图解零电压开关电源(ZVS)的10个工作流程描述
关于单管zvs控制电路 -回复的文章

关于单管zvs控制电路 -回复的文章单管ZVS控制电路是一种常见的电路设计,用于实现零电压开关(Zero Voltage Switching)的控制。
它在许多应用中被广泛使用,特别是在高频开关电源和变频器中。
单管ZVS控制电路的工作原理是利用谐振电路的特性,通过合理设计电路参数,使得开关管在开关过程中能够实现零电压开关。
这样可以减小开关过程中的功率损耗和噪声干扰,提高系统的效率和可靠性。
在单管ZVS控制电路中,主要包括一个谐振电路、一个驱动电路和一个控制信号源。
谐振电路由谐振电感、谐振电容和负载组成,它能够提供所需的谐振频率和输出功率。
驱动电路负责对开关管进行驱动,使其能够按照控制信号源的要求进行开关操作。
当控制信号源发出触发信号时,驱动电路会将信号传递给开关管。
在合适的时机,通过调节驱动信号的频率和占空比,使得开关管能够在零交流电压下进行开关操作。
这样可以减小开关过程中的功率损耗和噪声干扰,提高系统的效率和可靠性。
单管ZVS控制电路具有许多优点。
首先,它能够实现零电压开关,减小了开关过程中的功率损耗和噪声干扰。
其次,它能够提高系统的效率和可靠性,延长设备的使用寿命。
此外,单管ZVS控制电路还具有结构简单、成本低廉等优点。
然而,单管ZVS控制电路也存在一些问题需要解决。
例如,在设计过程中需要考虑谐振频率、谐振电感和谐振电容等参数的选择。
此外,在实际应用中还需要考虑开关管的选择和驱动电路的设计等问题。
总之,单管ZVS控制电路是一种常见且有效的电路设计,用于实现零电压开关。
它在高频开关电源和变频器等应用中具有广泛的应用前景。
通过合理设计电路参数和驱动信号源,可以实现零电压开关操作,减小功率损耗和噪声干扰,提高系统效率和可靠性。
然而,在实际应用中还需要解决一些问题,并进行合理的设计和选择。
自激式软开关变换器(ZVS)教程

自激式软开关变换器(ZVS)教程前言第一章关于本电路第二章ZVS的工作原理第三章ZVS的元件选择第四章ZVS的拓展应用之电磁枪配套升压器第五章ZVS的拓展应用之基于ZVS的滞后反馈升压器第六章ZVS的拓展应用之高效电鱼机ZVS电路对于各位来说可能并不陌生,可能很多同学都制作过数十个ZVS电路了。
ZVS的最经常用途是驱动高压包拉弧,zvs具有简单、功率大、发热小效率高等优点。
在此提醒一下各位,不要不加思索地一味重复制作某个电路,DIY<>纯粹的组装。
本教程将介绍ZVS 的背景、工作原理、制作经验和高级应用方式(这是亮点!)同时带领各位领悟DIY的真谛!第一章关于本电路相信很多人看到了很熟悉的那个电路。
这就是自激式软开关变换器,常被大家称为ZVS。
值得一提的是,ZVS是一种电路工作模式的名称(Zero voltage switch,零电压开关),用于描述在开关电源中功率管在其两端电压为零时进行开关动作,此时没有开关损耗。
本电路的功率管正是由于工作在ZVS模式又加上太著名了所以被称为ZVS……(下文中ZVS代表本电路)ZVS是一种Royer变换器,那么Royer是啥?可能很多同学第一次听说这个名词,下面让我为大家分解。
1955年美国的科学家罗那(G.H.Royer)首先研制成功了利用磁芯的饱和来进行自激振荡的晶体管直流变换器。
此后,利用这一技术的各种形式的精益求精直流变换器不断地被研制和涌现出来,从而取代了早期采用的寿命短、可靠性差、转换效率低的旋转和机械振子示换流设备。
由于晶体管直流变换器中的功率晶体管工作在开关状态,所以由此而制成的稳压电源输出的组数多、极性可变、效率高、体积小、重量轻,因而当时被广泛地应用于航天及军事电子设备。
由于那时的微电子设备及技术十分落后,不能制作出耐压高、开关速度较高、功率较大的晶体管,所以这个时期的直流变换器只能采用低电压输入。
此后Royer类变换器一直没有停止发展,先后出现了:三极管ZCS(用于LCD背光照明CCFL,本教程不多作介绍)场效应管ZVS(大家熟知的那个电路),这两个电路实现了谐振软开关,因此效率非常高,比PWM硬开关变换器的效率高不少。
第六章 软开关技术(移相全桥ZVS软开关电路分析)

td (lead ) 2CleadVin / I1
在这段时间里,原边电流等于折算到 原边的滤波电 ) / K
4.开关模态3 在 t2 时刻,关断 Q4,原边电流 i p 转 移到 C2和 C4中,一方面抽走 C2上的 电荷,另一方面又给 C4充电。 由于C2 和C4 的存在,Q4的电压是从零 慢慢上升的,因此 Q4是零电压关 断。这段时间里谐振电感 Lr 和C2 及 C4在谐振工作。原边电流 i p 和 C4 的电压分别为: 电容C2 ,
2.开关模态1 在 t 0 时刻关断Q 1,原边电流 i p 从 Q 1中转移到到 C3和 C1 支路中,给
C1充电,同时 C3被放电。 电容 C1 的电压从零开始线性上升
电容 C3 的电压从 Vin开始线性下降 Q 1是零电压关断。
i p (t ) I p (t0 ) I1
vC1 (t )
到 t4 时刻,原边电流从 I p (t3 )下降到 零,二极管 D2和 D3自然关断。 持续时间为: t L I (t ) / V
34 r P 3
Vin i p (t ) I p (t3 ) (t t3 ) Lr
in
6. 开关模态5 在 t 4 时刻,原边电流流经 Q2和 Q3。 由于原边电流仍不足以提供负载 电流,负载电流仍由两个整流管 提供回路,因此原边绕组电压仍 然为零,加在谐振电感两端电压 是电源电压Vin ,原边电流反向线 性增加。
到 t5 时刻,原边电流达到折算到原 I Lf (t5 ) / K 值,该开 边的负载电流 关模态结束。 持续时间为: L I (t ) / K
Vin i p (t ) (t t4 ) Lr
t45
zvs原理

zvs原理ZVS原理是一种用于降低电力损失和提高效率的电源开关技术,它的全称是“零电压开关原理”(Zero Voltage Switching)。
该技术用于开关电源、逆变器等电路中,可以有效减少开关器件的开关损耗,从而提高整个电路系统的效率,同时降低了电压的涟漪和噪声。
一、ZVS的原理在讲解ZVS原理之前,我们需要先来了解一下开关电源的基本结构。
开关电源主要由开关管、变压器、输出电容、滤波电感和控制电路等组成。
开关电源的工作原理是,通过控制开关管的导通和断开,将直流电源转换为高频脉冲电流,然后通过变压器转换为所需电压和电流,最后通过输出电容和滤波电感对电压进行滤波,得到所需的直流电信号。
在这个过程中,开关管的开关是非常重要的。
一般来说,开关管在导通和断开时都会存在一定的开关损耗,这会造成能量的损失和电路的效率下降。
为了降低这种开关损耗,ZVS技术被广泛应用在开关电源中。
ZVS技术是利用一个LC 谐振电路来控制开关管的开关,让开关管在电压为零的时候进行开关,从而达到减小开关损耗的效果。
图1是ZVS电路的示意图,它由一个开关管Q1、一个变压器T1和两个谐振电容C1、C2和两个电感L1、L2组成。
在电源端口增加了一个电感Ls并且在输出负载上并联一个电容Cout。
图中的电感L1、L2直接连接到开关管Q1上。
在开关管Q1和变压器T1之间串联了一个电容Cin,电容Cin的值大约是图中LC谐振电路的四倍。
当开关管Q1导通时,电流从直流电源流入到电容Cin中,同时电容Cin开始充电。
当电容Cin中的电压与电源电压相等时,电容Cin开始放电,电流通过电感L1、Ls、L2和开关管Q1之间形成了一个匹配的谐振电路。
当电容C2的电压达到零电位时,开关管Q1不会产生开关损耗。
电容C2接在变压器T1次级上,当C 2 的电压达到零电位时,开关管才能够开关。
在此前的时刻,开关管无法开关,因为电容Cin会阻止开关管Q1中的电流流入谐振电路的一侧。
自激式软开关变换器(ZVS)教程

自激式软开关变换器(ZVS)教程前言第一章关于本电路第二章ZVS的工作原理第三章ZVS的元件选择第四章ZVS的拓展应用之电磁枪配套升压器第五章ZVS的拓展应用之基于ZVS的滞后反馈升压器第六章ZVS的拓展应用之高效电鱼机ZVS电路对于各位来说可能并不陌生,可能很多同学都制作过数十个ZVS电路了。
ZVS的最经常用途是驱动高压包拉弧,zvs具有简单、功率大、发热小效率高等优点。
在此提醒一下各位,不要不加思索地一味重复制作某个电路,DIY<>纯粹的组装。
本教程将介绍ZVS 的背景、工作原理、制作经验和高级应用方式(这是亮点!)同时带领各位领悟DIY的真谛!第一章关于本电路相信很多人看到了很熟悉的那个电路。
这就是自激式软开关变换器,常被大家称为ZVS。
值得一提的是,ZVS是一种电路工作模式的名称(Zero voltage switch,零电压开关),用于描述在开关电源中功率管在其两端电压为零时进行开关动作,此时没有开关损耗。
本电路的功率管正是由于工作在ZVS模式又加上太著名了所以被称为ZVS……(下文中ZVS代表本电路)ZVS是一种Royer变换器,那么Royer是啥?可能很多同学第一次听说这个名词,下面让我为大家分解。
1955年美国的科学家罗那(G.H.Royer)首先研制成功了利用磁芯的饱和来进行自激振荡的晶体管直流变换器。
此后,利用这一技术的各种形式的精益求精直流变换器不断地被研制和涌现出来,从而取代了早期采用的寿命短、可靠性差、转换效率低的旋转和机械振子示换流设备。
由于晶体管直流变换器中的功率晶体管工作在开关状态,所以由此而制成的稳压电源输出的组数多、极性可变、效率高、体积小、重量轻,因而当时被广泛地应用于航天及军事电子设备。
由于那时的微电子设备及技术十分落后,不能制作出耐压高、开关速度较高、功率较大的晶体管,所以这个时期的直流变换器只能采用低电压输入。
此后Royer类变换器一直没有停止发展,先后出现了:三极管ZCS(用于LCD背光照明CCFL,本教程不多作介绍)场效应管ZVS(大家熟知的那个电路),这两个电路实现了谐振软开关,因此效率非常高,比PWM硬开关变换器的效率高不少。
Vicor电源技术讲解精品课件

SC 脚
45
控制功能
并联
PR 脚
于输入连接成并联应用 双向传输埠 直流或交流耦合 支援容错系统
最新 PPT
46
独特的并联方法
废除串联的接法 单线或容错网架构 交流或直流连接 瞬时均流
最新 PPT
47
独特的并联方法
结构及特性
结构 单线连接直流耦合 单线连接交流耦合 交流网耦合 变压器耦合 相位阵列控制器
24
电气表现
本地感应
于输出端闭合环路 对传送线之压降没有补偿
+IN
+OUT
+S
PC
SC
PR
-S
-IN
-OUT
最新 PPT
负载
25
电气表现
遥感
对传送线之压降作出补偿 负载端闭合环路
+IN+IN PC PC PR PR -IN -IN
+OU+TOUT +S +S
SC SC
-S -S -OU-TOUT
所有“大脑”之输入与输出端以3000Vac / 4242Vdc 测试及不少于2秒。
供应商之隔离变压器以3000Vac/ 4242Vdc作100%预 测试。
所有光耦合器均根据VDE0884作100%预测试。
最新 PPT
61
电器安全概念
Vicor 生产线上之高压测试
EN 60950容许电源系统内某些电气元件不用 接在系统内作认证测试。由于连接至电源输出 端及机箱之电容一般只有较低之额定电压,它 们会于高压测试损坏,故此它们可以移除后才 进行测试。
53
58
62
66
71
75
ZVS零电压开关电路原理与设计

ZVS零电压开关电路原理与设计一、初识ZVSZVS是什么,度娘查的为”零电压开关(Zero Voltage Switch)“。
即开关管关断时,开关管导通时,其两端的电压已经为0。
这样开关管的开关损耗可以降到最低。
我们平时使用的电磁炉和LLC电源都是这种谐振电源,普通的充电器等都是硬开关的,比这种谐振电源损耗要大些。
所以ZVS可以做到很高效率,但是有一个缺点,就是其调节范围一般都比较窄。
例如电磁炉,当我们把功率调到比较大时,为持续加热;当功率调的较小时,就开始断断续续加热,因为那个时候已经不能达到谐振状态了。
像我们普通充电器那种硬开关的电源,不管空载和满载都是持续震荡的。
初次看到ZVS电路,我惊呆了,两个MOS管加几个电阻电容就能组成谐振开关。
真是佩服人民的想象力啊。
该电路只需要少量元件即可达到零电压开关。
功率有人做到2KW以上,几百瓦的话两个开关管只需加小型散热器即可。
于是花了几天时间对ZVS电路进行了下深入研究,让大家明白其工作原理。
一、基本电路现在我们来进行分析其原理,首先使用proteus仿真电路进行仿真。
二、原理图分析1. 上电时L1通入的电流为零,电源通过R1、R2是Q1、Q 2导通,L1电流逐渐增加,由于两个开关管特性差异,将导致流入两个开关管的电流不同,假设Q1电流大于Q2电流,T1将产生b为正,a为负的感应电压,于是通过T1形成正反馈,使Q1导通,Q2截止。
完成启动过程。
2. (t0~t1时间)稳态Q1导通时,由于上个周期T1电流为a到c,并且C 1两端电压为零。
由于电流不能突变,T1电流将对C1充电,C1逐渐为a负c正的电压,并且正弦变大,T1电流正弦变小。
此时a电压被Q1下拉到0V,所以C点电压正弦变大,Q1栅极电压被D3稳压管钳位,Q1时钟保持导通。
3. (t1时间)当T1中电流下降为零,其能量全部释放到C1,此时C1电压达到最大值。
4. (t1~t2时间)C1开始通过T1由c到a放电,C1电压即c点电压正弦变小,T1电流由c到a正弦变大。
开关电源各模块原理实图讲解

开关电源原理一、开关电源的电路组成:开关电源的主要电路是由输入电磁干扰滤波器(EMI)、整流滤波电路、功率变换电路、PWMFDG1组成的电路进行保护。
当加在压敏电阻两端的电压超过其工作电压时,其阻值降低,使高压能量消耗在压敏电阻上,若电流过大,F1、F2、F3会烧毁保护后级电路。
②输入滤波电路:C1、L1、C2、C3组成的双π型滤波网络主要是对输入电源的电磁噪声及杂波信号进行抑制,防止对电源干扰,同时也防止电源本身产生的高频杂波对电网干扰。
当电源开启瞬间,要对C5充电,由于瞬间电流大,加RT1(热敏电阻)就能有效的防止浪涌电流。
因瞬时能量全消耗在RT1电阻上,一定时间后温度升高后RT1阻值减小(RT1是负温系数元件),这时它消耗的能量非常小,后级电路可正常工作。
③整流滤波电路:交流电压经BRG1整流后,经C5滤波后得到较为纯净的直流电压。
若C5容量变小,输出的交流纹波将增大。
通。
如果C8漏电或后级电路短路现象,在起机的瞬间电流在RT1上产生的压降增大,Q1导通使Q2没有栅极电压不导通,RT1将会在很短的时间烧毁,以保护后级电路。
三、 功率变换电路:1、MOS 管的工作原理:目前应用最广泛的绝缘栅场效应管是MOSFET (MOS 管),是利用半导体表面的电声效应进行工作的。
也称为表面场效应器件。
由于它的栅极处于不导电状态,所以输入电阻可以大大提高,最高可达105欧姆,MOS 管是利用栅源电压的大小,来改变半导体表面感生电荷的多少,从而控制漏极电流的大小。
2、常见的原理图:3、工作原理:R4、C3、R5、R6、C4、D1、D2组成缓冲器,和开关MOS 管并接,使开关管电压应力减少,EMI 减少,不发生二次击穿。
在开关管Q1关断时,变压器的原边线圈易产生尖峰电压和尖峰电流,这些元件组合一起,能很好地吸收尖峰电压和电流。
从R3测得的电流峰值信号参与当前工作周波的占空比控制,因此是当前工作周波的电流限制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图解零电压开关电源(ZVS)的10个工作流程描述
零电压开关电源(ZVS)是当前开关电源技术中比较先进,也比较成熟的技术,因为处于软开关状态,可以做到更高的频率及更高的效率,并且系统的可靠性更高跟稳定。
基于ZVS技术的芯片目前也比较多,比较典型的有UC3875及UCC3879,刘胜利的“现代高频开关电源实用技术”对ZVS的12个工作状态描述的比较详细,但因为描述的过于详细,反而不好简单理解,容易被书上牵着走,尤其是刘胜利书上涉及输出二极管的续流特性,分成了12个状态,若不考虑这个,一般只有10个状态。
2年前接触之后,表面上看懂了,但实际上还没有真正理解,这次再一次仔细分析,把10个过程简单的描述出来。
ZVS的核心是利用回路中的电感来实现对开关管输出电容的能量吸收,所以可以理解为电路工作频率略高于回路的谐振频率。
上图是一个标准的ZVS输出级电路,Ls是附加的电感,保证输出回路的电感量足够大,因为ZVS电路是靠电感来实现整个运转的,T为输出变压器,Q1~Q4为四桥臂功率管,可以是MOS管,也可以是IGBT管,一般不采用晶体管。
D1~D4是功率管的反向续流二极管,C1~C4是功率管的输出两端的等效电容及附加电容。
加在Q1~Q4栅极上的电压波形如图:
本人把这个过程用一张图来描述电流变化:。