WLAN802_11b中的调制技术_CCK

合集下载

移动通信技术802.11b.g.n协议

移动通信技术802.11b.g.n协议

移动通信技术802.11b/g/n协议一、符合IEEE的移动通信技术二、802.11四种主要物理组件1.工作站(Station)构建网络的主要目的是为了在工作站间传送数据。

所谓工作站,是指配备无线网络接口的计算设备,即支持802.11的终端设备。

如安装了无线网卡的PC,支持WLAN的手机等。

2.接入点(Access Point)802.11网络所使用的帧必须经过转换,方能被传递至其他不同类型的网络。

具备无线至有线的桥接功能的设备称为接入点,接入点的功能不仅于此,但桥接最为重要。

为STA提供基于802.11的接入服务,同时将802.11mac帧格式转换为以太网帧,相当于有限设备和无线设备的桥接器。

3.无线媒介(Wireless Medium)802.11标准以无线媒介在工作站之间传递帧。

其定义的物理层不只一种,802.11最初标准化了两种射频物理层(2.4GHz和5GHz)以及一种红外线物理层。

4.分布式系统(Distribution System)当几个接入点串联以覆盖较大区域时,彼此之间必须相互通信以掌握移动式工作站的行踪。

分布式系统属于802.11的逻辑组件,负责将帧传送至目的地,将各个AP连接起来的骨干网络。

三、无线局域网的网络类型Infrastructure网络架构可以实现多终端共用一个AP。

需要AP提供接入服务,AP负责基础结构型网络的所有通信。

这种网路可以提供丰富的应用,较多的STA接入数量。

Ad-hoc网络没有有线基础设施,网络节点由移动主机构成,无线网卡之间的通讯,不需要通过AP。

一般是少数几个STA为了特定目的而组成的一种暂时性网络,又称特设网络。

802.11-基础结构网络的架构注意:◆BSS(basic service set)基本服务集由能互相通信的STA组成,是802.11网络提供服务的基本单元;◆ESS扩展网络由多个BSS构成,是采用相同SSID的多个BSS形成的更大规模的虚拟BSSS,是为了解决单个BSS覆盖范围小的问题而定义的;◆SSID(服务集标识),标识一个ESS网络,相当于网络的名称;◆BSSID是AP的MAC地址,用来标识AP管理的BSS。

802.11无线局域网(wlan)

802.11无线局域网(wlan)

802.11无线局域网(wlan)摘要在这个计算机高速发展的时代,伴随着网络的技术的不断发展与应用。

传统的有线局域网虽然有着信号传输稳定,传输质量也比较高, 信号受房间格局、障碍物、气候、电磁干扰影响小等方面的优势。

但随着人们对移动办公的要求越来越高,传统的有线局域网要受到布线的限制,高效快捷、组网灵活的无线局域网应运而生。

无线局域网是不使用任何导线或传输电缆连接的局域网,而使用无线电波作为数据传送的媒介,传送距离一般只有几十米。

无线局域网的主干网路通常使用有线电缆,无线局域网用户通过一个或多个无线接取器接入无线局域网。

在有线世界里,以太网已经成为主流的LAN技术有线网络在某些场合要受到布线的限制:布线、改线工程量大;线路容易损坏;网中的各节点不可移动。

特别是当要把相离较远的节点联结起来时,敷设专用通讯线路布线施工难度之大,费用、耗时之多,实是令人生畏。

这些问题都对正在迅速扩大的联网需求形成了严重的瓶颈阻塞,限制了用户联网。

与有线局域网相比较,无线局域网具有开发运营成本低、时间短,投资回报快,易扩展,受自然环境、地形及灾害影响小,组网灵活快捷等优点。

可实现“任何人在任何时间,任何地点以任何方式与任何人通信”,弥补了传统有线局域网的不足。

关键词:局域网,无线局域网,IEEE802.11,射频技术,扩频技术,调制解调技术,信道差错控制技术,分集技术,天线技术目次1 引言 (1)2 802.11WLAN简介 (1)2.1 802.11a (3)2.2 802.11b (4)2.3 802.11n (6)2.4 802.11ac (6)2.5 802.11ad (7)3 802.11WLAN关键技术简介 (7)3.1 射频与扩频技术 (8)3.2 调制与复用技术 (10)3.3 差错控制技术 (15)3.4 分集与天线技术 (16)4 802.11WLAN的应用 (21)结论 (23)致谢 (24)参考文献 (25)1 引言局域网简称LAN,是指在某一区域内由多台计算机互联成的计算机组。

IEEE80211协议详细介绍

IEEE80211协议详细介绍

协议X档案:IEEE 802.11协议详细介绍作为全球公认的局域网权威,IEEE 802工作组建立的标准在过去二十年内在局域网领域内独领风骚。

这些协议包括了802.3 Ethernet协议、802.5 Token Ring协议、802.3z 100BASE-T快速以太网协议。

在1997年,经过了7年的工作以后,IEEE发布了802.11协议,这也是在无线局域网领域内的第一个国际上被认可的协议。

在1999年9月,他们又提出了802.11b"High Rate"协议,用来对802.11协议进行补充,802.11b在802.11的1Mbps和2Mbps 速率下又增加了 5.5Mbps和11Mbps两个新的网络吞吐速率,后来又演进到802.11g的54Mbps,直至今日802.11n的108Mbps。

802.11a高速WLAN协议,使用5G赫兹频段。

最高速率54Mbps,实际使用速率约为22-26Mbps与802.11b不兼容,是其最大的缺点。

也许会因此而被802.11g淘汰。

802.11b目前最流行的WLAN协议,使用2.4G赫兹频段。

最高速率11Mbps,实际使用速率根据距离和信号强度可变(150米内1-2Mbps,50米内可达到11Mbps)802.11b的较低速率使得无线数据网的使用成本能够被大众接受(目前接入节点的成本仅为10-30美元)。

另外,通过统一的认证机构认证所有厂商的产品,802.11b设备之间的兼容性得到了保证。

兼容性促进了竞争和用户接受程度。

802.11e基于WLAN的QoS协议,通过该协议802.11a,b,g能够进行VoIP。

也就是说,802.11e是通过无线数据网实现语音通话功能的协议。

该协议将是无线数据网与传统移动通信网络进行竞争的强有力武器。

802.11g802.11g是802.11b在同一频段上的扩展。

支持达到54Mbps的最高速率。

兼容802.11b。

802.11无线局域网缩写词及中文含义(一)解析

802.11无线局域网缩写词及中文含义(一)解析

802.11无线局域网缩写词及中文含义(一)解析802.11无线局域网缩写词及中文含义(一)ACK (acknowledgment)应答AID (association identifier)关联识别码AP (accss point)访问点ATIM (announceent traffic indication message)广播传输指示消息BSA (basic service area)基本服务区BSS (basic service set)基本服务集BSSID (basic service set identification)基本服务集识别码CCA (clera channel assessment)干净信道评价CCK (complemenetary code keying)补码键控CF (contention free)无竞争CFP (contention-free period)无竞争期CID (connection identifier)连接标识符CP (contention period)竞争期CRC (cyclic redundancy code)循环冗余码CS (carrier serse)载波侦听CTS (clear to send)允许发送CW (contention window)竞争窗口DA (destination address)目的地址DBPSK (differential binary phase shift keying)差分二进制相移键控DCE (data communication equipment)数据通信设备DCF (distributed coordination function)分布式协调功能DCLA (direct current level adjustment)直接电平调整DIFS (distributed (coordination function)interframe space)分布式(协调功能)帧间间隔DLL (data link layer)数据链路层DP (desensitization)减敏现象DQPSK (differential quadrature phase shift keying)差分正交相移键控DS (ditribution system)分发系统DSAP (destination service access point)目的服务访问点DSM (distribution system medium)分发系统媒介DSS (distribution system service)分发系统服务DSSS (direct sequence spread spectrum)直接序列扩频DTIM (delivery traffic indication message)交付传输指示信息ED (energy detection) 能量检测EIFS (extended interframe space)扩展帧间间隔EIRP (equivalent isotropically radiated power)等效全向辐射功率ERS (extended rate set)扩展速率集ESA (extended service area) 扩展服务域ESS (extended service set) 扩展服务集FC (frame control) 帧控制FCS (frame check sequence) 帧校验序列FER (frame error ratio) 帧差错率FH (frequency hopping) 跳帧FHSS (frequency-hopping spread spectrum) 跳帧扩频FIFO (first in first out)先进先出GFSK (Gaussian frequency shift keying)高斯频移键控HEC (Header Error Check)头部差错校验HR/DSSS (High Rate direct sequence spreadd spectrum using the Long Preamble and header)使用长前导和长头部的高速直接序列扩频HR/DSSS/short (High Rate direct sequence spreadd spectrum using the optional Short Preamble and header mode)使用可选的短前导和短头部的高速直接序列扩频HR/DSSS/PBCC (High Rate direct sequence spreaddspectrum using the optional packet binary convolutional coding mode and the Long Preamble and header) 使用可选分组二进制卷积编码方式和长前导和长头部的高速直接序列扩频HR/DSSS/PBCC/short (High Rate direct sequence spreadd spectrum using the optional packet binary convolutional coding mode and the optional Short Preamble and header)使用可选分组二进制卷积编码方式和可选短前导和短头部的高速直接序列扩频IBSS (independent basic service set)独立基本服务集ICV (integrity check calue)完整性检验值IDU(inteface data unit) 接口数据单元IFS (interframe space)帧间间隔IMP (intermodulation)互调保护IR (infrared)红外线(的)ISM (industrial,scientific.and medical)工业科学医疗IV (initialization vector)初始化矢量LAN (local area network)局域网LLC (logical link control)逻辑链路控制LME (layer management entity)层管理实体LRC (long retry count)长重发计数器LSB (least significant bit)最低位比特MAC (medium access control)媒介访问控制MDF (management-defined field)管理定义域MIB (management information base)管理信息库协议层管理实体MMPDU (MAC management protocol data unit)媒介访问控制管理协议数据单元MPDU (MAC protocol data unit)媒介访问控制协议数据单元MSB(most significant bit)最高位比特MSDU(MAC service data unit)媒介访问控制服务数据单元N/A(not applicable)不可用NAV(network allocation vector)网络分配矢量PC(point coordinator)集中协调器PCF(point coordination function)集中协调功能PDU(protocol data unit)协调数据单元PHY(physical [layer])物理层PHY-SAP(physical layer service access point)物理层服务访问点PIFS(point [coordination function] interframe space)集中协调功能帧间间隔PLCP(physical layer convergence protocol)物理层收敛协议PLME(physical layer management entity)物理层管理实体PMD(physical edium dependent)物理媒介依赖PMD-SAP(physical medium dependent service access point)物理媒介依赖服务访问点PN(pseudo-noise [code sequence])随机噪声(码序列)PPDU(PLCP protocol data unit)物理层收敛协议协议数据单元ppm(paresper million)百万分率,百万分之。

WLAN技术重点复习题-移动

WLAN技术重点复习题-移动

WLAN复习题一、单选题1. 无线局域网WLAN传输介质是什么?AA、无线电波B、紫外线C、可见光D、卫星通信2. IEEE802.11b射频调制使用__ 调制技术,最高数据速率达__。

DA、跳频扩频,5MB、跳频扩频,11MC、直接序列扩频,5MD、直接序列扩频,11M3. 无线局域网的最初协议是什么?AA、IEEE802.11B、IEEE802.5C、IEEE802.3D、IEEE802.14. 802.11协议定义了无线的什么?AA、物理层和数据链路层B、网络层和MAC层C、物理层和介质访问控制层D、网络层和数据链路层5. 以下哪项有关功率的陈述是正确的?AA、0dBm = 1mwB、0dBm = 0mwC、1dBm = 1mwD、以上都不是6. 802.11b和802.11a的工作频段、最高传输速率分别为DA、2.4GHz、11Mbps;2.4GHz、54MbpsB、5GHz、54Mbps;5GHz、11MbpsC、5GHz、54Mbps;2.4GHz、11MbpsD、2.4GHz、11Mbps;5GHz、54Mbps7. WLAN组网技术相对于有线局域网的优势哪项是错误的。

DA、可移动性B、低成本C、高灵活性D、高可靠性8. 802.11g 规格使用哪个频段?CA、5.2GHzB、5.8GHzC、2.4GHzD、900 MHz9. 网桥在OSI模型中的上实现局域网互联的。

BA、物理层B、数据链路层C、网络层D、传输层10. IEEE802.11b标准采用调制方式。

BA、FHSSB、DSSSC、OFDMD、MIMO11. 对于2.4GHz的信道的中心频率间隔是。

AA、5MHzB、20MHzC、25MHzD、83.5MHz12. 下列设备中不会对WLAN产生电磁干扰的是。

DA、微波炉B、蓝牙设备C、无线接入点D、GSM手机13. 下面哪个属于频率范围2.4GHz的物理层规范()AA. 802.11gB. 802.11aC. 802.11eD. 802.11i14. 802.11g不支持下面哪种传输速率()BA. 9 MbpsB. 65 MbpsC. 54 MbpsD. 12 Mbps15. 在我国5GHz的信道中,有几个相互不干扰的信道?()BA. 3B. 5C. 11D. 1316. 当同一区域使用多个AP时,通常使用()信道。

802.11 调制解调技术

802.11 调制解调技术
限定在[0,2π]内的b·sin(2t)信号的频谱,即以sin(2t)为载波的调制信号的频谱
802.11展频技术
将sin(t)和sin(2t)所传信号的频谱叠加在一起,如下:
a·sin(t)+b·sin(2t)信号的频谱
可以看出, 在sin(t)频谱峰值处, sin(2t)的频谱功率为零,反之亦然. 所以两个信号的频谱是正交的. 依此类推, 所有sin(Xt)函数的频谱相互之间都是正交的. (X为整数)
802.11展频技术
直接序列传输
比起跳频信号,经过直接序列调制的信号比较能够抵抗干扰。相关 程序(correlation Process)让直接序列系统得以更有效率地解决窄频 干扰的问题。每个位元(bit)使用11 个缀片(chips),可以容许漏失 或损毁几个缀片而不损及数据
802.11展频技术
跳频展频(FHSS). 直接序列展频 (DSSS). 正交频分复用 (OFDM).
802.11展频技术
使用展频技术的优点 1. 扩展传输频率带宽,减小设备电磁干扰(EMI). 2. 降低电磁干扰对设备接受信号的影响.
802.11展频技术
跳频传输
跳频,是以一种预设的准随机样式(predeterminded, pseudorandom pattern)快速变换传输频率.
那么我们如何解出载波1发了什么呢? 基站会对收到的数据乘以他调 制的载波频率积分,(Asin(X) + BSin(2X))*SINX ,则由于信号是线性 的,根据1,结果中就含有B 的分量约掉了,我们就能解出A。
802.11展频技术
因此在信道中传送的信号为a×sin(t)+b×sin(2t)。其中sin(t)和sin(2t) 为载波,a、b为所要发射的信号,在接收端,分别对接收到的信号作 关于sin(t)和sin(2t)的积分检测,就可以得到a和b了。

WLAN 802.11b中的调制技术--CCK

WLAN 802.11b中的调制技术--CCK
付卫红;曾兴雯
【期刊名称】《电子科技》
【年(卷),期】2003(000)013
【摘要】介绍无线局域网IEEE802.11标准中物理层采用的调制技术--CCK(补码键控),详细介绍了CCK的基本原理和系统框图,并分析它们的性能.
【总页数】2页(P47-48)
【作者】付卫红;曾兴雯
【作者单位】西安电子科技大学通信工程学院,710071;西安电子科技大学通信工程学院,710071
【正文语种】中文
【相关文献】
1.基于80
2.11b的补码监控调制技术 [J], 亢丽霞;王克家;丁淑娟
2.WLAN(802.11b)在自动控制中的应用 [J], 李晓燕;李娜
3.802.11b物理层CCK扩频技术探讨 [J], 董宁;石明卫
4.DSP完成WLAN中CCK调制解调的快速算法 [J], 王俊;洪慧勇;杨晨阳
5.WLAN基带处理中CCK方式的实现技术 [J], 康兴;王新安;肖高发;张国新;陈惠明
因版权原因,仅展示原文概要,查看原文内容请购买。

cck原理

cck原理CCK原理。

CCK(Complementary Code Keying)原理是一种在数字通信中常用的调制技术,它在很多无线通信系统中都有广泛的应用。

CCK技术最早应用于802.11b无线局域网标准中,后来也被引入到一些其他无线通信标准中,例如蓝牙和ZigBee等。

CCK技术通过一种特殊的编码方式,能够在有限的频谱资源内实现高速数据传输,具有很高的抗干扰能力和可靠性。

CCK技术的核心是使用一组互补的码字来表示数字信号。

在CCK调制中,数据被分成若干个比特为一组,每一组比特被映射成一组复杂的信号。

这些信号通常是通过对载波进行相位、幅度和频率的调制来实现的。

CCK技术采用了一种特殊的码型,能够使得不同的码字之间具有很好的互补性,从而在传输过程中减小了信号之间的干扰,提高了信号的识别性能。

CCK技术的优势之一是在有限的频谱资源内实现高速数据传输。

通过合理设计码型和调制方式,CCK技术可以在相对较窄的频率带宽内实现高达11Mbps的数据传输速率。

这使得CCK技术成为了802.11b无线局域网标准的核心技术之一,为无线网络的发展提供了重要的技术支持。

除了高速数据传输外,CCK技术还具有很高的抗干扰能力和可靠性。

由于CCK技术采用了复杂的信号映射方式,使得信号在传输过程中具有很好的鲁棒性,能够有效地抵抗多径传播、多用户干扰等无线通信中常见的问题。

这使得CCK技术在复杂的无线环境下依然能够保持良好的通信质量,为用户提供稳定可靠的通信服务。

总的来说,CCK技术作为一种常用的调制技术,在数字通信领域中具有广泛的应用前景。

它不仅能够实现高速数据传输,还具有很高的抗干扰能力和可靠性,为无线通信系统的设计和优化提供了重要的技术支持。

随着无线通信技术的不断发展和进步,CCK技术也将不断得到改进和完善,为用户提供更加稳定、高效的无线通信服务。

80211无线网络标准详解

802.11无线网络标准详解1990年,早期的无线网络产品Wireless LAN在美国出现,1997年IEEE802.11无线网络标准颁布,对无线网络技术的发展和无线网络的应用起到了重要的推动作用,促进了不同厂家的无线网络产品的互通互联。

1999年无线网络国际标准的更新及完善,进一步规范了不同频点的产品及更高网络速度产品的开发和应用。

一、1997年版无线网络标准1997年版IEEE802.11无线网络标准规定了三种物理层介质性能。

其中两种物理层介质工作在2400——2483.5 GHz无线射频频段(根据各国当地法规规定),另一种光波段作为其物理层,也就是利用红外线光波传输数据流。

而直序列扩频技术(DSSS)则可提供1Mb/S及2Mb/S工作速率,而跳频扩频(FHSS)技术及红外线技术的无线网络则可提供1Mb/S传输速率(2Mb/S作为可选速率,未作必须要求),受包括这一因素在内的多种因素影响,多数FHSS技术厂家仅能提供1Mb/S的产品,而符合IEEE802.11无线网络标准并使用DSSS直序列扩频技术厂家的产品则全部可以提供2Mb/S的速率,因此DSSS技术在无线网络产品中得到了广泛应用。

1.介质接入控制层功能无线网络(WLAN)可以无缝连接标准的以太网络。

标准的无线网络使用的是(CSMA/CA)介质控制信息而有线网络则使用载体监听访问/冲突检测(CSMA/CA),使用两种不同的方法均是为了避免通信信号冲突。

2.漫游功能IEEE802.11无线网络标准允许无线网络用户可以在不同的无线网桥网段中使用相同的信道,或在不同的信道之间互相漫游,如Lucent的WavePOINT II 无线网桥每隔100 ms发射一个烽火信号,烽火信号包括同步时钟、网络传输拓扑结构图、传输速度指示及其他参数值,漫游用户利用该烽火信号来衡量网络信道信号质量,如果质量不好,该用户会自动试图连接到其他新的网络接入点。

3.自动速率选择功能IEEE802.11无线网络标准能使移动用户(Mobile Client)设置在自动速率选择(ARS)模式下,ARS功能会根据信号的质量及与网桥接入点的距离自动为每个传输路径选择最佳的传输速率,该功能还可以根据用户的不同应用环境设置成不同的固定应用速率。

802.11 b g n调制解调方式介绍

1. 2. 3. 4. 5. WLAN - 802.11 a,b,g and nPublish Date: Dec 03, 2013OverviewThis paper is part of the Wireless Standards White Paper SeriesThis paper compares the different Wi-Fi standards that exist today. Some of the advantages and disadvantages of each standard, and the technical specifications are discussed in the paper below.Table of Contents802.11 Standards OverviewApplicationsTechnical Specifications802.11 Standards ComparisonNational Instruments Hardware1. 802.11 Standards Overview802.11: In 1997, the Institute of Electrical and Electronics Engineers (IEEE) created the first WLAN standard. They called it 802.11 after the name of the group formed to oversee its development.Unfortunately, 802.11 only supported a maximum network bandwidth of 2 Mbps - too slow for most applications. For this reason, ordinary 802.11 wireless products are no longer manufactured. The figure below shows the packet structure for the 802.11 standard.Figure 1 – 802.11 packet structure802.11a : The signal is transmitted at and can move up to of data per second. It uses Orthogonal Frequency-Division Multiplexing (OFDM), which is an efficient coding technique 5 Ghz 54 megabits that splits the radio signal into several sub signals before they reach a receiver. This greatly reduced interference between signals.802.11 b : This is the slowest and least expensive existing standard. Initially, 802.11b was the most popular standard because of its cost, but as faster standards get less expensive, 802.11b is losing popularity. This standard transmits in the It can transmit up to 11 megabits of data per second and it uses Complimentary Code Keying (CCK). 802.11b is based on 2.4 Ghz frequency bandwidth. Complementary Code Keying (CCK).802.11g : 802.11g transmits at like 802.11b but at faster rates. It can transmit upto per second. Similar to 802.11a, 802.11g transmit faster because it uses OFDM instead of CCK.2.4 Ghz 54 Mbits 802.11n : This is the most recent standard and is becoming commercially available. This standard significantly improves speed and range. For instance, although 802.11g theoretically transmits 54Mbits of data per second, it only achieves real-world speeds of about 24 Mbits per second because of network congestion. 802.11n, however, can transmit as high as 140 Mbits per second. Multiple Input Multiple Outputs (MIMO ): One of the most widely known components of the draft specification is known as Multiple Input Multiple Output, or MIMO. MIMO exploits a radio-wave phenomenon called multipath: transmitted information bounces off walls, doors, and other objects, reaching the receiving antenna multiple times via different routes and at slightly different times.Uncontrolled, multipath distorts the original signal, making it more difficult to decipher and degrading Wi-Fi performance. MIMO harnesses multipath with a technique known as space-division multiplexing. The transmitting WLAN device actually splits a data stream into multiple parts, called spatial streams, and transmits each spatial stream through separate antennas to corresponding antennas on the receiving end. The current 802.11n draft provides for up to four spatial streams, even though compliant hardware is not required to support that many.Doubling the number of spatial streams from one to two effectively doubles the raw data rate. There are trade-offs, however, such as increased power consumption and, to a lesser extent, cost. The draft-n specification includes a MIMO power-save mode, which mitigates power consumption by using multiple paths only when communication would benefit from the additional performance. The MIMO power-save mode is a required feature in the draft-n specification.Up until 2004, 802.11 interfaces had a single antenna. To be sure, some interfaces had two antennas in a diversity configuration, but the basis of diversity is that the “best” antenna is selected. In diversity configurations, only a single antenna is used at any point. Although there may be two or more antennas, there is only one set of components to process the signal, or . The receiver RF chain has a single input chain, and the transmitter has a single output chain.2. ApplicationsA Wi-Fi-enabled device such as a PC, game console, cell phone, MP3 player or PDA can connect to the Internet when within range of a wireless network connected to the Internet. The coverage of one or more interconnected access points — called a hotspot — can comprise an area as small as a single room with wireless-opaque walls or as large as many square miles covered by overlapping access points. Organizations and businesses such as airports, hotels and restaurants often provide free hotspots to attract or assist clients. Enthusiasts or authorities who wish to provide services or even to promote business in a given area sometimes provide free Wi-Fi access. Metropolitan-wide Wi-Fi (Muni-Fi) already has more than 300 projects in process. Wi-Fi also allows connectivity in peer-to-peer (wireless ad-hoc network) mode, which enables devices to connect directly with each other. This connectivity mode can prove useful in consumer electronics and gaming applications. Many consumer devices use Wi-Fi. Amongst others, personal computers can network to each other and connect to the Internet, mobile computers can connect to the Internet from any Wi-Fi hotspot,and digital cameras can transfer images wirelessly.Routers which incorporate a DSL-modem or a cable-modem and a Wi-Fi access point, often set up in homes and other premises, provide Internet-access and inter-networking to all devices connected (wirelessly or by cable) to them. One can also connect Wi-Fi devices in ad-hoc mode for client-to-client connections without a router. WLAN is also increasingly being used in Internet telephony, music, streaming, gaming, and even photo viewing and in-home video transmission. Personal video recorders and other A/V storage appliances that collect content in one spot for enjoyment around the home are accelerating this trend.3. Technical SpecificationsThe OSI layer consists of 7 different layers. This application layer interfaces directly to and performs application services for the application processes; it also issues requests to the presentation layer. The presentation layer establishes a context between application layer entities, in which the higher-layer entities can use different syntax and semantics, as long as the Presentation Service understands both and the mapping between them. The session layer controls the dialogues/connections (sessions) between computers. The transport layer provides transport of data between the end clients. This layer provides reliable data transfer to the upper layers. The network layer provides the functional and procedural means of transferring variable length data sequences from asource to a destination. This layer also maintains the quality of service requested by the Transport layer. The data link layer provides the functional and procedural means to transfer data between network entities and to detect and correct errors that may occur in the physical layer.Figure 2 – OSI network modelThe 802.11 standard technologies all support multiple data rates to allow clients to communicate at the best possible speed. Data rate selection is a tradeoff between obtaining the highest possible data rate while trying to minimize the number of communication errors. Whenever there is an error in the data, the systems must spend time to retransmit the data until it is error free. Each 802.11Figure 3 – Range of the different standards802.11a utilizes 300 MHz of bandwidth in the 5 GHz Unlicensed National information Infrastructure (U-NII) band. Though the lower 200 MHz is physically contiguous, the FCC has divided the totalFigure 4 – PPDU frame format Figure 5 – CCK ModulationStart Frame Delimiter. This field is always 1111001110100000 and defines the beginning of a frame.Signal. This field identifies the data rate of the 802.11 frame, with its binary value equal to the data rate divided by 100Kbps. For example, the field contains the value of 00001010 for 1Mbps, 00010100 for 2Mbps, and so on. The PLCP fields, however, are always sent at the lowest rate, which is 1Mbps. This ensures that the receiver is initially uses the correct demodulation mechanism, which changes with different data rates.Service. This field is always set to 00000000, and the 802.11 standard reserves it for future use.Length. This field represents the number of microseconds that it takes to transmit the contents of the PPDU, and the receiver uses this information to determine the end of the frame.Frame Check Sequence. In order to detect possible errors in the Physical Layer header, the standard defines this field for containing 16-bit cyclic redundancy check (CRC) result. The MAC Layer also performs error detection functions on the PPDU contents as well.PSDU. The PSDU, which stands for Physical Layer Service Data Unit, is a fancy name that represents the contents of the PPDU (i.e., the actual 802.11 frame being sent).Figure 6 – Long PLCP PPDU format802.11gThe 802.11g standard includes mandatory and optional components. It uses OFDM, (from 802.11a) and CCK (from 802.11b as the mandatory modulation schemes with 24 Mbps as the maximum mandatory data rate. It also provides for optional higher data rates of 36, 48 and 54 Mbps.The 802.11g standard defines several rate extensions, as part of the specification, to the for the implementation. TheExtended Rate PHY (ERP)PHY Direct Sequence Spread Spectrum (DSSS) PHY ERP–DSSS/CCK ERP–OFDM ERP–PBCC DSSS–OFDM802.11g specification includes four sets of modulation schemes (Mandatory), (Mandatory), (Optional) and (Optional. The initial 802.11PPDUstandard (IEEE Std. 802.11–1999) defines a long preamble PLCP framing and later in standard (IEEE Std. 802.11b, 1999) a short (optional) preamble for the w as defined; however in the PPDU802.1 1g standard the short preamble capability has been defined as mandatory.Figure 7 : ERP-DSSS/CCK PHY Layer PPDU framingAs part of the operational description of the ERP–OFDM modulation scheme, the 802.11g standard specifies that an packet is going to be followed by a period of no transmission with a lengthERPµs.signal extension. The SIFSµs,of 6 This period is called the logic behind this is that in the 802.11a standard the length is defined to be 16 this is to allow for the convolutional decode process toSIFSfinish, as it is described in section 19.3.2.3 of (IEEE Std. 802.11g, 2003). This assumption also applies to the ERP–OFDM in 802.11g; however in the 802.11g standard the length is defined to be 10 presumably to preserve backward compatibility with 802.11b. Nonetheless, in 802.11g, the modulation scheme still requires 16 to ensure the convolutional decoding µs,ERP–OFDMµsµs Duration MAC NAV process to be finished on time. Therefore a signal extension of 6 is included so that the transmitting station can compute the field in the header. This will ensure that the valueERP PHY ERP–DSSS/CCK ERP–OFDMof 802.11b stations is set correctly. The performance study presented in this work is based on the two mandatory specifications, namely the and themodulation scheme.Figure 8 – Short preamble PPDU format for DSSS-OFDMThe figure below shows the modulation schemes for the multiple carriers of 802.11 b, g and a.Figure 9 – Modulation Techniques802.11nThe emerging 802.11n specification differs from its predecessors in that it provides for a variety of optional modes and configurations that dictate different maximum raw data rates. This enables the standard to provide baseline performance parameters for all 802.11n devices, while allowing manufacturers to enhance or tune capabilities to accommodate different applications and price points. With every possible option enabled, 802.11n could offer raw data rates up to 600 Mbps. But WLAN hardware does not need to support every option to be compliant with the standard. In 2006, for example, most draft-n WLAN hardware available is expected to support raw data rates up to 300 Mbps. In comparison, every 802.11b-compliant product must support data rates up to 11 Mbps, and all 802.11a and 802.11g hardware must support data rates up to 54 Mbps.In the 802.11n draft, the first requirement is to support an OFDM implementation that improves upon the one employed in the 802.11a/g standards, using a higher maximum code rate and slightly wider bandwidth. This change improves the highest attainable raw data rate to 65 Mbps from 54 Mbps in the existing standards.Up until 2004, 802.11 interfaces had a single antenna. To be sure, some interfaces had two antennas in a diversity configuration, but the basis of diversity is that the “best” antenna is selected. InRF chaindiversity configurations, only a single antenna is used at any point. Although there may be two or more antennas, there is only one set of components to process the signal, or . The receiver has a single input chain, and the transmitter has a single output chain.The next step beyond diversity is to attach an RF chain to each antenna in the system. This is the basis of Multiple-Input/Multiple-Output (MIMO) operation.* Each RF chain is capable of simultaneous reception or transmission, which can dramatically improve throughput. Furthermore, simultaneous receiver processing has benefits in resolving multipath interference, and may improvespatial streamthe quality of the received signal far beyond simple diversity. Each RF chain and its corresponding antenna are responsible for transmitting a . A single frame can be broken up and multiplexed across multiple spatial streams, which are reassembled at the receiver.PHY LayersIn the 802.11n system, based on the WLAN OFDM system, two new formats are defined for the PLCP (Physical Layer Convergence Protocol): the Mixed Mode and the Green Field. These two formats are called HT (High Throughput) formats. In addition to the HT formats, there is a legacy duplicate format that duplicates the 20 MHz legacy packet in two 20 MHz halves of a 40 MHz channel.So, the 802.11n physical layer operates in one of 3 modes in the time domain: Legacy mode, Mixed Mode and Green Field Mode.In legacy mode and HT mode, transmission is over a 20 MHz channel, and the channel is divided into 64 sub-carriers. Four pilot signals are inserted in sub-carriers -21, -7, 7 and 21. In the legacy mode, signal is transmitted on sub-carriers -26 to -1 and 1 to 26, with 0 being the center (DC) carrier. In the HT modes, signal is transmitted on sub-carriers -28 to -1 and 1 to 28.In the 40 MHz HT transmission, two adjacent 20 MHz channels are used. The channel is divided into 128 sub-carriers. 6 pilot signals are inserted in sub-carriers -53, -25, -11, 11, 25, 53. Signal is transmitted on sub-carriers -58 to -2 and 2 to 58.In the case of the legacy duplicate mode over 40 MHz, the same data are transmitted over two adjacent 20 MHz channels. In this case the 40 MHz channel is divided into 128 sub-carriers and the data are transmitted on carriers -58 to -6 and 6 to 58.Legacy Mode: In the legacy mode, frames are transmitted in the legacy 802.11a/g OFDM format.Mixed Mode: In the Mixed Mode, packets are transmitted with a preamble compatible with the legacy 802.11a/g. The legacy Short Training Sequence, the legacy Long Training sequence, and the legacy signal description are transmitted so they can be decoded by legacy 802.11a/g devices. The rest of the packet has a new MIMO training sequence format. Figure 2 shows the Mixed Mode format. Click the various parts of the figure for more details on each field.Green Field Mode: In the Green Field mode, high throughput packets are transmitted without a legacy-compatible part. Figure 3 shows the Green Field format. Click the various parts of the figure for more details on each field.Figure 10 – PHY LayersLegacy Short Training Field (L-STF) The legacy short training OFDM symbol is identical to the 802.11a short training OFDM symbol. The L-STF is BPSK modulated at 6 Mbps. It contains no channel coding, and is not scrambled. The L-STF has a period of 0.8 µs. The entire short training field includes ten such periods, with a total duration of 8 µs.Legacy Long Training Field (L-LTF) The legacy long training OFDM symbol is identical to the 802.11a long training OFDM symbol. The L-LTF is BPSK modulated at 6 Mbps. It contains no channel coding, and is not scrambled.Legacy Signal Field (L-SIG) The signal field is used to transfer rate and length information. The L-SIG consists of one OFDM symbol assigned to all 52 subcarriers. This symbol is BPSK modulated at 6 Mbps and is encoded at a ½ rate. L-SIG is interleaved and mapped, and has pilots inserted in subcarriers –21, –7, 7 and 21. The L-SIG is not scrambled.High Throughput Signal Field (HT-SIG) The high throughput signal field is used to carry information required to interpret the HT packet formats. The HT-SIG is composed of two parts HTSIG1 and HTSIG2, each containing 24 bits. All the fields in the HT-SIG are transmitted LSB first.High Throughput Short Training Field (HT-STF) The purpose of the High Throughput Short Training Field is to improve AGC (Automatic Gain Control) training in a multi-transmit and multi-receive system. The duration of the HT-STF is 4μsec.High Throughput Long Training Field (HT-LTF) The High Throughput Long Training field provides means for the receiver to estimate the channel between each spatial mapping input (or spatialHigh Throughput Long Training Field (HT-LTF) The High Throughput Long Training field provides means for the receiver to estimate the channel between each spatial mapping input (or spatial stream transmitter if no STBC is applied) and receive chain; the number of training symbols is equal or greater than the number of space-time streams (with an exception in the case of 3 space-time streams).The HT-LTF portion has one or two parts. The first part consists of from one to four HT long training fields (HT-LTFs) that are necessary for demodulation of the HT-Data portion of the PPDU. These HT-LTFs are referred to as Data HT-LTFs. The optional second part consists of from zero to four HT-LTFs that may be used to probe extra spatial dimensions of the MIMO channel that are not utilized by the HT-Data portion of the PPDU. These HT-LTFs are referred to as Extension HT-LTFs. If a receiver has not advertised its ability to receive Extension HT-LTFs, it may discard a frame including Extension HT-LTFs as an unknown frame type.Both the WWiSE and TGnSync proposals employ MIMO technology to boost the data rate, though their applications differ. MIMO antenna configurations are often described with the shorthand “YxZ,” where Y and Z are integers, used to refer to the number of transmitter antennas and the number of receiver antennas. For example, both WWiSE and TGnSync require 2x2 operations, which has two transmit chains, two receive chains, and two spatial streams multiplexed across the radio link. Both proposals also have additional required and optional modes. I expect that the common hardware configurations will have two RF chains on the client side to save cost and battery power, while at least three RF chains will be used on most access points. This configuration would use 2x3 MIMO for its uplink and 3x2 MIMO on the downlink.Figure 11- Aggregation in WWiSEFigure 12- Bursting in WWiSEWWiSE PLCPThe PLCP must operate in two modes. In Greenfield mode, it operates without using backwards-compatible physical headers. Greenfield access is simpler: it can operate without backwards compatibility. The figure below shows PLCP encapsulation.Figure 13 – WwiSE PLCPThe SIGNAL-N fieldThe SIGNAL-N field is used in all transmission modes. It has information to recover the bit stream from the data symbols. The SIGNAL-N field is shown below.Figure 14 – The Signal – N FieldThe Figure below shows the basic format of a single physical-layer frame containing several MAC layer frames.Figure 15 - TGnSyncFrame Aggregation4. 802.11 Standards Comparison802.11a802.11a operates at the fastest speed and supports more simultaneous users. The operating frequencies of 802.11 a are regulated and this prevents interference from other devices.OFDM has fundamental propagation advantages when in a high multipath environment, such as an indoor office, and the higher frequencies enable the building of smaller antennas with higher RF system gain which counteract the disadvantage of a higher band of operation. The increased number of usable channels (4 to 8 times as many in FCC countries) and the near absence of other interfering systems, (microwave ovens, cordless phones, baby monitors) give 802.11a significant aggregate bandwidth and reliability advantages over 802.11b/g.Since the 2.4 GHz band is heavily used to the point of being crowded, using the 5 GHz band gives 802.11a a significant advantage. However, this high carrier frequency also brings a slight disadvantage: The effective overall range of 802.11a is slightly less than that of 802.11b/g; 802.11a signals cannot penetrate as far as those for 802.11b because they are absorbed more readily by walls and other solid objects in their path.802.11b802.11b is the lowest cost amongst the standards and the signal range is the best. The signal is not easily obstructed either.Some of the disadvantages are that is has the slowest maximum speed and supports fewer simultaneous users. The appliances may also interfere on the unregulated frequency band.Since the selection of the 802.11g draft standard technology, some observers have questioned the merits of continuing development activity in the 2.4 GHz band. The reasoning has predominantly cited the increased crowding of this spectrum, versus that of the relatively clearer 5.2 GHz spectrum utilized by802.11a. Certainly the past performance of already-installed 802.11b networks provides evidence that the 2.4 GHz band is well suited to wireless networking and the 802.11b devices have continued to provide excellent performance in the presence of increasing interference. In addition, the 2.4 GHz ISM band is available throughout the world with relatively few, if any, regulatory restrictions. In contrast, the 5.2 GHz band is used by military applications such as high-energy radar and, as a result, several major global markets, including Western Europe and Japan, have to date placed regulatory restrictions on the commercial use of this band. Even in the United States there are questions concerning security risks for military operations with 802.11aoperating in the 5.2 GHz band. Utilizing the 2.4 GHz band ensures that 802.11gWLANs will avoid the regulatory restrictions that are likely to been countered, while offering backwards compatibility with 802.11b systems.802.11g802.11g has a fast maximum speed and support simultaneous users. The signal range is the best and is not easily obstructed either.Some of the disadvantages are that it costs more than 802.11b and some of the appliances may also interfere with the unregulated signal frequency.802.11nOne of the most widely known components of the draft specification is known as Multiple Input Multiple Output, or MIMO. MIMO exploits a radio-wave phenomenon called multipath: transmitted information bounces off walls, doors, and other objects, reaching the receiving antenna multiple times via different routes and at slightly different times. Uncontrolled, multipath distorts the original signal, making it more difficult to decipher and degrading Wi-Fi performance. MIMO harnesses multipath with a technique known as space-division multiplexing. The transmitting WLAN device actually splits a data stream into multiple parts, called spatial streams, and transmits each spatial stream through separate antennas to corresponding antennas on the receiving end. The current 802.11n draft provides for up to four spatial streams, even though compliant hardware is not required to support that many. Doubling the number of spatial streams from one to two effectively doubles the raw data rate. There are trade-offs, however, such as increased power consumption and, to a lesser extent, cost. The draft-n specification includes a MIMO power-save mode, which mitigates power consumption by using multiple paths only when communication would benefit from the additional performance. The MIMO powersave mode is a required feature in the draft-n specification.Another optional mode in the 802.11n draft effectively doubles data rates by doubling the width of a WLAN communications channel from 20 MHz to 40 MHz. The primary trade-off here is fewer channels available for other devices. In the case of the 2.4-GHz band, there is enough room for three non-overlapping 20-MHz channels. Needless to say, a 40-MHz channel does not leave much room for other devices to join the network or transmit in the same airspace. This means intelligent, dynamic management is critical to ensuring that the 40-MHz channel option improves overall WLAN performance by balancing the high-bandwidth demands of some clients with the needs of other clients to remain connected to the network.5. National Instruments HardwareNational Instruments provides products for both Vector Signal Analysis and Vector Signal Generation. Using the Modulation toolkit different modulation techniques can be used to test and implement the various standards.PXIe-5672 PXI-5661。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

! ’’(7,. 的 886 模式
在该模式下,输入数据分成 & 比特数据 9!:#!’#!"#!$#!%#!1#!;#!0< , 其中 !:=!0 决定 !’=!% , 其对应关系如下表 $ 和表 % 。
!"’ $$% 调制方式的改变
虽 然 采 用 886 作 为 EJCK 中 的 物 理 层 调 制 方 式 可 以 获 得 高 达
!"( $$% 的性能分析
采用 886 扩频调制比直接采用 LCB6AB 码序列扩频的误码率大 得多,而且数据速率越高,误码率越高。 ’’(7,. 的 886 数据速率和 扩频后的码片速率相同,远远大于直接采用 LCB6AB 序列扩频时 ’=
’" 比 特 数 据 组 ,其 中 前 ; 比 特 用 ;%456 调 制 来 确 定 !’ , 后 ; 比 特 !;=!’’ 用来从 ;% 个复码子中选一个进行差分调制,即它们决定 !" , !$,!%。
关键词: 无线局域网, 补码键控
!" 引 言
目 前 无 线 局 域 网 *, - . / +发 展 十 分 迅 速 , 与 , -. / 相关的标准也有很多种, 如 美 国 !" " " 的 # $ % &’ ’ *012 13 +, 欧洲 " 45 !的 6 7 8 9 :- . / % 等 , 而 不 同 的 标 准 所 采 用 的 调 制 方 式 不 尽 相 同 。低 速 , -. / 产 品 技 术 已 经 相 当 成 熟 , 但是随着社会需求的不断增长,要求有更高数据传输速 率的无线局域网技术。 !" " " # $ % &’ ’ 012 就 是 在 这 种 情 况 下 提 出 的 , 其 中 !" " " # $ % &’ ’ 2 工 作 在 % &; < 6 = 频 段 , 其 最 高 速 据 传 输 速 率 可 达 ’ ’ > 2 ?@ , 采 用 的 是 补 码 键 控 ( ( ( ) ) 调 制 方 式 。 而 !" " " # $ % &’ ’ 0 工 作 在 A < 6 B 频 段 , 最 高 数 据 传 输 速 率 可 达 A ; > 2 ?@ , 采用的是正交频分复用 技术( 。 本 文 主 要 介 绍 FFG 技 术 。 C DE > )
!"& $$% 的解调方案
@AAA 仅发布了 886 的调制方案,其解调方案没有相应的标准。对 886 进行解扩解调时,@ 和 3 通路信号构成复序列信号,同时在 ;% 个
正交复序列相关器中进行相关运算,并在传输符号末判决出相关峰值 幅度最大的正交序列,并判定复扩频码的 23456,依据最大相关峰值 的正交复序列解调出 ; 比特数据信息 !"=!0#复扩频码的 23456 相位通 过差分运算解调出另外的 " 比特数据信息的 !:=!’。解调框图如下:
是 完 全 正 交 的 ,这 种 码 子 之 间 的 非 完 全 正 交 行 将 导 致 噪 声 容 限 的 减 小 和 码 间 干 扰 的 出 现 ,为 解 决 这 一 问 题 ,发 展 出 了 一 种 称 为 格 形 编 码 886 调制的改进方法。这种技术是吧格形编码的思想应用于 886 调制中,通过把不完全正交的 "1; 个复数码子分成若干个相互之间完 全 正 交 的 复 数 码 子 构 成 的 子 集 ,同 时 对 要 调 制 的 信 息 的 一 部 分 先 进 行 卷 积 编 码 ,然 后 利 用 编 码 得 到 的 结 果 在 这 些 复 数 码 子 集 中 进 行 选 择,另一部分则在选定的子集中确定出一个码子作为调制的结果, 这 样 就 能 改 善 码 子 之 间 的 正 交 性 ,从 而 使 整 个 通 信 系 统 的 性 能 得 到
参考文献:
’/ CM!NO 8#ENO.PNO (/ Q 886 (R!SFGP+RM 2NF+TNO. ’’(7,. URO D+V* BGPN &:"/’’NWPNOP+RMQ # E+ONFN.. 5XY,R.+SY - ,ROPG7FN 7X 2N.+VM 8RMUNONM)N 4OR)NN!+MV#.,O+MV ’ZZ0/ "/@AAA 4&:"/’’#2OGUP 5PGM!GO! URO E+ONFN.. JCK (N!+SM C))N.. 8RMPORF GM! 4*X.+)GF JGXNO 5,N)+U+)GP+RM/
此时 ’’( 的调制实现" " " # $ % &’ ’ 2 中 规 定 , 输入的数据信息 H 经过 ( ( ) 调制后所得的码字 F 定义 为: FI J 参 数 ! !" ! # 由 输 入 的 比 特 $ 确 定 。 从( 式 我 们 可 以 看 出 !! 出 现 在 该 码 字 构 造 式 的 每 !) 图’
/012( 调 制 编 码 表
#" #"!
补 码 键 控&技 术 $$% ( 概述
对于后面的数据双比特 $%5$& , ’’( 按照下表 % 对基本符号 进行编码, 这个表通过在码子生成公式中置 :
人们对于数据传输速率要求的不断提高, # $ % &’ ’ 工 作 组 在 对 多 种 调 制 方 式 进 行 比 较 之 后 , 在 # $ % &’ ’ 2 中 确 定 了 以 ( ( ) 作 为 给 无 线 局 域 网 提 供 A &A > 2 8 @ 和
表!
23456 调制的
相位取值
!"# $$% 的扩展
以上的 886 调制系统所能达到的最高传输速率是 ’’(7,.,但是 如果我们对 以 上 系 统 进 行 一 些 修 改 ,就 可 获 得 更 高 的 数 据 速 率 ,比 如说,我们为了获得 ’;/1(7,. 的数据速率,可以将输入数据被分成
一定的提高。
’’(7,. 的 886 调 制 实 现 框 图 与 1/1(7,. 时 相 似 , 只 是 在 1/1(7,. 的 886 调制中,只有两比特用来从 % 个复码子中选取一个,
而在 ’’(7,. 用 ; 比特数据从 ;% 个复码子中选取一个。 表" 输入数据与相位的 对应关系
’’(7,. 的数据速率,但是由于 886 调制中采用的所有码子之间并非
数据速率 > 比特数 ? 符号速率 即 ’"?’/$01>’;/1(7,.
"(7,. 的数据速率,因此 886 调制是 一 种 运 用 于 高 信 噪 比 环 境 的 高
数据速率扩频调制 方 式 。当 信 噪 比 比 较 低 时 , 886 调 制 的 误 码 率 很 大 , 可 以 运 用 BC6AB 接 收 来 其 误 码 性 能 , 但 一 般 是 采 用 LCB6AB 序列直接扩频,代价是会降低数据速率。
图#
886 的解调框图
!"
! )*)+,-. 的 ’’( 模 式
对 于 )*)+,-. 的 ’’( 模 式 , 基 带 处 理 器 的 输 入 分 成 四比特组,前面两个比特按表 ! 进行差分调制的相位控 制, 而 全 部 奇 数 符 号 除 了 要 进 行 表 中 标 准 /012( 调 制 以 为了确定奇偶性, 数据 外, 还 要 有 额 外 的 !34 度 的 旋 转 , 单元的第一个符号应从偶数开始。 表!
技术论坛
#$%& ’()*++, 中的调制技术—— —--.
西安电子科技大学通信工程学院, K’$$K’ 付卫红 曾兴雯 摘 要 : 介 绍 无 线 局 域 网 !" " " # $ % &’ ’ 标 准 中 物 理 层
采 用 的 调 制 技 术— —— ( ( ) *补 码 键 控 +, 详 细 介 绍 了 ( ( ) 的基本原理和系统框图, 并分析它们的性能。 一个码元中, 而 每 个 奇 数 码 元 里 会 出 现 !% , !& 会 出 现 在 两个码元为一组的奇数组里, !# 会 出 现 在 四 个 码 元 为 一 组的奇数组里, 这 样 可 以 看 作 !! 对 于 整 个 码 子 进 行 了 相 位旋转, 也 可 以 说 !! 调 整 了 整 个 码 子 符 号 , 利用这种构 下面分别介绍 造和特性, 就 可 以 实 现 ’’( 的 调 制 和 解 调 。 数 据 速 率 为 )*)+,-. 和 !!+,-. 时 的 ’’( 模 式 。
!%6 ( $%7" ) 8" 9 % : !&64:!#6$&7"
表%
)*)+,-. ’’( 编码表
’’> 28@ 这 两 种 物 理 层 高 速 传 输 速 率 的 基 本 方 式 ,使 人
们最高可获得 ’’> 28@ 数据传输速率,从 而 使 无 线 局 域 网的优势进一步得到体现。
#"#
$$% 的 原 理 及 实 现
)*)’’( 调制框图
!"
技术论坛
上图中, ( 用来从 % 个 & 位的复选码中选则一个来调整整个 !"#!$ ) 码元, 该 & 位长的复码子的时钟是 ’’()*+, - .# 可以看出该码子 实 际 起 到了一个扩频的作用,其余两比特数据用时钟将其速率调整在 并与前面选中的 & 位长复码 ’/$01() - .# 作为参与 23456 调制的码元, 子相调制, 即对应与 !’ 。 以便更加有效的利用补偿 另外, 有 些 公 司 提 出 采 用 BC6A 接 收 , 码良好的互不相关和自相关特性, BC6A 接收时要对每条传播路径 进 行处理, 886 的相关器就 要 成 倍 增 加 , DCBBC5 提 出 的 BC6A 接 收 方 案是在前端加入 886 相关器, 产生一对码子和标志映射, 再对这组映 射进行解码, 或者快速补 886 相关器一般采用快速 EFG.* 变换( HEI ) 偿码变换来实现, 在 BC6A 接收过程中可以加入均衡器来消除由于信 道产生的码间干扰( 和码片间干扰( 。 @5@ ) @8@ )
相关文档
最新文档