是数理统计中的一种重要的理论分布,是许多统计方法的理论基础。

标准正态分布和t分布的关系和区别

标准正态分布和t分布的关系和区别

标准正态分布和t分布的关系和区别
标准正态分布和 t 分布都是统计学中常用的概率分布,它们之间有一些关系和区别。

关系:
1、起源:
标准正态分布:是均值为0,标准差为1的正态分布,通常表示为 Z ~ N(0,1)。

t 分布:是由样本容量较小的情况下,对总体均值的抽样分布。

它在样本容量较大时趋向于标准正态分布。

2、形状:
标准正态分布:具有对称的钟形曲线。

t 分布:在样本容量较小的情况下,相比标准正态分布,其分布形状更加扁平,尖峭。

区别:
1、参数:
标准正态分布:完全由均值和标准差确定,无其他参数。

t 分布:需要指定自由度(degrees of freedom)作为参数。

自由度是样本容量与总体方差之比。

2、应用场景:
标准正态分布:通常用于处理已知总体方差的情况。

t 分布:用于处理总体方差未知,通过样本估计得到的情况。

3、形状稳定性:
标准正态分布:形状参数固定,与样本容量无关。

t 分布:随着自由度的增加,t 分布逐渐接近标准正态分布。

数学分布类型

数学分布类型

数学分布类型
1. 均匀分布
在概率论和统计学中,均匀分布也叫矩形分布,它是对称概率分布,在相同长度间隔的分布概率是等可能的。

均匀分布由两个参数a和b定义,它们是数轴上的最小值和最大值,通常缩写为U(a,b)。

2. 正态分布
正态分布(Normal distribution),也称“常态分布”,又名高斯分布(Gaussian distribution)。

若随机变量X服从一个数学期望为μ、方差为σ2的正态分布,记为N(μ,σ2)。

其概率密度函数为正态分布的期望值μ决定了其位置,其标准差σ决定了分布的幅度。

当μ = 0,σ = 1时的正态分布是标准正态分布。

3. t分布
在概率论和统计学中,t-分布(t-distribution)用于根据小样本来估计呈正态分布且方差未知的总体的均值。

如果总体方差已知(例如在样本数量足够多时),则应该用正态分布来估计总体均值。

t分布曲线形态与n(确切地说与自由度df)大小有关。

与标准正态分布曲线相比,自由度df越小,t分布曲线愈平坦,曲线中间愈低,曲线双侧尾部翘得愈高;自由度df愈大,t分布曲线愈接近正态分布曲线,当自由度df=∞时,t分布曲线为标准正态分布曲线。

正态分布t分布ppt(共49张PPT)

正态分布t分布ppt(共49张PPT)

u=x-μ/σ
(五)标准正态分布曲线下的面积分布规律
标准正态分布曲线以u值为横轴变量,位置参数µ=0,形状参 数ơ=1,标准正态分布曲线与横轴之间的整体面积为1或100% 。标准正态分布曲线下面积的分布规律有如下规律(图5
) u=-1,u=1范围内的面积占正态曲线下总面积的68.27%,即有
研究以推论总体的方法,称为抽样研究方法。
由抽样而引起的样本均数与总体均数之间的差别及样
本均数与样本均数之间的差别称为抽样误差。 从正态分布的同一总体中随机抽取例数相等的若
干个样本,分别计算它们的均数,这些别
标准差描述个体变量值间的变异程度。凡同性 质的资料,标准差大表示个体变量值变异大, 样本均数对个体的代表性差。标准差小表示个 体变量值变异小,样本均数对个体的代表性好 。
B、样本均数
单项选择题
t 5、 0.05,9(单侧 )
t0.0 5,9(双侧 )
A、大于 B、小于 C、等于 D、无关
界值为
t 的t界值。0.0 5,
t0.0 1,
t值与自由度的关系
一般情况下,t分布曲线较标准正态分 布曲线低平,因此 , t0.05,1.96 t0.0,12.58 自
t 由度越小,t分布曲线越低平则 、t 0.05, 0.01,
界值越大。
t界值与概率的关系
设以t 分布曲线与 横轴所夹总面积为 100%,则横轴上某一区间和曲线所夹面 积与总面积之比,相当于t值在该区间内 出现的概率(P),从一个正态总体中随 机抽样,获得t 值落于整个横轴的概率 P=1,获得l t l 的P t0.05, 0.05 ,对应曲线 面积 0.05 ,|t| 的P t0.01 , 0.01 ,对应的 曲线面积 0.01 。

t分布

t分布

第二节t分布一.t分布(t-distribution)(一)u分布在前一章中,我们已经讲述了正态分布(normal distribution)是数理统计中的一种重要的理论分布,是许多统计方法的理论基础。

正态分布有两个参数,μ和σ,决定了正态分布的位置和形态。

为了应用方便,常将一般的正态变量X通过u变换[]转化成标准正态变量u,以使原来各种形态的正态分布都转换为μ=0,σ=1的标准正态分布(standard normal distribution),亦称u分布。

根据中心极限定理,通过上述的抽样模拟试验表明,在正态分布总体中以固定n (本次试验n=10)抽取若干个样本时,样本均数的分布仍服从正态分布,即N (μ,σ)。

所以,对样本均数的分布进行u变换[],也可变换为标准正态分布N (0,1)(二)t分布由于在实际工作中,往往σ是未知的,常用s作为σ的估计值,为了与u变换区别,称为t变换t=,统计量t 值的分布称为t分布。

t分布有如下特征:1.以0为中心,左右对称的单峰分布;2.t分布是一簇曲线,其形态变化与n(确切地说与自由度ν)大小有关。

自由度ν越小,t分布曲线越低平;自由度ν越大,t分布曲线越接近标准正态分布(u分布)曲线,如图4.1。

t=图4.1自由度为1、5、∞的t分布对应于每一个自由度ν,就有一条t分布曲线,每条曲线都有其曲线下统计量t 的分布规律,计算较复杂。

因此,统计学家上根据自由度ν的大小与t分布曲线下面积的关系,编制了附表2,t界值表,以便于应用。

表中的横标目为自由度ν,纵标目为概率P,表中数字表示自由度ν为某值时,P为某值时,t的界值。

因t分布是以0为中心的对称分布,故附表中只列出正值,如果算出的t 值为负值,可以用绝对值查表。

t分布曲线下面积为95%或99%的界值不是一个常量,而是随着自由度大小而变化的,分别用和表示。

T分布(t-distribution)(一)u分布正态分布(normal distribution)是数理统计中的一种重要的理论分布,是许多统计方法的理论基础。

质量专业理论与实务讲义(二)

质量专业理论与实务讲义(二)

(1)t分布:设x1,x2,…,x n是来自正态总体N(μ,σ2)的一个样本,则有:~N(μ,),对样本均值施行标准化变换,则有:~N(0,1),当用样本标准s代替上式中的总体标准差σ,则上式u变量改为t变量,标准正态分布N(0,1)也随之改为“自由度为n-1的t分布”,记为t (n-1),即:~t(n-1).(2)χ2分布:自由度为n—1的χ2分布的概率密度函数在正半轴上呈偏态分布。

(3)F分布:设有两个独立的正态总体N(μ1,σ2)和N(μ2,σ2),它们的方差相等.又设x1,x2,…,x n是来自N(μ1,σ2)的一个样本;y1,y2,…,y m是来自N(μ2,σ2)的一个样本,两个样本相互独立。

它们的样本方差比的分布是自由度为n—1和m—1的F分布,其中n-1称为分子自由度或第1自由度;m—1称为分母自由度或第2自由度。

F分布的概率密度函数在正半轴上呈偏态分布.考点17:参数估计重点等级:※参数主要是指:①分布中的未知参数,如二项分布b(1,p)中的p,正态分布N(μ,σ2)中的μ,σ2或σ;②分布的均值E(X)、方差Var(X)等未知特征数;③其他未知参数,如某事件的概率P(A)等。

上述未知参数都需要根据样本和参数的统计含义选择适宜的统计量并作出估计。

参数估计有两种基本形式:点估计与区间估计.考点18:点估计重点等级:※※※※1.点估计优良性标准无偏性是表示估计量优良性的一个重要标准,只要有可能,应该尽可能选用无偏估计量,或近似无偏估计量。

有效性是判定估计量优良性的另一个标准。

2.求点估计的方法--矩法估计由于均值与方差在统计学中统称为矩,总体均值与总体方差属于总体矩,样本均值与样本方差属于样本矩.获得未知参数的点估计的方法称为矩法估计。

矩法估计简单而实用,所获得的估计量通常(尽管不总是如此)也有较好的性质。

但是应该注意到矩法估计不一定总是最有效的,而且有时估计也不唯一.3.正态总体参数的估计①正态均值μ无偏估计有两个,一个是样本均值,另一个是样本中位数;②正态方差σ2的无偏估计常用的只有一个,就是样本方差S2,即;③正态标准差σ的无偏估计也有两个,一个是对样本极差R=x(n)-x(1)进行修偏而得,另一个是对样本标准差s进行修偏而得,具体是:,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数理统计实验
t分布与标准正态分布
院(系):
班级:
成员:
成员:
成员:
指导老师:
日期:
目录
t分布与标准正态分布的关系 (1)
一、实验目的 (1)
二、实验原理 (1)
三、实验内容及步骤 (1)
四、实验器材 (5)
五、实验结果分析 (5)
六、实验结论 (6)
t分布与标准正态分布的关系
一、实验目的
正态分布是统计中一种很重要的理论分布,是许多统计方法的理论基础。

正态分布有两个参数,μ和σ,决定了正态分布的本质。

为了应用和计算方便,常将一般的正态变量X通过μ变换[(X-μ)/σ]
转化成标准正态变量μ,以使原来各种形态的正态分布都转换为μ=0,σ=1的标准正态分布,亦称μ分布。

对于标准正态分布来说,μ是
数据整体的平均值,σ是整体的标准差。

但实际操作过程中,人们往往难以获得μ和σ。

因此人们只能通过样本对这两个参数做出估计,用样本平均值和样本标准差代替整体的平均值和标准差,从而得出了
t分布。

另外从图像的层面说,正态分布的位置和形态只与μ和σ有关,而t分布不只与样本平均值和样本标准差有关,还与自由度相关。

通过实验了解t分布与标准正态分布之间的关系。

二、实验原理
运用EXCEL软件验证t分布与标准正态分布的关系,绘制相应的统计图表进行分析。

三、实验内容及步骤
1.打开Excel文件,将“t分布与标准正态分布N(0,1)”合并并居中,黑体,20字号,红色;
2.选中文件,选项,自定义功能区,加载开发工具.在开发工具中插入滚动条,调节滚动条大小;
3.设置A2单元格格式,数字自定义区” !n=#,##0;[红
色]¥-#,##0”.然后左对齐,设置为红色;
4.设置滚动条格式,单元格连接为$A$2;
5.在A3中输入-4.0,单击开始,填充,序列,设置等差序列,步长0.1,当出现十字下拉即出现等差序列;
6.在B3中插入标准正态分布函数”=NORM.S.DIST(A3,0)”,十字出现向下拉;
7.在C3中插入t分布函数”=T.DIST(A3,$A$2,0)”,十字出现向下拉;
8.选中整体区域,作X,Y(散点图),设置标题,横纵截距,箭头方向。

四、实验器材
计算机办公软件
五、实验结果分析
t分布和标准正态分布的动态演示
0.45
0.40
0.35
0.30
0.25
0.20
0.15
0.10
0.05
0.00
-5.0 -4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0
N(0,1) t(n)
六、实验结论
在讨论t分布与标准正态分布之间的关系时,运用电脑软件能较好的模拟出他们之间的关系,随看自由度增大t分布趋近于标准正态分布。

区别:
1.t分布是依自由度而变的一组曲线;
2.t分布较正态分布顶部略低而尾部稍高。

相关文档
最新文档