离心泵的汽蚀原因和故障诊断发展

合集下载

离心泵汽蚀的原因及处理方法

离心泵汽蚀的原因及处理方法

离心泵汽蚀的原因及处理方法离心泵是一种常见的机械设备,广泛应用于工业、农业、建筑、市政等领域。

然而,在离心泵的使用过程中,汽蚀问题经常会出现,给设备的正常运行带来很大的困扰。

本文将从离心泵汽蚀的原因及处理方法两个方面进行探讨。

一、离心泵汽蚀的原因1.液体中的气体液体中的气体是离心泵汽蚀的主要原因之一。

当液体中存在一定量的气体时,它们会随着液体一起被吸入离心泵中,进入泵腔内部。

当液体通过泵轮时,气体会被压缩,形成气泡,这些气泡在后续的工作中会不断扩大,最终破裂,形成高速的水击波,从而对离心泵的叶轮、泵壳等零部件造成损坏。

2.液体的温度液体的温度也是离心泵汽蚀的重要原因之一。

当液体的温度升高时,液体中的气体容易溶解,从而导致气体的含量下降。

此时,当液体流经离心泵时,由于气体含量的减少,水泵中的压力也会下降,进而形成真空,使液体内部的气体被迫从液体中释放出来,形成气泡,从而引起汽蚀。

3.液体的粘度液体的粘度也是离心泵汽蚀的原因之一。

当液体的粘度较高时,液体在流动过程中的阻力较大,使得液体的流速变慢。

此时,液体中的气体容易在液体内部积聚,形成气泡,从而引起汽蚀。

4.泵的设计泵的设计也是离心泵汽蚀的原因之一。

泵的设计不合理,如叶轮的进口角度太陡,泵的进口管道过长等,都会导致液体在流动过程中产生较大的阻力,从而引起汽蚀。

二、离心泵汽蚀的处理方法1.改善液体的供给方式改善液体的供给方式是减少汽蚀的有效方法之一。

在液体的供给过程中,应尽量避免液体中的气体被吸入泵内。

为此,可以采取以下措施:(1)改善进口管道的设计,减少管道的弯曲和阻力,保持管道的通畅。

(2)增加进口管道的口径,使液体的流速降低,减少气体的混入。

(3)增加进口管道的长度,延长液体在管道内停留的时间,使气体有更多的时间溶解在液体中。

2.改善液体的物理性质改善液体的物理性质也是减少汽蚀的有效方法之一。

在液体的物理性质方面,主要是液体的温度和粘度。

为此,可以采取以下措施:(1)保持液体的温度稳定,避免液体温度的过高或过低。

离心泵的汽蚀现象介绍

离心泵的汽蚀现象介绍

离心泵的汽蚀现象介绍
离心泵的汽蚀现象是指在泵运行过程中,由于流体在泵叶轮周围形成了负压区域,造成液体中的蒸汽产生泡沫和空化现象,从而影响离心泵的正常工作。

离心泵的汽蚀现象主要原因有以下几个方面:
1. 进口压力过低:当进口压力过低时,会导致负压区域扩大,形成空化现象,进而引起汽蚀。

这可能是由于系统进口管道设计不当、管道内有空气或气体混入,或者是由于液位下降等引起进口压力降低。

2. 流体速度过高:当液体进入离心泵时速度过高,会导致液体在叶轮周围产生过高的负压,形成空化现象,进而引起汽蚀。

这可能是由于泵的转速过高或泵的进口截面积过小。

3. 液体中含有气体或蒸汽:液体中含有气体或蒸汽会增大液体的蒸汽压力,使液体易产生汽蚀现象。

4. 泵的设计或制造缺陷:离心泵的叶轮或叶片设计不当,叶轮与泵壳之间的间隙过大,也会导致泵产生汽蚀现象。

离心泵汽蚀的危害包括:降低泵的工作效率、降低泵的扬程、增加能量消耗、增加振动和噪音,甚至会导致泵的损坏。

为了避免离心泵的汽蚀现象,可以采取以下措施:
1. 确保泵的进口压力不低于设计要求,避免进口压力过低。

2. 合理设计进口管道,确保管道内无气体或空气混入。

3. 控制泵的流量,避免流速过高。

4. 减少液体中的气体含量,通过适当的脱气措施。

5. 选择合适的泵型和合理的泵设计,避免泵的鼓风效应。

对于离心泵来说,汽蚀是一种常见的故障现象,需要注意泵设计、操作和维护,以避免或减少汽蚀的发生。

离心泵的气蚀现象及原因

离心泵的气蚀现象及原因

离心泵的气蚀现象及原因离心泵的气蚀现象及原因(1)气蚀现象离心泵的叶轮在高速旋转时产生很大的离心力,液体在离心力的作用下,使泵的入口处产生低于离心泵的气蚀现象及原因(1)气蚀现象离心泵的叶轮在高速旋转时产生很大的离心力,液体在离心力的作用下,使泵的入口处产生低于大气压的真空度,当入口压力达到在该温度下的液体气化压力时,液体就开始汽化形成气泡。

这样,在运动的液体中形成的气泡随液体一起流动。

当气泡达到静压超过饱和蒸汽压区域时,气泡迅速溃灭。

周围的液体以高速向气泡中心运动,这就形成了高频的水锤作用,打击叶轮表面,并产生噪音和振动。

这种气泡的产生和破灭过程反复进行就对这一区域的叶轮表面产生破坏作用,使泵流量减少,扬程下降,效率降低等,这种现象叫气蚀现象。

(2)造成汽蚀的主要原因有:a.进口管路阻力过大或者管路过细;b.输送介质温度过高;c.流量过大,也就是说出口阀门开的太大;d.安装高度过高,影响泵的吸液量;e.选型问题,包括泵的选型,泵材质的选型等。

(3)离心泵的气缚:由于泵内气体的存在,离心泵的叶轮在高速旋转时,由于气体的密度小,其离心力不能产生足够的真空度,而无法将液体吸上来。

气缚是泵体内有空气,一般发生在泵启动的时候,主要表现在泵体内的空气没排净;而汽蚀是由于液体在一定的温度下达到了它的汽化压力,和输送介质,工况有密切的关系.(4)气蚀余量:泵在工作时液体在叶轮的进口处因一定真空压力下会产生汽体,汽化的气泡在液体质点的撞击运动下,对叶轮等金属表面产生剥蚀,从而破坏叶轮等金属,此时真空压力叫汽化压力,汽蚀余量是指在泵吸入口处单位重量液体所具有的超过汽化压力的富余能量。

单位用米标注,用(NPSH)r。

吸程即为必需汽蚀余量Δh:即泵允许吸液体的真空度,亦即泵允许的安装高度,单位用米。

离心泵吸程=标准大气压(10.33米)-汽蚀余量-安全量(0.5米)水泵气蚀余量有两个概念:其一是与安装方式有关,称有效的气蚀余量NPSHA,它是指水流经吸入管路到达泵吸入口后所余的高出临界压力能头的那部分能量,是可利用的气蚀余量,属于“用户参数”;其二是与泵结本身有关,称必需的气蚀余量NPSHR,它是流体由泵吸入口至压力最低处的压力降低值,是临界的气蚀余量,属于“厂方参数”。

离心泵汽蚀原因及处理方法

离心泵汽蚀原因及处理方法

离心泵汽蚀原因及处理方法以离心泵汽蚀原因及处理方法为标题,写一篇文章:离心泵是一种常用的工业设备,广泛应用于供水、排水、农田灌溉等领域。

然而,在使用过程中,我们可能会遇到一个问题,那就是离心泵出现汽蚀现象。

汽蚀会导致泵的性能下降,甚至可能损坏泵的部件。

因此,了解汽蚀的原因以及相应的处理方法,对于正确运行和维护离心泵至关重要。

我们来了解一下汽蚀的原因。

汽蚀是指在离心泵工作过程中,由于介质中的蒸汽或气泡被吸入,使得泵的性能下降的现象。

汽蚀的主要原因有以下几点:1. 进口压力过低:如果离心泵的进口压力过低,就会导致介质中的空气被吸入,形成气泡。

这些气泡会随着液体一起被泵送出去,进而导致汽蚀现象的发生。

2. 进口管道设计不合理:如果进口管道设计不合理,例如管道弯曲过多、管道直径变化、管道太长等,都会增加进口阻力,导致进口压力降低,从而引起汽蚀。

3. 泵体密封不良:如果离心泵的密封不良,就会导致泵体内的压力降低,从而引起汽蚀。

泵体密封不良可以是由于密封件老化、损坏或安装不当等原因造成的。

那么,我们应该如何处理离心泵汽蚀问题呢?下面给出一些处理方法供参考:1. 提高进口压力:可以通过提高进口压力的方法来解决汽蚀问题。

可以增加进口管道的高度,使得进口压力增加;或者增加进口管道的直径,减小进口阻力,提高进口压力。

2. 改善进口管道设计:如果进口管道设计存在问题,可以进行改进。

例如,减少管道的弯曲,增大管道的直径,缩短管道的长度等,都可以减小进口阻力,提高进口压力,有效解决汽蚀问题。

3. 检查和更换密封件:定期检查泵体的密封件,及时更换老化或损坏的密封件,确保泵体的密封性能良好,避免泄漏,提高泵体内的压力,从而解决汽蚀问题。

4. 定期维护和清洗:定期对离心泵进行维护和清洗,清除管道内的杂质和积垢,保持泵体内部的清洁,减少阻力,提高泵的性能,避免汽蚀的发生。

5. 安装气液分离器:在离心泵的进口处安装气液分离器,可以有效地分离气体和液体,减少气泡的进入,防止汽蚀的发生。

离心泵的常见汽蚀现象和原因

离心泵的常见汽蚀现象和原因

离心泵的常见汽蚀现象和原因
离心泵的常见汽蚀现象有:
1. 吸入气泡:当泵的进口侧发生压力降低或过高挡齿扩展时,会导致液体中的气体析出,形成气泡。

这些气泡会在离心泵的叶轮中产生均匀的分布,从而降低泵的效率。

2. 涡旋汽蚀:当液体在进口侧发生过高速度变化时,会形成涡旋。

这些涡旋会增加液体的动能,降低液体的压力,从而导致汽蚀现象。

3. 液体蒸发:当液体流经离心泵时,由于压力降低,液体中的低沸点液体或液体中的溶解气体会蒸发。

这些蒸发的液体或气体会形成气泡,从而导致汽蚀现象。

4. 液体沸腾:当液体的温度超过其饱和温度时,液体中的气体会迅速蒸发并形成气泡。

这些气泡在叶轮中会瞬间崩溃,形成震荡振动,从而导致汽蚀现象。

汽蚀的原因主要有:
1. 泵入口压力过低:当泵入口的压力低于饱和汽压时,液体会部分蒸发从而形成气泡,导致汽蚀。

2. 泵出口压力过高:当离心泵的出口压力过高时,液体流速过快,造成液体动能增大,压力降低,从而引发汽蚀。

3. 进口管道设计不当:进口管道过长、过细,存在弯曲或阻塞等情况,会导致液体流速变化过快,形成涡旋,引发汽蚀。

4. 泵运行条件不稳定:如果泵运行条件频繁变化,如流量变化大,压力波动等,会导致液体的压力降低和涩蚀。

5. 液体本身的特性:液体中的溶解气体过多,低沸点液体成分过多,液体温度过高等都会增加汽蚀的风险。

离心泵气蚀原因及措施

离心泵气蚀原因及措施

离心泵气蚀原因及措施一、汽蚀发生的机理离心泵运转时,流体的压力随着从泵入口到叶轮入口而下降,在叶片附近,液体压力最低。

此后,由于叶轮对液体做功,压力很快上升。

当叶轮叶片入口附近压力小于等于液体输送温度下的饱和蒸汽压力时,液体就汽化。

同时,还可能有溶解在液体内的气体溢出,它们形成许多汽泡。

当汽泡随液体流到叶道内压力较高处时,外面的液体压力高于汽泡内的汽化压力,则汽泡会凝结溃灭形成空穴。

瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然剧增(有的可达数百个大气压)。

这不仅阻碍流体的正常流动,更为严重的是,如果这些汽泡在叶轮壁面附近溃灭,则液体就像无数小弹头一样,连续地打击金属表面,其撞击频率很高(有的可达2000~3000Hz),金属表面会因冲击疲劳而剥裂。

若汽泡内夹杂某些活性气体(如氧气等),他们借助汽泡凝结时放出的能量(局部温度可达200~300℃),还会形成热电偶并产生电解,对金属起电化学腐蚀作用,更加速了金属剥蚀的破坏速度。

上述这种液体汽化、凝结、冲击,形成高压、高温、高频率的冲击载荷,造成金属材料的机械剥裂与电化学腐蚀破坏的综合现象称为汽蚀。

二、汽蚀的严重后果汽蚀是水力机械的特有现象,它带来许多严重的后果。

⑴汽蚀使过流部件被剥蚀破坏通常离心泵受汽蚀破坏的部位,先在叶片入口附近,继而延至叶轮出口。

起初是金属表面出现麻点,继而表面呈现槽沟状、蜂窝状、鱼鳞状的裂痕,严重时造成叶片或叶轮前后盖板穿孔,甚至叶轮破裂,造成严重事故。

因而汽蚀严重影响到泵的安全运行和使用寿命。

⑵汽蚀使泵的性能下降汽蚀使叶轮和流体之间的能量转换遭到严重的干扰,使泵的性能下降,严重时会使液流中断无法工作。

⑶汽蚀使泵产生噪音和振动气泡溃灭时,液体互相撞击并撞击壁面,会产生各种频率的噪音。

严重时可以听到泵内有“噼啪”的爆炸声,同时引起机组的振动。

而机组的振动又进一步足使更多的汽泡产生和溃灭,如此互相激励,导致强烈的汽蚀共振,致使机组不得不停机,否则会遭到破坏。

离心泵的汽蚀现象及消除案例分析

离心泵的汽蚀现象及消除案例分析

离心泵的汽蚀现象及消除【案例描述】离心泵运转时,液体压力沿着泵入口到叶轮入口而下降,在叶片入口附近的液体压力达到最低,此后由于叶轮对液体作功,液体压力很快上升。

当叶轮叶片入口附近的最低压力小于液体输送温度下的饱和蒸汽压力时,液体就汽化。

同时,使原来溶解在液体内的气体也逸出,它们形成气泡。

当气泡随液体流到叶道内压力较高处时,外面的液体压力高于气泡内的汽化压力,则气泡又重新凝结溃灭形成空穴,瞬间内周围的液体以极高的速度向空穴冲来,造成液体互相撞击,使局部的压力骤然增加。

这样,不仅阻碍液体正常流动,尤为严重的是,如果这些气泡在叶轮壁面附近溃灭,则液体就像无数个小弹头一样,连续地打击金属表面。

其撞击频率很高,于是金属表面因冲击疲劳而剥裂。

如若气泡内夹杂某种活性气体(如氧气等),它们借助气泡凝结时放出的热量(局部温度可达200~300℃),还会形成热电偶,产生电解,形成电化学腐蚀作用,更加速了金属剥蚀的破坏速度。

象这种液体汽化、凝结、冲击、形成高压、高温、高频冲击负荷,造成金属材料的机械剥裂与电化学腐蚀破坏的综合现象称为离心泵的汽蚀现象。

汽蚀发生时,由于机械剥蚀与化学腐蚀的共同作用,致使材料受到破坏,还会出现噪声和振动。

汽蚀发展严重时,大量气泡的存在会堵塞流道的截面,减少流体从叶轮获得的能量,导致泵中液体中断,不能正常工作。

【案例分析】一、离心泵汽蚀的原因液体的汽化程度与压力的大小、温度高低有关。

当液体内部压力下降,低于液体在该温度下的饱和蒸汽压时,便产生汽蚀故障。

凡影响液体压力和饱和蒸汽压力的因素都会影响汽蚀的发生,通常的因素有:1.泵进口的结构参数:包括叶轮吸入口的形状、叶片入口边宽度及叶片进口边的位置和前盖板形状等。

2.泵的操作条件:它包括泵的流量、扬程及转速等。

3.泵的安装位置:它包括泵的吸入管路水力损失及安装高度。

4.环境因素:它包括泵安装地点的大气压力以及输送液体的温度等。

二、离心泵汽蚀的诊断方法判断离心泵是否发生汽蚀,可以采用观察法、泵体外噪声法、振动法、超声波法等。

离心泵汽蚀原因分析及解决对策

离心泵汽蚀原因分析及解决对策

离心泵汽蚀原因分析及解决对策撰稿人:刘步宇化学品事业部机械动力部2004年11月目录摘要---------------------------------------------------(1)1、前言------------------------------------------------(1)2、工艺流程与设备概况----------------------------------(1)2.1 工艺流程简介----------------------------------------(1)2.2 离心泵参数------------------------------------------(3)3、泵运行状况------------------------------------------(3)4、汽蚀原因分析----------------------------------------(3)4.1 汽蚀现象-------------------------------------------(3)4.2 汽蚀成因分析---------------------------------------(4)4.3 PP-65泵汽蚀原因确定--------------------------------(7)5、汽蚀解决对策----------------------------------------(8)5.1 解决汽蚀方案的比选---------------------------------(8)5.2 解决汽蚀方案的确定--------------------------------(10)5.3 诱导轮的设计---------------------------------------(11)5.3.1 诱导轮的设计计算---------------------------------(11)5.3.2 安装诱导轮后的抗汽蚀性能计算---------------------(16)5.3.2.1诱导轮汽蚀余量----------------------------------(16)5.3.2.2 加装诱导轮后主叶轮汽蚀性能分析-----------------(16)6、实施效果---------------------------------------------(17)7、结论-------------------------------------------------(18)8、参考文献---------------------------------------------(18)离心泵汽蚀原因分析及解决对策摘要:本文通过对离心泵汽蚀原因进行分析,提出改善离心泵汽蚀性能的几个方案。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

离心泵的汽蚀原因和故障诊断发展
发表时间:2019-10-30T11:29:15.970Z 来源:《当代电力文化》2019年10期作者:顾生琴[导读] 发现离心泵在生产过程当中极容易出现故障,为此我们进行了分析,得出了导致离心泵出现故障的原因,并且针对这些原因进行了研究,提出了一些解决方法兰州理工大学技术工程学院甘肃兰州 730030摘要:随着社会的不断发展,科学技术也获得了巨大的进步。

文章结合现阶段大型石油化工装置当中应用较广的离心泵出现的问题进行了
分析,详细探究了现阶段离心泵出现故障的主要因素,针对这些因素提出了对应的解决方式,同时对各种解决的方式进行了比较,也对未来离心泵的发展趋势做出了相应的展望。

关键词:离心泵;故障原因;处理方法分析随着社会经济的不断发展,科学技术的发展得到了极大地推动,石油化工行业也出现了新的发展机遇。

当前,在大型石油化工中采用较多的动力设备就是离心泵,通过离心泵来适应现阶段流量较大并且需要长期工作的实际生产要求。

在日常的工作过程当中,我们发现离心泵在生产过程当中极容易出现故障,为此我们进行了分析,得出了导致离心泵出现故障的原因,并且针对这些原因进行了研究,提出了一些解决方法一、离心泵在使用过程当中产生故障的原因通常我们将离心泵出现故障的原因大致分为两种,一种是离心泵本身出现了机械故障,另外一种是由于泵与管道相关组成工艺系统当中存在缺陷。

这两方面原因就是导致离心泵出现故障的主要原因。

而在离心泵出现故障时,大多发生在离心泵的振动和噪声这两个方面。

由于造成噪声故障的因素一般比较隐秘,不容易发掘,所以这个更应该提高人们在日常工作当中的重视。

我们都知道离心泵产生故障的主要因素就是由于气体密度小于液体密度,从而导致气体在经过流道时获得的压力低于液体获得的压力,从而出现了不同的压力分布。

由于压力分布不均,液体当中混有其他气体时,气泡就会在这种不均衡的压力之下首先膨胀接着压缩,进而造成了类似至于汽蚀的冲击,最后就会导致离心泵出现故障。

离心泵的叶轮遭受到外力作用时,会出现较为强烈的振动,并且还会产生较大的杂声,泵的出口会有较大幅度的压力变化。

在封闭的循环系统当中,由于系统中的气体处在一个封闭的环境当中,在环境当中液体可以与气体同时进行循环流动,也因此无法将气体排出系统之外。

当系统当中存在的气体过多时就容易出现异常振动,从而给离心泵带来较大的压力,如果气体无法排出系统,那么就会使系统当中气体越来越多,对泵的压力也会越来越大。

在我们日常使用离心泵的过程当中,由于密封系统就容易产生上面两种情况,就会造成离心泵系统内增加的气体越来越多,进而导致离心泵出现故障。

在离心泵出现气体增多的情况时,应当及时排出系统内的原有气体,并且要判断性气体的来源,如果不能够杜绝气体排放的情况,就需要在离心泵系统内添加气液分离的装置,这样才能够减轻离心泵出现故障的可能性。

二、离心泵使用中产生故障相关诊断技术离心泵在发展过程当中,经历了三个不同的诊断阶段,我们要首先对这三个不同的阶段进行理解。

首先,由于机械设备的设计还比较简单,因此在第一阶段离心泵的故障诊断主要是依靠相关的专业学者的平时经验以及一些简单的仪表来进行诊断。

在科学技术不断发展的后期,出现了传感器和动态测试,在第二阶段的离心泵整段过程当中,虽然仍然是以人工作为主要诊断方式,但是已经更多的使用到了相关的器材。

在20世纪80年代之后,离心泵的检测获得了较大程度的发展,离心泵的诊断也进入了第三个阶段。

随着社会的发展和科学技术的进步,推动了机械化设备的应用和推广,也推进了故障诊断技术的发展。

在进入第三阶段诊断之后,更多的摒弃了人为的因素,更多的依靠智能技术来进行诊断。

通过调查发现,在实际运行过程当中,离心泵会出现一种异常的振动,这种振动会导致离心泵的正常使用受到影响。

同时我们在离心泵的振动最好当中也发现了丰富的信息,为此,我们可以采用相关的措施来仔细的分析离心泵的振动信号,并且来对信号进行仔细的研究。

在近几年的研究过程当中,一些外国的学者针对离心泵产生故障振动来进行研究,在振动分析的基础之上提出了一些较为切实可行的方式,比如说频谱分析、功率谱估计、粗糙集理论等。

这些研究都是基于振动信号的分析结果所发现的,并且还采用了各种不同的技术对于离心泵的振动信号进行更为详细的分析,从而得出更为准确的结论。

三、基于信号处理的方式
3.1频谱分析方式频谱分析是在石油工业当中使用频率最高的方式之一,相关的科研人员可以通过这个方式仔细的研究离心泵故障的具体原因,并且针对原因采取更为有效的措施进行解决。

在很多的科学文献当中就对离心泵的故障诊断进行了大量的据调查和研究,在文献当中对于离心泵的特点进行了详细的分析,并且将数据以频谱分析的方式仔细地记录了下来。

通过对于数据的比较,我们就可以明确得出离心泵出现故障的原因,并且选择更为合适的方式进行解决。

由于造成离心泵故障的原因较为多样,所以我们在使用频谱分析法的过程当中,要仔细的辨别故障是否真的存在,在一些无法辨别的时候,频谱分析只能作为参考存在。

3.2功率谱分析功率谱分析是按照功率谱的密度以及互功率谱的相关数据进行分析的,在领域当中分析与描述相关的信号并且考虑分布情况,采用一个简单的谐波就可以研究在测试过程当中比较复杂的工程信号。

在使用过程中所采用的原理就是描述信号的频率结构,从而得到机器的具体动态型号。

进而得出每个部分的工作情况。

3.3小波分析方法小波分析方法是根据信号处理的要求而不断发展的时频分布方法,在处理过程当中具有比较突出的局部化特征,可以实时检测离心泵的状态,从而分析离心泵出现故障的原因。

结束语:在科学发展的今天,相关人员在离心泵的故障诊断方法方面已经有了新的突破,通过对于诊断方式的研究,我们可以更加轻松而准确地发现造成离心泵鼓掌的原因,并且针对这些原因采取方法进行调整。

虽然现阶段我们在离心泵的故障诊断方面已经有了较大的突破,但是还是存在着很多问题,这就需要相关的科技人员针对出现的问题进行进一步的分析和探究,从而为下一阶段的研究提供更多的参考。

参考文献:
[1]张冉.浅析离心泵的汽蚀原因和故障诊断发展[J].科技创新与应用,2013(26):91.
[2]王辉,金雪红.浅析离心泵抗汽蚀性能的影响因素及提高措施[J].城镇供水,2019(02):14-17+26.。

相关文档
最新文档