蛋白质提取与纯化技术总结

合集下载

蛋白质分离与纯化技术的原理及方法

蛋白质分离与纯化技术的原理及方法

蛋白质分离与纯化技术的原理及方法蛋白质是生物体内重要的基本分子组成,对于维持正常生命活动和疾病诊断都具有重要的意义。

但是,大多数蛋白质在生物体内含量非常低,而其他非蛋白质物质影响蛋白质的检测和分离,因此需要分离和纯化。

本文将详细介绍蛋白质分离与纯化技术。

一、蛋白质分离技术的原理蛋白质分离技术是指根据生物分子的特异性,将混合的蛋白质样品分离为纯度高的蛋白质样品的一种技术。

蛋白质分离技术主要基于蛋白质之间不同的特异性,如不同蛋白质之间的分子量、等电点、亲和性、化学性质等。

目前,常用的蛋白质分离技术包括血凝素亲和层析,酸碱沉淀,凝胶过滤层析,离子交换层析等。

在这些技术中,用于分离纯化特定蛋白质的介质通常都是指具有某种亲和性的化合物。

例如,离子交换层析的介质是酰胺基结构化支链多孔聚合物,允许基于蛋白质的带电性进行区分和分离。

二、蛋白质纯化技术的原理在蛋白质的分离基础上,蛋白质纯化技术是指将分离出来的蛋白质再次通过特殊的操作方法,使蛋白质纯度相对较高,以获取更精确的蛋白质信息。

纯化方法的选择和分离方法的选择有关。

一般而言,蛋白质分离后,样品中常常含有一定的杂质。

因此,在纯化前应该清洁样品。

清洁样品的方法可以是简单的酸洗化或钠氢硝酸纯化。

为了获得高纯度的蛋白质,需要使用更高效的纯化方法,如离子交换,凝胶过滤,凝胶电泳等。

除此之外,还有一些高端的纯化技术如傅立叶红外显微光谱(FTIR),二维蛋白质凝胶电泳,蛋白质结构分析和序列识别等。

这些纯化技术在制备高纯度蛋白质样品中都有广泛的应用。

三、蛋白质分离和纯化的方法(一)离子交换层析技术离子交换是分离和分析离子化合物的一种方法,其原理是根据样品分子溶液里的离子性质(酸性或碱性)将蛋白质通过介质分离。

离子交换层析主要分为阴离子交换(AEC)和阳离子交换(CEC)两种,每种层析介质都包括两种类型的树脂:强的交换树脂(强酸性或强碱性)和弱的交换树脂。

强交换树脂具有极高的层析能力和选择性,但有时会在操作中造成带电蛋白质的不良堵塞。

蛋白质提取的方法和原理

蛋白质提取的方法和原理

蛋白质提取的方法和原理蛋白质提取是生物化学研究中一项非常重要的工作,它是通过化学或物理方法将目标蛋白质从混合物中提取出来,并获得纯度较高的蛋白样品。

蛋白质提取的方法和原理可以根据不同的需求和样本特点而有所区别,下面我将从样品处理、细胞破碎、蛋白质分离、纯化等方面详细介绍蛋白质提取的常用方法和原理。

一、样品处理样品的类型有很多,包括动物组织、细胞、血液等,每种样品的提取方法都有一定差异。

一般来说,细胞或组织样本在提取之前需要冷冻保存,并进行快速破碎以避免蛋白质降解。

对于血液样本,需要血样离心分离血浆或红细胞,再进行提取。

二、细胞破碎细胞破碎是蛋白质提取的关键步骤,目的是破坏细胞膜和细胞器,并释放蛋白质。

常见的细胞破碎方法有机械破碎、超声波破碎和化学法。

1. 机械破碎机械破碎是最常用的细胞破碎方法之一,可以通过碾磨、研磨、切割等方式破坏细胞。

例如,将样品置于液氮中冷冻后,使用研钵和研杵进行研磨,将细胞研磨成粉末状。

2. 超声波破碎超声波破碎是利用高频高能量的超声波震荡来破碎细胞,通常是在冷冻样品和显微量水中进行。

超声波的震荡可以高效破坏细胞和细胞器,并释放蛋白质。

3. 化学法化学法通常是通过加入化学试剂来破坏细胞。

例如,使用洗涤剂(如SDS、Triton X-100)可以溶解细胞膜,释放细胞内的蛋白质。

三、蛋白质分离蛋白质提取后,需要对蛋白质进行分离,去除杂质和其他成分。

1. 离心离心是最常用的蛋白质分离方法之一,通过不同速度的离心来分离蛋白质。

一般来说,较重的细胞碎片、细胞器和沉淀物会沉积在离心管的底部,而较轻的蛋白质上清液则在上方。

2. 电泳电泳是利用电场将带电蛋白质分离的技术。

常见的电泳方法有SDS-PAGE和凝胶过滤层析等。

SDS-PAGE可以根据蛋白质的大小和电荷来分离,凝胶过滤层析则可以根据蛋白质的分子量和渗透性进行分离。

四、蛋白质纯化蛋白质分离后,还需要进行纯化以获得较高纯度的蛋白样品。

蛋白纯化年度工作总结汇报

蛋白纯化年度工作总结汇报

蛋白纯化年度工作总结汇报蛋白纯化是一项关键的科学研究工作,常用于生物医药领域的蛋白质结构与功能研究、新药研发和疾病诊断治疗等领域。

在过去的一年里,本实验室团队针对蛋白纯化的各个环节,进行了深入的研究和实践。

本文将对我们的年度蛋白纯化工作进行综述和总结。

1. 研究目标和背景首先,让我们回顾一下我们的研究目标和背景。

我们团队的主要目标是通过蛋白纯化技术,获得高纯度的蛋白样本,以进行相关的研究。

我们的研究重点是一种与肿瘤发生和发展密切相关的蛋白质,该蛋白质在肿瘤细胞中扮演着重要角色。

2. 选择合适的纯化方法在蛋白纯化的过程中,选择合适的纯化方法是至关重要的。

我们首先进行了蛋白质的整体性质分析,包括分子量、等电点和亲水性等特性。

根据这些特性,我们选择了亲和层析和离子交换层析作为蛋白纯化的关键方法。

我们使用了Ni-NTA亲和树脂用于结合靶蛋白,而离子交换树脂则用于分离目标蛋白与其他杂质的混合物。

3. 优化纯化条件为了提高蛋白纯化的纯度和产率,我们进行了大量的优化实验。

我们改变了各种条件,如洗脱缓冲液的PH值、盐浓度和洗脱浓度,以找到最适宜的条件。

此外,我们还测试了不同洗涤剂的效果,包括甲基-β-硫代半乳糖苷(β-甲基硫代葡萄糖苷酸)和十二烷基葡萄糖苷(十二烷基葡萄糖苷),以及多肽酶抑制剂的添加。

4. 结果和讨论经过多次实验和优化,我们成功地获得了高纯度的目标蛋白样本。

通过SDS-PAGE检测和Western Blot验证,我们确定了目标蛋白的存在,并排除了其他杂质的干扰。

此外,我们还使用质谱法对纯化蛋白进行了验证,并与已知质谱数据进行了比对。

5. 蛋白样本的应用最后,我们对获得的高纯度蛋白样本进行了一系列的功能性研究。

我们在细胞实验中检测了蛋白的生物活性,并评估了其对细胞功能的影响。

此外,我们还进行了一系列的结构研究,利用X射线晶体学和核磁共振技术,探索了蛋白的三维结构和相互作用。

综上所述,我们的年度蛋白纯化工作取得了可喜的成果。

蛋白质纯化方法总结

蛋白质纯化方法总结

分离纯化某一特定蛋白质的一般程序可以分为前处理、粗分级、细分级三步。

1.前处理:分离纯化某种蛋白质,首先要把蛋白质从原来的组织或细胞中以溶解的状态释放出来并保持原来的天然状态(如果做不到呢?比如蛋白以包涵体形式存在),不丢失生物活性。

为此,动物材料应先提出结缔组织和脂肪组织,种子材料应先去壳甚至去种皮以免手单宁等物质的污染,油料种子最好先用低沸点(为什么呢)的有机溶剂如乙醚等脱脂。

然后根据不同的情况,选择适当的方法,将组织和细胞破碎。

动物组织和细胞可用电动捣碎机或匀浆机破碎或用超声波处理破碎。

植物组织和细胞由于具有纤维素、半纤维素和果胶等物质组成的细胞壁,一般需要用石英砂或玻璃粉和适当的提取液一起研磨的方法或用纤维素酶处理也能达到目的。

细菌细胞的破碎比较麻烦,因为整个细菌细胞壁的骨架实际上是一个借共价键连接而成的肽聚糖囊状大分子,非常坚韧。

破碎细菌细胞壁的常用方法有超声波破碎,与砂研磨、高压挤压或溶菌酶处理等。

组织和细胞破碎后,选择适当的缓冲液把所要的蛋白提取出来。

细胞碎片等不溶物用离心或过滤的方法除去。

如果所要的蛋白主要集中在某一细胞组分,如细胞核、染色体、核糖体或可溶性细胞质等,则可利用差速离心的方法将它们分开,收集该细胞组分作为下步纯化的材料。

如果碰上所要蛋白是与细胞膜或膜质细胞器结合的,则必须利用超声波或去污剂使膜结构解聚,然后用适当介质提取。

2. 粗分级分离:当蛋白质提取液(有时还杂有核酸、多糖之类)获得后,选用一套适当的方法,将所要的蛋白与其他杂蛋白分离开来。

一般这一步的分离用盐析、等电点沉淀和有机溶剂分级分离等方法。

这些方法的特点是简便、处理量大,既能除去大量杂质,又能浓缩蛋白溶液。

有些蛋白提取液体积较大,又不适于用沉淀或盐析法浓缩,则可采用超过滤、凝胶过滤、冷冻真空干燥或其他方法进行浓缩。

3.细分级分离:样品经粗分级分离以后,一般体积较小,杂蛋白大部分已被除去。

进一步纯化,一般使用层析法包括凝胶过滤、离子交换层析、吸附层析以及亲和层析等。

蛋白质分离和纯化的方法和技术

蛋白质分离和纯化的方法和技术

蛋白质分离和纯化的方法和技术蛋白质是生命体中极其重要的一种物质,它是细胞的基本组成单位,参与了多种生物学过程。

研究蛋白质在细胞中的功能与结构,需要对蛋白质进行高效、可靠的分离和纯化。

本文将介绍常用的蛋白质分离和纯化的方法和技术。

一、离子交换层析离子交换层析是分离蛋白质最常用、最成熟的方法之一。

其原理是利用蛋白质的电荷性质与离子交换树脂的对应性质,进行蛋白质的分离。

离子交换树脂可分为正离子交换树脂和负离子交换树脂两种类型。

正离子交换树脂的功能基团有负电荷,故可吸附具有正电荷的物质,例如氨基酸、多肽或蛋白质N端等;负离子交换树脂的功能基团有正电荷,故可吸附具有负电荷的物质,例如天冬氨酸、谷氨酸、磷酸基或蛋白质C端等。

根据目标蛋白质的电荷性质,选择合适的离子交换树脂进行分离。

离子交换层析速度较快,可分离多种电荷性质的蛋白质,但对样品的盐浓度要求较高,易受pH和盐浓度的影响,操作时需谨慎。

二、凝胶过滤层析凝胶过滤层析是利用孔径大小对蛋白质进行分离的方法。

凝胶过滤层析常用的凝胶有玻璃纤维、纤维素等。

玻璃纤维凝胶一般有不同的颗粒大小,大的颗粒孔径大,小的颗粒孔径小。

蛋白质分子较小,可通过大孔径的颗粒进入凝胶孔隙,而较大的物质被挡在颗粒外部无法穿过凝胶。

因此,蛋白质经过凝胶时易出现分子量排阻效应,使得小分子在大分子之前流出,从而实现了蛋白质的分离。

凝胶过滤层析操作简单,无需特殊设备或条件,但分离程度相对较低,不适宜纯化目标蛋白质。

三、亲和层析亲和层析是利用蛋白质与亲和柱中特定配体发生特异性结合,从而对蛋白质进行分离的方法。

亲和层析适用于具有特定结构、功能或序列的蛋白质,例如抗体、标签化蛋白、细胞受体等。

常见的亲和柱配体有融合蛋白、金属离子、细胞色素C等。

蛋白质样品在亲和柱上进行结合,待不结合蛋白质被洗脱后对结合蛋白质进行洗脱。

亲和层析具有选择性强、纯化程度高等优点,但亲和柱的制备成本较高,操作上也需注意其特异性。

生物制药中的蛋白质分离与纯化技术研究

生物制药中的蛋白质分离与纯化技术研究

生物制药中的蛋白质分离与纯化技术研究蛋白质是生物大分子中,具有重要生物学功能的主要分子之一。

蛋白质分离与纯化技术是生物制药中制备高质量重组蛋白质的关键步骤。

在目前的制药领域中,蛋白质经常被用作治疗,诊断和预防疾病的药物。

蛋白质的制备过程需要经过严谨的分离与纯化操作,以确保最终产物具有较高的纯度,并有利于其进一步的应用。

蛋白质分离的方法有很多种,但纯化高品质蛋白质的方法非常具有挑战性。

其中,手动分离的方法已经被取代,并由高通量方法取而代之。

本文将重点介绍几个常见的高通量分离和纯化蛋白质的技术,包括色谱技术,电泳技术和过滤技术,并简单介绍用于提高蛋白质产量的细胞培养技术。

1.色谱技术色谱技术是蛋白质纯化的主要方法之一。

其原理是利用成分在固定相、移动相和物理化学性质等方面的差异,对混合物进行分离。

这些逐渐被过滤的混合物,经过不同的分离途径(如离子交换、反相和尺寸排除技术)达成纯化输出物的目的。

例如,在一个反相高效液相色谱柱中,柱中的固定相是一种碳氢化合物,这些碳氢化合物中的化合物的极性不同,可以根据化合物吸附水的能力来对混合物进行分离。

利用这种方法进行分离后,可以得到高品质的蛋白质,并进行后续的研究。

2.电泳技术在分子量较小的蛋白质中,电泳技术是蛋白质分离和纯化方法的首选之一。

电泳技术基于被分离的蛋白质的分子量和电荷密度的差异,选择恰当的条件进行分离,常用的有SDS聚丙烯酰胺凝胶电泳(SDS-PAGE)、同位素荧光半制动并热雾化质谱等技术。

使用SDS-PAGE,可以在不破坏蛋白质的情况下,通过分子量分离蛋白质。

此外,SDS-PAGE还可以用于与一些特定抗体反应并进行后续分析。

3.过滤技术固定液体膜过滤技术(TFF)是未分子量大和相对重量大的蛋白质进行分离和纯化的一种技术。

该技术利用特殊设计的(反渗透)膜对溶液进行过滤,而不是使用物理和化学特性,这使其在蛋白质纯化中具有独特的优势。

在这种技术中,溶液会流过一个半透性膜,大分子会被留在膜上,并且小分子会被通过膜拦截,从而得到所需的蛋白质。

生物制药中的蛋白质表达与纯化技术

生物制药中的蛋白质表达与纯化技术

生物制药中的蛋白质表达与纯化技术生物制药是指利用生物技术和生物制备技术生产药品。

蛋白质是重要的生物大分子,在生物制药中,利用蛋白质表达技术制备蛋白质药物已经成为制备生物制药的重要手段之一。

在蛋白质表达和纯化中,重要的问题是选择适合的表达载体和表达宿主细胞,以及优化表达条件,提高表达能力和质量。

此外,表达的蛋白质需要纯化和质量控制等关键步骤,以保证药品的安全有效。

蛋白质表达技术蛋白质表达技术是指利用基因工程技术将目标蛋白质的编码基因导入到表达宿主细胞内,通过转录和翻译等过程表达出目标蛋白质。

根据表达载体的不同,蛋白质表达技术可分为细胞自主表达和外源表达两类。

细胞自主表达是指目标蛋白质能够在宿主细胞自身的代谢和生理过程中产生和积累。

这种表达方式常见于真核细胞,例如酵母细胞、哺乳动物细胞等。

此外,还有一些原核细胞能够自主表达复杂蛋白质,如高等厌氧菌和嗜热菌等。

外源表达是指将目标蛋白质的编码基因插入到宿主细胞的表达载体中,通过改变细胞代谢和生理状态,促进目标蛋白质的表达。

目前,外源表达技术已经被广泛应用于生物制药领域。

外源表达常用的表达宿主细胞包括细菌、真菌、昆虫、植物和哺乳动物等。

在选择表达载体和表达宿主细胞时,需要考虑到许多因素,如表达载体的复制数目、启动子、选择标记、信号序列、表达宿主细胞的生长速度、生理状态、代谢途径等。

蛋白质纯化技术蛋白质纯化是指将从表达宿主细胞中获得的蛋白质经过一系列的分离、纯化和检测等步骤,去除不必要的成分和杂质,提高目标蛋白质的纯度和活性。

在纯化过程中,需要根据目标蛋白质的生化性质和物理性质选择不同的分离和检测手段,例如亲和层析、逆向层析、凝胶过滤层析、离子交换层析、凝胶电泳等。

亲和层析是利用亲和基团与目标蛋白质相互作用,实现目标蛋白质的纯化。

通常,亲和基团可与目标蛋白质的某种生化或物理性质相互作用,例如其特异抗原性、活性或生物学功能等。

例如,利用亲和层析纯化抗体、酶或膜受体等蛋白质时,通常采用大量的亲和基团,如包括Ni2 +、酵母己糖、自旋素、脂肪酸酰化酶亲和基团等。

重组蛋白质的表达与纯化技术

重组蛋白质的表达与纯化技术

重组蛋白质的表达与纯化技术蛋白质是生命体活动的重要组成部分,对于生命体的生长、繁殖和免疫功能起着至关重要的作用。

而重组蛋白质则是利用基因工程技术,将人工合成的外源基因导入到特定的宿主细胞中,通过细胞表达和纯化技术得到的转录翻译产物。

这种技术不仅可以生产天然蛋白质,还可以生产人工合成的新型蛋白质,对于疾病的治疗和新药的研发有着重要的意义。

一、蛋白质表达技术蛋白质表达是获得大量重组蛋白质的重要方法。

选择适当的宿主细胞和表达载体是获得高水平表达的关键。

常用的宿主细胞包括大肠杆菌、酵母菌、昆虫细胞、哺乳动物细胞等。

1.大肠杆菌表达系统大肠杆菌表达系统具有生长快、表达量高等优点,广泛应用于重组蛋白质的表达和纯化。

其表达载体主要有pET和pBAD两种,pET系统一般用于产生可以形成包涵体的重组蛋白,pBAD系统用于在分泌表达中产生滞留蛋白。

2.昆虫细胞表达系统昆虫细胞表达系统包括SF9、Sf21、HighFive等细胞系,常用的表达载体为pIB/V5-His、pFastBac等。

昆虫细胞表达系统通常用于表达大分子蛋白质,如糖蛋白、膜蛋白等。

3.哺乳动物细胞表达系统哺乳动物细胞表达系统是目前表达规模最大、表达产物最接近人体蛋白质的一种表达系统。

其表达载体主要有pCDNA3.1、pCI 等,常用于表达与人体有关的蛋白质,如抗体、生长因子等。

二、蛋白质纯化技术蛋白纯化是重组蛋白质生产的重要环节,其目的是得到高质量的、纯度较高的蛋白质样品。

常见的纯化方法包括亲和层析法、离子交换层析法、凝胶过滤层析法、逆流式层析法等。

1.亲和层析法亲和层析法是指因与载体中固定的亲和剂相互结合而纯化目标蛋白质的一种方法。

亲和剂通常是与目标蛋白质有特异性结合作用的化合物,如亲和标签、酶底物、抗体等。

常见的亲和层析方法有亲和柱层析、亲和膜层析等。

2.离子交换层析法离子交换层析法是根据蛋白质带有正或负电荷的差异性进行分离的一种方法。

离子交换层析的柱填充物常为离子交换树脂,其一般分为阴离子交换树脂和阳离子交换树脂两种。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

蛋白质提取与纯化技术选择材料及预处理以蛋白质和结构与功能为基础,从分子水平上认识生命现象,已经成为现代生物学发展的主要方向,研究蛋白质,首先要得到高度纯化并具有生物活性的目的物质。

蛋白质的制备工作涉及物理、化学和生物等各方面知识,但基本原理不外乎两方面。

一是得用混合物中几个组分分配率的差别,把它们分配到可用机械方法分离的两个或几个物相中,如盐析,有机溶剂提取,层析和结晶等;二是将混合物置于单一物相中,通过物理力场的作用使各组分分配于来同区域而达到分离目的,如电泳,超速离心,超滤等。

在所有这些方法的应用中必须注意保存生物大分子的完整性,防止酸、硷、高温,剧烈机械作用而导致所提物质生物活性的丧失。

蛋白质的制备一般分为以下四个阶段:选择材料和预处理,细胞的破碎及细胞器的分离,提取和纯化,浓细、干燥和保存。

微生物、植物和动物都可做为制备蛋白质的原材料,所选用的材料主要依据实验目的来确定。

对于微生物,应注意它的生长期,在微生物的对数生长期,酶和核酸的含量较高,可以获得高产量,以微生物为材料时有两种情况:(1)得用微生物菌体分泌到培养基中的代谢产物和胞外酶等;(2)利用菌体含有的生化物质,如蛋白质、核酸和胞内酶等。

植物材料必须经过去壳,脱脂并注意植物品种和生长发育状况不同,其中所含生物大分子的量变化很大,另外与季节性关系密切。

对动物组织,必须选择有效成份含量丰富的脏器组织为原材料,先进行绞碎、脱脂等处理。

另外,对预处理好的材料,若不立即进行实验,应冷冻保存,对于易分解的生物大分子应选用新鲜材料制备。

蛋白质的分离纯化一,蛋白质(包括酶)的提取大部分蛋白质都可溶于水、稀盐、稀酸或碱溶液,少数与脂类结合的蛋白质则溶于乙醇、丙酮、丁醇等有机溶剂中,因些,可采用不同溶剂提取分离和纯化蛋白质及酶。

(一)水溶液提取法稀盐和缓冲系统的水溶液对蛋白质稳定性好、溶解度大、是提取蛋白质最常用的溶剂,通常用量是原材料体积的1-5倍,提取时需要均匀的搅拌,以利于蛋白质的溶解。

提取的温度要视有效成份性质而定。

一方面,多数蛋白质的溶解度随着温度的升高而增大,因此,温度高利于溶解,缩短提取时间。

但另一方面,温度升高会使蛋白质变性失活,因此,基于这一点考虑提取蛋白质和酶时一般采用低温(5度以下)操作。

为了避免蛋白质提以过程中的降解,可加入蛋白水解酶抑制剂(如二异丙基氟磷酸,碘乙酸等)。

下面着重讨论提取液的pH值和盐浓度的选择。

1、pH值蛋白质,酶是具有等电点的两性电解质,提取液的pH值应选择在偏离等电点两侧的pH 范围内。

用稀酸或稀碱提取时,应防止过酸或过碱而引起蛋白质可解离基团发生变化,从而导致蛋白质构象的不可逆变化,一般来说,碱性蛋白质用偏酸性的提取液提取,而酸性蛋白质用偏碱性的提取液。

2、盐浓度稀浓度可促进蛋白质的溶,称为盐溶作用。

同时稀盐溶液因盐离子与蛋白质部分结合,具有保护蛋白质不易变性的优点,因此在提取液中加入少量NaCl等中性盐,一般以0.15摩尔。

升浓度为宜。

缓冲液常采用0.02-0.05M磷酸盐和碳酸盐等渗盐溶液。

(二)有机溶剂提取法一些和脂质结合比较牢固或分子中非极性侧链较多的蛋白质和酶,不溶于水、稀盐溶液、稀酸或稀碱中,可用乙醇、丙酮和丁醇等有机溶剂,它们具的一定的亲水性,还有较强的亲脂性、是理想的提脂蛋白的提取液。

但必须在低温下操作。

丁醇提取法对提取一些与脂质结合紧密的蛋白质和酶特别优越,一是因为丁醇亲脂性强,特别是溶解磷脂的能力强;二是丁醇兼具亲水性,在溶解度范围内(度为10%,40度为6.6%)不会引起酶的变性失活。

另外,丁醇提取法的p H及温度选择范围较广,也适用于动植物及微生物材料。

二、蛋白质的分离纯化蛋白质的分离纯化方法很多,主要有:(一)根据蛋白质溶解度不同的分离方法1、蛋白质的盐析中性盐对蛋白质的溶解度有显著影响,一般在低盐浓度下随着盐浓度升高,蛋白质的溶解度增加,此称盐溶;当盐浓度继续升高时,蛋白质的溶解度不同程度下降并先后析出,这种现象称盐析,将大量盐加到蛋白质溶液中,高浓度的盐离子(如硫酸铵的SO4和NH4)有很强的水化力,可夺取蛋白质分子的水化层,使之“失水”,于是蛋白质胶粒凝结并沉淀析出。

盐析时若溶液pH在蛋白质等电点则效果更好。

由于各种蛋白质分子颗粒大小、亲水程度不同,故盐析所需的盐浓度也不一样,因此调节混合蛋白质溶液中的中性盐浓度可使各种蛋白质分段沉淀。

影响盐析的因素有:(1)温度:除对温度敏感的蛋白质在低温(4度)操作外,一般可在室温中进行。

一般温度低蛋白质溶介度降低。

但有的蛋白质(如血红蛋白、肌红蛋白、清蛋白)在较高的温度(25度)比0度时溶解度低,更容易盐析。

(2)pH值:大多数蛋白质在等电点时在浓盐溶液中的溶介度最低。

(3)蛋白质浓度:蛋白质浓度高时,欲分离的蛋白质常常夹杂着其他蛋白质地一起沉淀出来(共沉现象)。

因此在盐析前血清要加等量生理盐水稀释,使蛋白质含量在2.5-3.0%。

蛋白质盐析常用的中性盐,主要有硫酸铵、硫酸镁、硫酸钠、氯化钠、磷酸钠等。

其中应用最多的硫酸铵,它的优点是温度系数小而溶解度大(25度时饱和溶液为4.1M,即767克/升;0度时饱和溶解度为3.9M,即676克/升),在这一溶解度范围内,许多蛋白质和酶都可以盐析出来;另外硫酸铵分段盐析效果也比其他盐好,不易引起蛋白质变性。

硫酸铵溶液的pH常在4.5-5.5之间,当用其他pH值进行盐析时,需用硫酸或氨水调节。

蛋白质在用盐析沉淀分离后,需要将蛋白质中的盐除去,常用的办法是透析,即把蛋白质溶液装入秀析袋内(常用的是玻璃纸),用缓冲液进行透析,并不断的更换缓冲液,因透析所需时间较长,所以最好在低温中进行。

此外也可用葡萄糖凝胶G-25或G-50过柱的办法除盐,所用的时间就比较短。

2、等电点沉淀法蛋白质在静电状态时颗粒之间的静电斥力最小,因而溶解度也最小,各种蛋白质的等电点有差别,可利用调节溶液的pH达到某一蛋白质的等电点使之沉淀,但此法很少单独使用,可与盐析法结合用。

3、低温有机溶剂沉淀法用与水可混溶的有机溶剂,甲醇,乙醇或丙酮,可使多数蛋白质溶解度降低并析出,此法分辨力比盐析高,但蛋白质较易变性,应在低温下进行。

(二)根据蛋白质分子大小的差别的分离方法1、透析与超滤透析法是利用半透膜将分子大小不同的蛋白质分开。

超滤法是利用高压力或离心力,强使水和其他小的溶质分子通过半透膜,而蛋白质留在膜上,可选择不同孔径的泸膜截留不同分子量的蛋白质。

2、凝胶过滤法也称分子排阻层析或分子筛层析,这是根据分子大小分离蛋白质混合物最有效的方法之一。

柱中最常用的填充材料是葡萄糖凝胶(Sephadex ged)和琼脂糖凝胶(agarose gel)。

(三)根据蛋白质带电性质进行分离蛋白质在不同pH环境中带电性质和电荷数量不同,可将其分开。

1、电泳法各种蛋白质在同一pH条件下,因分子量和电荷数量不同而在电场中的迁移率不同而得以分开。

值得重视的是等电聚焦电泳,这是利用一种两性电解质作为载体,电泳时两性电解质形成一个由正极到负极逐渐增加的pH梯度,当带一定电荷的蛋白质在其中泳动时,到达各自等电点的pH位置就停止,此法可用于分析和制备各种蛋白质。

2、离子交换层析法离子交换剂有阳离子交换剂(如:羧甲基纤维素;CM-纤维素)和阴离子交换剂(二乙氨基乙基纤维素;DEAE?FONT FACE="宋体" LANG="ZH-CN">纤维素),当被分离的蛋白质溶液流经离子交换层析柱时,带有与离子交换剂相反电荷的蛋白质被吸附在离子交换剂上,随后用改变pH或离子强度办法将吸附的蛋白质洗脱下来。

(详见层析技术章)(四)根据配体特异性的分离方法-亲和色谱法亲和层析法(aflinity chromatography)是分离蛋白质的一种极为有效的方法,它经常只需经过一步处理即可使某种待提纯的蛋白质从很复杂的蛋白质混合物中分离出来,而且纯度很高。

这种方法是根据某些蛋白质与另一种称为配体(L igand)的分子能特异而非共价地结合。

其基本原理:蛋白质在组织或细胞中是以复杂的混合物形式存在,每种类型的细胞都含有上千种不同的蛋白质,因此蛋白质的分离(Separation),提纯(Purification)和鉴定(Characterization)是生物化学中的重要的一部分,至今还没的单独或一套现成的方法能移把任何一种蛋白质从复杂的混合蛋白质中提取出来,因此往往采取几种方法联合使用。

细胞的破碎1、高速组织捣碎:将材料配成稀糊状液,放置于筒内约1/3体积,盖紧筒盖,将调速器先拨至最慢处,开动开关后,逐步加速至所需速度。

此法适用于动物内脏组织、植物肉质种子等。

2、玻璃匀浆器匀浆:先将剪碎的组织置于管中,再套入研杆来回研磨,上下移动,即可将细胞研碎,此法细胞破碎程度比高速组织捣碎机为高,适用于量少和动物脏器组织。

3、超声波处理法:用一定功率的超声波处理细胞悬液,使细胞急剧震荡破裂,此法多适用于微生物材料,用大肠杆菌制备各种酶,常选用50-100毫克菌体/毫升浓度,在1KG至10KG频率下处理10-15分钟,此法的缺点是在处理过程会产生大量的热,应采取相应降温措施。

对超声波敏感和核酸应慎用。

4、反复冻融法:将细胞在-20度以下冰冻,室温融解,反复几次,由于细胞内冰粒形成和剩余细胞液的盐浓度增高引起溶胀,使细胞结构破碎。

5、化学处理法:有些动物细胞,例如肿瘤细胞可采用十二烷基磺酸钠(SDS)、去氧胆酸钠等细胞膜破坏,细菌细胞壁较厚,可采用溶菌酶处理效果更好。

无论用哪一种方法破碎组织细胞,都会使细胞内蛋白质或核酸水解酶释放到溶液中,使大分子生物降解,导致天然物质量的减少,加入二异丙基氟磷酸(D FP)可以抑制或减慢自溶作用;加入碘乙酸可以抑制那些活性中心需要有疏基的蛋白水解酶的活性,加入苯甲磺酰氟化物(PMSF)也能清除蛋白水解酥活力,但不是全部,还可通过选择pH、温度或离子强度等,使这些条件都要适合于目的物质的提取。

浓缩、干燥及保存一、样品的浓缩生物大分子在制备过程中由于过柱纯化而样品变得很稀,为了保存和鉴定的目的,往往需要进行浓缩。

常用的浓缩方法的:1、减压加温蒸发浓缩通过降低液面压力使液体沸点降低,减压的真空度愈高,液体沸点降得愈低,蒸发愈快,此法适用于一些不耐热的生物大分子的浓缩。

2、空气流动蒸发浓缩空气的流动可使液体加速蒸发,铺成薄层的溶液,表面不断通过空气流;或将生物大分子溶液装入透析袋内置于冷室,用电扇对准吹风,使透过膜外的溶剂不沁蒸发,而达到浓缩目的,此法浓缩速度慢,不适于大量溶液的浓缩。

3、冰冻法生物大分子在低温结成冰,盐类及生物大分子不进入冰内而留在液相中,操作时先将待浓缩的溶液冷却使之变成固体,然后缓慢地融解,利用溶剂与溶质融点介点的差别而达到除去大部分溶剂的目的。

相关文档
最新文档