时间序列的平稳性及其检验
时间序列的平稳性和单位根检验解读

0.05 -1.95 -1.95 -1.95 -1.95 -1.95 -1.95 -3.00 -2.93 -2.89 -2.88 -2.87 -2.86 2.61 2.56 2.54 2.53 2.52 2.52
0.10 -1.60 -1.61 -1.61 -1.61 -1.61 -1.61 -2.62 -2.60 -2.58 -2.57 -2.57 -2.57 2.20 2.18 2.17 2.16 2.16 2.16
只要其中有一个模型的检验结果拒绝了零假设,就可 以认为时间序列是平稳的;
当三个模型的检验结果都不能拒绝零假设时,则认为 时间序列是非平稳的。
20
整理课件
3、例:检验1978-2000年间中国支出法 GDP时间序列的平稳性
例8.1.6检验1978~2006年间中国实际支出法国 内生产总值GDPC时间序列的平稳性。
ADF检验在Eviews中的实现—检验 GDPP
29
整理课件
ADF检验在Eviews中的实现—检验 GDPP
30
整理课件
•从GDPP(-1) 的参数值看, 其t统计量的值 大于临界值, 不能拒绝存在 单位根的零假 设。同时,由 于常数项的t统 计量也小于 ADF分布表中 的临界值,因 此不能拒绝不 存在趋势项的 零假设。需进 一步检验模型 1。
均值E(Xt)=是与时间t 无关的常数; 方差Var(Xt)=2是与时间t 无关的常数;
协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有关,与时 间t 无关的常数;
则称该随机时间序列是平稳的(stationary),而
该随机过程是一平稳随机过程(stationary
stochastic process)。
时间序列平稳性检验

时间序列平稳性检验分析姓名xxx学院xx学院专业xxxx学号xxxxxxxxxx时间序列平稳性分析检验时间序列是一个计量经济学中的概念,时间序列分析中首先遇到的问题是关于时间序列数据的平稳性问题。
一、时间序列平稳性的定义假定某个时间序列是由某一随机过程(stochasticprocess)生成的,即假定时间序列{Xt}(t=1,2,•)•的每一个数值都是从一个概率分布中随机得到,如果满足下列条件:1)均值E(Xt)=u是与时间t无关的常数;2)方差Var(Xt)=o2是与时间t无关的常数;3)协方差Cov(Xt,Xt+k尸条是只与时期间隔k有关,与时间t无关的常数。
则称该随机时间序列是平稳的(stationary),而该随机过程是一平稳随机过程(stationary stochasticprocess)。
eg:一个最简单的随机时间序列是一具有零均值同方差的独立分布序列:Xt=Mt,Mt~N(0,o2)该序列常被称为是一个白噪声。
由于Xt具有相同的均值与方差,且协方差为零,由定义,一个白噪声序列是平稳的。
eg:另一个简单的随机时间列序被称为随机游走,该序列由如下随机过程生成:Xt=Xt-1+」t这里,出是一个白噪声。
容易知道该序列有相同的均值:E(Xt)=E(Xt-1)为了检验该序列是否具有相同的方差,可假设Xt的初值为X0,则易知X1=X0+」1X2=X1+」2=X0+J1+J2xt=X0+出+也++M由于X0为常数,%是一个白噪声,因此Var(Xt)=to2即Xt的方差与时间t有关而非常数,它是一非平稳序列二、时间序列平稳性检验的方法对时间序列进行平稳性检验中,实际上假定了时间序列是由具有白噪声随机误差项的一阶自回归过程AR(1)生成的。
但在实际检验中,时间序列可能由更高阶的自回归过程生成的,或者随机误差项并非是白噪声,这样用OLS法进行估计均会表现出随机误差项出现自相关(autocorrelation),导致DF检验无效。
时间序列的平稳性及其检验

19
伪回归spurious regression
如果时间序列是有趋势的,那么一定是非平稳 的,从而采用OLS估计的t检验和F检验就是无 效的。
两个具有相同趋势的时间序列即便毫无关系, 在回归时也可能得到很高的显著性和复判定系 数 出现伪回归时,一种处理办法是加入趋势变量, 另一种办法是把非平稳的序列平稳化
时间序列分析模型:解释时间序列自身的变化 规律和相互联系的数学表达式
确定性的时间序列模型 随机时间序列模型
3
随机过程与随机序列
设T 为某个时间集,对t T,取xt为随机变量, 对于该随机变量的全体 xt , t T 当取T 为连续集,如T (, )或T [0, )
1000.0 900.0 800.0
GDP指数(1978=100)
700.0 600.0 500.0 400.0 300.0 200.0 100.0 0.0
年份
79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03
8
说 明
自然科学领域中的许多时间序列常常是 平稳的。如工业生产中对液面、压力、 温度的控制过程,某地的气温变化过程, 某地100年的水文资料,单位时间内路口 通过的车辆数过程等。 但经济领域中多数宏观经济时间序列却 都是非平稳的。如一个国家的年GDP序 列,年投资序列,年进出口序列等。
9
时间序列模型的例子
22
时间序列模型不同于经典计量模 型的两个特点
⑴ 这种建模方法不以经济理论为依据, 而是依据变量自身的变化规律,利用外 推机制描述时间序列的变化。 ⑵ 明确考虑时间序列的非平稳性。如果 时间序列非平稳,建立模型之前应先通 过差分把它变换成平稳的时间序列,再 考虑建模问题。
时间序列平稳性和单位根检验教材

时间序列平稳性和单位根检验教材时间序列平稳性是时间序列分析中的重要概念。
在时间序列中,平稳性意味着序列的统计性质在时间上是不变的,不受时间趋势、周期性和季节性等因素的影响。
单位根检验是一种用于检验时间序列是否平稳的方法。
它的原理是通过检验序列中的单位根是否存在来判断序列的平稳性。
在时间序列分析中,平稳性是进行预测和建模的基础。
如果序列是平稳的,我们可以使用很多传统的统计方法进行分析,如自回归移动平均模型(ARMA)、自回归积分移动平均模型(ARIMA)等。
而如果序列不是平稳的,那么我们需要对其进行差分或其他预处理方法,以使其变为平稳序列。
单位根检验的方法有很多种,常用的有ADF检验(Augmented Dickey-Fuller test)、KPSS检验(Kwiatkowski-Phillips-Schmidt-Shin test)等。
这些方法都是基于对序列中单位根的存在与否进行统计检验的。
ADF检验是单位根检验中最常用的方法之一。
它的原理是对序列的自回归系数进行估计,并检验这些系数是否在单位根周围波动。
如果系数波动在单位根周围,则说明序列存在单位根,即不是平稳序列。
反之,如果系数波动在一个常数附近,则说明序列不存在单位根,即是平稳序列。
KPSS检验则是另一种常用的单位根检验方法。
它的原理是对序列进行单位根的最小二乘估计,并检验估计值与实际值之间的差异。
如果估计值与实际值之间存在显著的差异,则说明序列存在单位根,即不是平稳序列。
反之,如果差异不显著,则说明序列不存在单位根,即是平稳序列。
总结起来,时间序列平稳性和单位根检验是时间序列分析的重要概念和方法。
平稳性是进行预测和建模的前提,而单位根检验是判断序列是否平稳的重要工具。
通过对序列平稳性和单位根的检验,可以帮助我们选择合适的建模方法,提高时间序列分析的准确性和可靠性。
时间序列分析是一种用于研究时间变化规律的统计方法,广泛应用于经济学、金融学、气象学、社会学等领域。
时间序列的预处理(平稳性检验和纯随机性检验)

1、时序图的绘制
在SAS系统中,使用GPLOT程序可以绘 制多种精美的时序图。
可以设置坐标轴、图形颜色、观察值点 的形状及点之间的连线方式等
例2-1
data example2_1;
input price1 price2;
time=intnx('month','01jul2004'd,_n_-1);
format time date.;
cards;
12.85 15.21
13.29 14.23
12.41 14.69
15.21 13.27
14.23 16.75
13.56 15.33
;
proc gplot data= example2_1; \\绘图过程开始
plot price1*time=1 price2*time=2/overlay; //确定纵横轴,按两种
时间序列分析之
试验二
时间序列的预处理 (平稳性检验和纯随机性检验)
一、平稳性检验
时序图检验
根据平稳时间序列的均值、方差
及周期特征。
自相关图检验
根据平稳时间序列的短期相关性, 其自相关图中随着延迟期数 的增加,自相关系数会很快 地衰减向零。
cards;
97 154 137.7 149 164 157 188 204 179 210 202 218 209
204 211 206 214 217 210 217 219 211 233 316 221 239
215 228 219 239 224 234 227 298 332 245 357 301 389
平稳时间序列的时序图与自相关图
时间序列中的时间序列平稳性检验

时间序列中的时间序列平稳性检验时间序列平稳性是时间序列分析中的重要概念,对时间序列模型和预测有着重要的影响。
时间序列平稳性指的是时间序列中各时点的特征均匀分布、稳定不变,不随时间而发生显著变化的性质。
本文将介绍时间序列平稳性检验的相关理论与方法。
一、时间序列平稳性检验的基本理论在进行时间序列分析前,需要先确定该时间序列是否具有平稳性。
时间序列平稳性则是指时间序列中各时点的特征均匀分布、稳定不变,不随时间而发生显著变化,比如说均值、方差、自相关系数等都不应该与时间有关。
若时间序列不具有平稳性,则其分析结果会受到时间变量的影响,预测结果也不够准确。
对于时间序列平稳性的检验,主要考虑3个方面,即序列的均值、序列的方差、序列的自相关。
时间序列平稳性检验的基本理论是根据大数定理和中心极限定理进行的。
在此基础上,常用的做法是,检验序列均值是否随时间变化而变化、检验方差是否随时间变化而变化、检验自相关系数是否与时间有关。
二、时间序列平稳性检验的方法1.图示法:通过绘制时间序列图、自相关图、偏自相关图可以直观地了解时间序列的平稳性。
时间序列图是反映序列随时间变化时的整体变化趋势的图形;自相关图表达的是序列在不同时滞下的线性相关程度,若相关系数呈现规律性或趋势性,则序列不平稳;偏自相关图是用来判断序列是否具有趋势或季节性,若序列的偏自相关系数在超过置信度时突破界限,则序列不具有平稳性。
2.计量经济学检验法:常用的计量经济学检验法有DF检验、ADF检验、KPSS检验等,其中ADF检验最为常用。
ADF检验分为一般ADF检验、增广ADF检验、阶数选择ADF检验等,在跨期比较和模型选择方面有效,而且误判率较低。
3.波动函数法:通过测量时间序列各部分的波动函数,从而判断序列是否平稳。
包括周期波动函数法、空间波动函数法等。
周期波动函数法是通过加权平均数对序列进行周期性处理,得到波动函数,然后计算波动函数的标准偏差,以此来判断序列平稳性;空间波动函数法则是通过空间均方差来判断时间序列的平稳性。
时间序列的平稳性及其检验

⒉经典回归模型与数据的平稳性
❖ 经典回归分析暗含着一个重要假设:数据是平稳的。
❖ 数据非平稳,大样本下的统计推断基础——“一致 性”要求——被破怀。
❖ 经典回归分析的假设之一:解释变量X是非随机变 量
❖ 放宽该假设:X是随机变量,则需进一步要求: (1)X与随机扰动项 不相关∶Cov(X,)=0
表 9.1.1 一个纯随机序列与随机游走序列的检验
序号 Random1 自相关系数
Q LB
rk (k=0,1,…17)
Random2
rk
自相关系数
Q LB
(k=0,1,…17)
1 -0.031 K=0, 1.000 2 0.188 K=1, -0.051 3 0.108 K=2, -0.393 4 -0.455 K=3, -0.147 5 -0.426 K=4, 0.280 6 0.387 K=5, 0.187 7 -0.156 K=6, -0.363 8 0.204 K=7, -0.148 9 -0.340 K=8, 0.315 10 0.157 K=9, 0.194 11 0.228 K=10, -0.139 12 -0.315 K=11, -0.297 13 -0.377 K=12, 0.034 14 -0.056 K=13, 0.165 15 0.478 K=14, -0.105 16 0.244 K=15, -0.094 17 -0.215 K=16, 0.039 18 0.141 K=17, 0.027 19 0.236
0.059 3.679 4.216 6.300 7.297 11.332 12.058 15.646 17.153 18.010 22.414 22.481 24.288 25.162 26.036 26.240 26.381
时间序列数据的平稳性检验

23
(4)如果Xt~ I (0),Yt~ I (1),则aXt+bYt是I (1), 即I (1)具有占优势的性质。 (5)如果Xt和Yt都是I (1),则aXt+bYt一般情况下 是I (1),但不保证一定是I (1)。如果该线性组合是 I (0),Xt和Yt就是协整的,a、b就是协整参数。
6
三、伪回归现象 将一个随机游走变量(即非平稳数据)对另一个 随机游走变量进行回归可能导致荒谬的结果,传 统的显著性检验将告知我们变量之间的关系是不 存在的。 有时候时间序列的高度相关仅仅是因为二者同时 随时间有向上或向下变动的趋势,并没有真正的 联系。这种情况就称为“伪回归”(Spurious Regression)。
ˆi ),其中r为假设的协整关系的 trace=-T ln(1-
cov( yt , ys ) E( yt * ys ) 0
t s
)
那么,这一随机过程称为白噪声。
4
二、平稳性原理 如果一个随机过程的均值和方差在时间过程上都 是常数,并且在任何两时期的协方差值仅依赖于 该两时期间的距离或滞后,而不依赖于计算这个 协方差的实际时间,就称它为平稳的。
24
二、协整检验的具体方法 (一)EG检验和CRDW检验
假如Xt和Yt都是I (1),如何检验它们之间是否存 在协整关系,我们可以遵循以下思路:
首先用OLS对协整回归方程 行估计。
yt xt t
进
然后,检验残差 e 是否是平稳的。因为如果Xt和 t Yt没有协整关系,那么它们的任一线性组合都是 非平稳的,残差 et 也将是非平稳的。
12
对于式(5.1),DF检验相当于对其系数的显著 性检验,所建立的零假设是:H0 : 1如果拒绝 零假设,则称Yt没有单位根,此时Yt是平稳的; 如果不能拒绝零假设,我们就说Yt具有单位根, 此时Yt被称为随机游走序列(random walk series)是不稳定的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 白噪声(white noise)过程是平稳的: Xt=t , t~N(0,2)
• 随机游走(random walk)过程是非平稳的: Xt=Xt-1+t , t~N(0,2) Var(Xt)=t2 • 随机游走的一阶差分(first difference)是平 稳的: Xt=Xt-Xt-1=t ,t~N(0,2)
时间序列的平稳性及其检验
一、问题的提出 二、时间序列数据的平稳性 三、平稳性的图示判断 四、平稳性的单位根检验 五、单整时间序列 六、趋势平稳与差分平稳随机过程
一、问题的提出
• 从经典计量经济学模型的方法论基础出发
– 时间序列的平稳性可以替代随机抽样假定,采用平稳 时间序列作为样本,建立经典计量经济学模型,在模 型设定正确的前提下,模型随机扰动项仍然满足极限 法则和经典模型的基本假设(序列无关假设除外), 特别是正态性假设。 – 采用平稳时间序列作为样本,首先需要进行平稳性检 验。
i 1
m
X t t X t 1 i X t i t
样 本 容 量 显著性水平 0.01 0.05 0.10 25 -3.75 3.00 2.63 50 -3.58 -2.93 -2.60 100 -3.51 -2.89 -2.58 500 -3.44 -2.87 -2.57 ∝ -3.43 -2.86 -2.57 t分布临界值 (n=∝) -2.33 -1.65 -1.28
• 关于虚假回归的说明
– 一种误解:只有非平稳时间序列之间才能出现虚假回 归,平稳时间序列之间不会出现虚假回归。 – 回归分析,是一种统计分析,所揭示的是数据之间的 统计关系。数据之间的统计关系是经济行为关系的必 要条件,不是经济关系的充分条件。 – 古亚拉蒂:“从逻辑上说,一个统计关系式,不管多 强或多么有启发性,本身不可能意味着任何因果关系。 要谈因果关系,必须来自统计学之外,诉诸先验的或 者理论上的思考。”
– 如果 时间 序列含有明显的随时间变化的某种趋势 (如上升或下降),也容易导致DF检验中的自相关 随机误差项问题。
• ADF检验模型
X t X t 1 i X t i t
i 1 m
模型1 模型2
X t X t 1 i X t i t
• 采用平稳时间序列建立经典计量经济学结构模型, 可以有效地避免虚假回归。
– 虚假回归(spurious regression)也称为伪回归,是 由2003年诺贝尔经济学奖者格兰杰提出的。 – 格兰杰通过模拟试验发现,完全无关的非平稳时间序 列之间可以得到拟合很好但毫无道理的回归结果。这 一发现说明,非平稳时间序列由于具有共同的变化趋 势,即使它们之间在经济行为上并不存在因果关系, 如果将它们分别作为计量经济学模型的被解释变量和 解释变量,也能够显示较强的统计上的因果关系。
• 一般检验模型
X t X t 1 t X t X t 1 t
零假设 H0:=0 备择假设 H1:<0
• 可通过OLS法下的t检验完成。但是:
– 在零假设(序列非平稳)下,即使在大样本下t统计量 也是有偏误的(向下偏倚),通常的 t 检验无法使用。 – Dicky和 Fuller 于 1976 年提出了这一情形下 t 统计量服 从的分布(这时的t统计量称为统计量),即DF分布。 – 由于t统计量的向下偏倚性,它呈现围绕小于零均值的 偏态分布。
X t X t 1 t
随机游走,非平稳 对该式回归,如果确实 发现ρ =1,则称随机变 量Xt有一个单位根。 等价于通过该式判断 是否存在δ =0。
X t X t 1 t
X t ( 1) X t 1 t X t 1 t
• 通过上式判断Xt是否有单位根,就是时间序列平稳 性的单位根检验。
– 虚假回归,不仅可能出现在非平稳时间序列之间,也 可能出现在平稳时间序列之间和截面数据序列之间。 – 非平稳时间序列之间出现虚假回归的可能性更大,因 此,对时间序列进行平稳性检验,可以有效地减少虚 假回归。 – 在计量经济学模型研究中,杜绝虚假回归的最根本的 方法,是正确的设定模型。
二、时间序列的平稳性 Stationary Time Series
如果t<临界值,则拒绝零假设H0: =0,认为时 间序列不存在单位根,是平稳的。
单尾检验
2、ADF检验(Augment Dickey-Fuller test)
• 为什么将DF检验扩展为ADF检验?
– DF检验假定时间序列是由具有白噪声随机误差项的 一阶自回归过程AR(1)生成的。但在实际检验中,时 间序列可能由更高阶的自回归过程生成,或者随机 误差项并非是白噪声,用 OLS 法进行估计均会表现 出随机误差项出现自相关,导致DF检验无效。
• 定义
– 假定某个时间序列是由某一随机过程(stochastic process)生成的,即假定时间序列{Xt}(t=1, 2, …)的每一个数值都是从一个概率分布中随机得 到,如果满足下列条件: • 均值E(Xt)=是与时间t 无关的常数; • 方差Var(Xt)=2是与时间t 无关的常数; • 协方差Cov(Xt,Xt+k)=k 是只与时期间隔k有关, 与时间t 无关的常数。 – 则称该随机时间序列是平稳的(stationary),而该 随机过程是一平稳随机过程(stationary stochastic process)。 宽平稳、广义平稳
• 如果一个时间序列是非平稳的,它常常可通过 取差分的方法而形成平稳序列。
三、平稳性的图示判断
说明
Hale Waihona Puke • 本节的概念是重要的,属于经典时间序列分析。
• 在实际应用研究中,一般直接采用单位根检验, 图示判断应用较少。
• 建议作为自学内容。
四、平稳性的单位根检验
(unit root test)
1、DF检验(Dicky-Fuller Test)