matlab图像处理归一化

合集下载

MATLAB图像处理

MATLAB图像处理
位图位图图像由基本显示单元像点构图像由基本显示单元像点构图像像点图像像点8bit256色色16bit161665536色色24bit242416m色色88位图像位图像1616位图像位图像2424位图像位图像二进制位与图像之间二进制位与图像之间存在严格的位映射关存在严格的位映射关像点由若干个二进制位进行描述像点由若干个二进制位进行描述二进制位代表图像颜色的数量二进制位代表图像颜色的数量具有位映射关系的图叫作位图具有位映射关系的图叫作位图位图特指图位图特指图像素像素是图片大小的基本单位图像的像素大小是指位图在高宽两个方向的像素数相乘的结果例如宽度和高度均为100像素的图片其象素数是10000像素我们经常用的数码相机像素数所描述的就是相机拍照出来的照片是多大尺寸300万像素的数码照片通常是20481536像素而500万像素数码照片则是25601920像素
附2
MATLAB的数字图像处理
●所谓数字图像处理(digital image processing),就是 利用计算机对图像进行去除噪声、增强、恢复、分割、
提取特征等的理论、方法和技术。
1 数字图像的基本概念
● 图像分辨率 清晰度 绝对清晰度 视觉效果
● Resolution (分辨率)单位
dpi (display pixels / inch)
汉王指纹考勤机
指纹识别系统
纹形(箕形、斗形、弓形) 模式区 全局特征(描述了 指纹的总体结构) 核心点 三角点
指纹的基本特征
纹数
局部特征(指指纹纹乱上的节点的特征,这 些特征提供了指纹唯一性的确认信息)
指纹识别系统
纹形可以分为箕形、弓形、斗形,如下图所示。其他的 指纹图案都是基于这三种基本图案
箕形纹

位图

关于神经网络(matlab)归一化的整理

关于神经网络(matlab)归一化的整理

关于神经网络(matlab)归一化的整理关于神经网络归一化方法的整理由于采集的各数据单位不一致,因而须对数据进行[-1,1]归一化处理,归一化方法主要有如下几种,供大家参考:(by james)1、线性函数转换,表达式如下:y=(x-MinValue)/(MaxValue-MinValue)说明:x、y分别为转换前、后的值,MaxValue、MinValue分别为样本的最大值和最小值。

2、对数函数转换,表达式如下:y=log10(x)说明:以10为底的对数函数转换。

3、反余切函数转换,表达式如下:y=atan(x)*2/PI归一化是为了加快训练网络的收敛性,可以不进行归一化处理归一化的具体作用是归纳统一样本的统计分布性。

归一化在0-1之间是统计的概率分布,归一化在-1--+1之间是统计的坐标分布。

归一化有同一、统一和合一的意思。

无论是为了建模还是为了计算,首先基本度量单位要同一,神经网络是以样本在事件中的统计分别几率来进行训练(概率计算)和预测的,归一化是同一在0-1之间的统计概率分布;当所有样本的输入信号都为正值时,与第一隐含层神经元相连的权值只能同时增加或减小,从而导致学习速度很慢。

为了避免出现这种情况,加快网络学习速度,可以对输入信号进行归一化,使得所有样本的输入信号其均值接近于0或与其均方差相比很小。

归一化是因为sigmoid函数的取值是0到1之间的,网络最后一个节点的输出也是如此,所以经常要对样本的输出归一化处理。

所以这样做分类的问题时用[0.9 0.1 0.1]就要比用[1 0 0]要好。

但是归一化处理并不总是合适的,根据输出值的分布情况,标准化等其它统计变换方法有时可能更好。

关于用premnmx语句进行归一化:premnmx语句的语法格式是:[Pn,minp,maxp,Tn,mint,maxt]=premnmx(P,T)其中P,T分别为原始输入和输出数据,minp和maxp分别为P中的最小值和最大值。

matlab数组的归一化和反归一化

matlab数组的归一化和反归一化

文章标题:深度解析Matlab中数组的归一化和反归一化方法在Matlab中,数组的归一化和反归一化是数据处理中常见的操作。

本文将从简单到复杂,由浅入深地探讨这一主题,以便读者能够更深入地理解和应用这一数据处理方法。

一、Matlab中数组的归一化1. 什么是归一化?在数据处理中,归一化是一种常见的处理方法。

它可以将不同数据范围的值统一到相同的区间内,以便进行比较和分析。

在Matlab中,我们可以使用不同的函数来实现数组的归一化。

2. 归一化的方法在Matlab中,常见的数组归一化方法包括最小-最大归一化和Z-score标准化。

最小-最大归一化通过线性变换将数值缩放到指定的范围内,而Z-score标准化则通过减去均值并除以标准差将数据转换为标准正态分布。

3. 如何在Matlab中实现数组的归一化?在Matlab中,可以使用`normalize`或自定义函数的方式来实现数组的归一化。

通过`normalize`函数可以方便地对数组进行最小-最大归一化或Z-score标准化。

二、Matlab中数组的反归一化1. 反归一化的意义在实际应用中,我们经常需要对已经归一化的数据进行反归一化,以便将处理后的数据恢复到原始的范围内。

在Matlab中,同样提供了相应的函数来实现数组的反归一化。

2. 反归一化的方法Matlab中,可以使用`rescale`函数来实现反归一化。

这个函数可以将已经归一化的数据反转回原始的数值范围内,方便后续的分析和应用。

三、个人观点和总结在实际的数据处理和分析过程中,数组的归一化和反归一化是非常常见和重要的步骤。

通过本文的介绍,相信读者已经对Matlab中的数组归一化方法有了更深入的理解。

在实际应用中,不仅需要了解这些方法的原理,还需要根据具体的数据特点和分析需求来选择合适的归一化方法。

反归一化也是数据处理过程中不可或缺的一步,它能够保留原始数据的范围和特征,为后续的分析提供便利。

数组的归一化和反归一化是数据处理中的基础操作,掌握这些方法对于有效地处理和分析数据至关重要。

normxcorr2函数

normxcorr2函数

normxcorr2函数
Normxcorr2函数是一种用于图像处理的函数,它可以用于计算两个图像之间的相似度。

该函数是MATLAB中的一个内置函数,可以在图像处理和计算机视觉领域中广泛应用。

Normxcorr2函数的作用是计算两个图像之间的归一化互相关系数。

这个系数可以用来衡量两个图像之间的相似度。

在计算这个系数时,函数会将两个图像进行归一化处理,然后计算它们之间的互相关系数。

这个系数的取值范围在-1到1之间,其中1表示两个图像完全相同,-1表示两个图像完全不同。

Normxcorr2函数的使用非常简单,只需要将两个图像作为输入参数传递给函数即可。

函数会返回一个矩阵,其中每个元素表示两个图像在该位置的归一化互相关系数。

这个矩阵的大小取决于两个输入图像的大小和重叠程度。

Normxcorr2函数在图像处理和计算机视觉领域中有着广泛的应用。

例如,在目标跟踪中,可以使用该函数来计算当前帧图像与目标模板之间的相似度。

在图像匹配中,可以使用该函数来计算两个图像之间的相似度,从而找到它们之间的对应关系。

在图像拼接中,可以使用该函数来计算两个图像之间的重叠区域,从而实现无缝拼接。

Normxcorr2函数是一种非常有用的图像处理函数,它可以用于计算两个图像之间的相似度。

该函数在图像处理和计算机视觉领域中
有着广泛的应用,可以帮助我们实现许多有趣的应用。

使用matlab时需注意的问题

使用matlab时需注意的问题

使用matlab时需注意的问题使用Matlab时需注意的问题Matlab(Matrix Laboratory)是一种数学软件,被广泛应用于科研、工程、金融、医学等领域。

作为一种功能强大、易于上手的数学软件,Matlab也有一些需要注意的问题,接下来就来介绍一下。

1. Matlab版本问题不同的Matlab版本之间可能存在一些不兼容的问题,因此在选择Matlab版本时需要考虑自己所需的功能和所在领域的中使用常用的版本是哪一个。

另外如果需要使用一些特定的工具箱或者扩展模块,也需要选择相适应的版本,否则可能会出现错误。

2. Matlab语言容易掌握,但是需要掌握一些基本知识Matlab的语言容易掌握,但是在使用时还是需要掌握一些基本知识。

比如变量的命名规则、数组和矩阵的索引方式、运算符的使用、控制语句的使用、函数的定义和调用等等。

熟练掌握这些基本知识将有助于提高编写程序的效率。

3. 编写Matlab代码时需要考虑效率Matlab是一种解释性语言,因此在编写程序时需要考虑运行效率。

尽量使用矩阵运算代替循环结构,选择合适的算法和数据结构可以显著提高程序的效率。

同时也需要注意变量的内存使用情况,避免因为变量过多占用内存导致程序崩溃。

4. Matlab中的图像处理问题Matlab是一种功能强大的图像处理软件,但是在使用时需要注意一些问题。

例如,在处理大型图像时,需要注意内存泄漏和系统资源的使用情况。

在处理灰度级图像时,要注意归一化的问题,否则可能会导致图像处理结果出现明显的变化。

5. 数值计算误差问题Matlab中的数值计算可能会出现误差,因此在使用Matlab时需要注意计算的精度问题。

比如对于浮点数的计算,在计算时可能会出现舍入误差。

此时可以使用符点运算代替整数运算,将计算结果舍入到所需的精度。

6. Matlab的可视化工具Matlab为用户提供了丰富的可视化工具,特别是在绘制曲线、曲面、三维图形等方面,Matlab都有相应的工具。

matlab图像处理归一化

matlab图像处理归一化

matlab图像处理为什么要归一化和如何归一化一、为什么归一化1.基本上归一化思想是利用图像的不变矩寻找一组参数使其能够消除其他变换函数对图像变换的影响。

也就是转换成唯一的标准形式以抵抗仿射变换图像归一化使得图像可以抵抗几何变换的攻击,它能够找出图像中的那些不变量,从而得知这些图像原本就是一样的或者一个系列的。

因为我们这次的图片有好多都是一个系列的,所以老师把这个也作为我研究的一个方向。

我们主要要通过归一化减小医学图片由于光线不均匀造成的干扰。

2.matlab里图像数据有时候必须是浮点型才能处理,而图像数据本身是0-255的UNIT型数据所以需要归一化,转换到0-1之间。

3.归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。

目的是为了:(1).避免具有不同物理意义和量纲的输入变量不能平等使用(2).bp中常采用sigmoid函数作为转移函数,归一化能够防止净输入绝对值过大引起的神经元输出饱和现象(3).保证输出数据中数值小的不被吞食3.神经网络中归一化的原因归一化是为了加快训练网络的收敛性,可以不进行归一化处理归一化的具体作用是归纳统一样本的统计分布性。

归一化在0-1之间是统计的概率分布,归一化在-1--+1之间是统计的坐标分布。

归一化有同一、统一和合一的意思。

无论是为了建模还是为了计算,首先基本度量单位要同一,神经网络是以样本在事件中的统计分别几率来进行训练(概率计算)和预测的,归一化是同一在0-1之间的统计概率分布;当所有样本的输入信号都为正值时,与第一隐含层神经元相连的权值只能同时增加或减小,从而导致学习速度很慢。

为了避免出现这种情况,加快网络学习速度,可以对输入信号进行归一化,使得所有样本的输入信号其均值接近于0或与其均方差相比很小。

归一化是因为sigmoid函数的取值是0到1之间的,网络最后一个节点的输出也是如此,所以经常要对样本的输出归一化处理。

matlab 中normlized之后还原

matlab 中normlized之后还原

在MATLAB中,对数据进行归一化处理是常见的一种数据预处理方式。

通过归一化操作,可以将数据压缩到一个特定的范围内,从而方便数据分析和处理。

然而,在实际应用中,我们有时候需要对已经归一化的数据进行还原操作,将数据恢复到原始的尺度。

本文将详细介绍在MATLAB中进行数据归一化以及归一化后数据的还原操作。

一、MATLAB中的数据归一化1.1 数据归一化的概念数据归一化是将原始数据映射到一个预定的区间内,常见的归一化方式有最小-最大归一化和Z分数归一化两种方式。

最小-最大归一化将数据线性映射到[0,1]的区间内,而Z分数归一化将数据映射到均值为0,标准差为1的正态分布区间内。

1.2 MATLAB中数据归一化函数在MATLAB中,可以利用minmax函数进行最小-最大归一化,利用zscore函数进行Z分数归一化。

这两个函数分别可以对数据进行线性变换和标准化处理,非常方便实用。

二、数据归一化后的数据还原2.1 最小-最大归一化后的数据还原当数据经过最小-最大归一化处理后,我们可以通过如下的公式将数据还原到原始尺度:\[x = x_{norm} \times (max - min) + min\]其中,\(x_{norm}\)为归一化后的数据,\(x\)为还原后的数据,\(max\)和\(min\)分别为原始数据的最大值和最小值。

2.2 Z分数归一化后的数据还原当数据经过Z分数归一化处理后,我们可以通过如下的公式将数据还原到原始尺度:\[x = x_{norm} \times \sigma + \mu\]其中,\(x_{norm}\)为归一化后的数据,\(x\)为还原后的数据,\(\sigma\)为原始数据的标准差,\(\mu\)为原始数据的均值。

三、实例演示为了更直观地理解数据归一化和数据还原的过程,在这里给出一个简单的实例演示。

假设我们有一个数据集x,我们首先对数据进行最小-最大归一化处理:```x = [1, 2, 3, 4, 5];x_norm = (x - min(x)) / (max(x) - min(x));```我们利用上面介绍的公式将归一化后的数据还原到原始尺度:```x_original = x_norm * (max(x) - min(x)) + min(x);```同样地,对于Z分数归一化的数据还原也可以按照上面的公式进行操作。

matlab数字图像处理实验报告

matlab数字图像处理实验报告

《数字图像处理实验报告》实验一图像的增强一.实验目的1.熟悉图像在MATLAB下的读写、输出;2.熟悉直方图;3.熟悉图像的线性指数等;4.熟悉图像的算术运算和几何变换。

二.实验仪器计算机、MATLAB软件三.实验原理图像增强是指根据特定的需要突出图像中的重要信息,同时减弱或去除不需要的信息。

从不同的途径获取的图像,通过进行适当的增强处理,可以将原本模糊不清甚至根本无法分辨的原始图像处理成清晰的富含大量有用信息的可使用图像。

其基本原理是:对一幅图像的灰度直方图,经过一定的变换之后,使其成为均匀或基本均匀的,即使得分布在每一个灰度等级上的像素个数.f=H等或基本相等。

此方法是典刑的图像空间域技术处理,但是由于灰度直方图只是近似的概率密度函数,因此,当用离散的灰度等级做变换时,很难得到完全平坦均匀的结果。

频率域增强技术频率域增强是首先将图像从空间与变换到频域,然后进行各种各样的处理,再将所得到的结果进行反变换,从而达到图像处理的目的。

常用的变换方法有傅里叶变换、DCT变换、沃尔什-哈达玛变换、小波变换等。

假定原图像为f(x,y),经傅立叶变换为F(u,v)。

频率域增强就是选择合适的滤波器H(u,v)对F(u,v)的频谱成分进行处理,然后经逆傅立叶变换得到增强的图像。

四.实验内容及步骤1.图像在MATLAB下的读写、输出;实验过程:>> I = imread('F:\image\');figure;imshow(I);title('Original Image');text(size(I,2),size(I,1)+15, ...'', ...'FontSize',7,'HorizontalAlignment','right');Warning: Image is too big to fit on screen; displaying at 25% > In imuitools\private\initSize at 86In imshow at 1962.给定函数的累积直方图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

matlab图像处理为什么要归一化和如何归一化
一、为什么归一化
1.
基本上归一化思想是利用图像的不变矩寻找一组参数使其能够消除其他变换函数对图像变换的影响。

也就是转换成唯一的标准形式以抵抗仿射变换
图像归一化使得图像可以抵抗几何变换的攻击,它能够找出图像中的那些不变量,从而得知这些图像原本就是一样的或者一个系列的。

因为我们这次的图片有好多都是一个系列的,所以老师把这个也作为我研究的一个方向。

我们主要要通过归一化减小医学图片由于光线不均匀造成的干扰。

2.matlab里图像数据有时候必须是浮点型才能处理,而图像数据本身是0-255的UNIT型数据所以需要归一化,转换到0-1之间。

3.归一化是一种简化计算的方式,即将有量纲的表达式,经过变换,化为无量纲的表达式,成为纯量。

目的是为了:
(1).避免具有不同物理意义和量纲的输入变量不能平等使用
(2).bp中常采用sigmoid函数作为转移函数,归一化能够防止净输入绝对值过大引起的神经元输出饱和现象
(3).保证输出数据中数值小的不被吞食
3.神经网络中归一化的原因
归一化是为了加快训练网络的收敛性,可以不进行归一化处理
归一化的具体作用是归纳统一样本的统计分布性。

归一化在0-1之间是统计的概率分布,归一化在-1--+1之间是统计的坐标分布。

归一化有同一、统一和合一的意思。

无论是为了建模还是为了计算,首先基本度量单位要同一,神经网络是以样本在事件中的统计分别几率来进行训练(概率计算)和预测的,归一化是同一在0-1之间的统计概率分布;当所有样本的输入信号都为正值时,与第一隐含层神经元相连的权值只能同时增加或减小,从而导致学习速度很慢。

为了避免出现这种情况,加快网络学习速度,可以对输入信号进行归一化,使得所有样本的输入信号其均值接近于0或与其均方差相比很小。

归一化是因为sigmoid函数的取值是0到1之间的,网络最后一个节点的输出也是如此,所以经常要对样本的输出归一化处理。

所以这样做分类的问题时用[0.9 0.1 0.1]就要比用[1 0 0]要好。

但是归一化处理并不总是合适的,根据输出值的分布情况,标准化等其它统计变换方法有时可能更好。

二、如何归一化
matlab中的归一化处理有三种方法
1. premnmx、postmnmx、tramnmx
2. restd、poststd、trastd
3. 自己编程
(1)线性函数转换,表达式如下:
y=(x-MinValue)/(MaxValue-MinValue)
说明:x、y分别为转换前、后的值,MaxValue、MinValue分别为样本的最大值和最小值。

(2)对数函数转换,表达式如下:
y=log10(x)
说明:以10为底的对数函数转换。

(3)反余切函数转换,表达式如下:
y=atan(x)*2/PI
(4)一个归一化代码.
I=double(I);
maxvalue=max(max(I)');%max在把矩阵每列的最大值找到,并组成一个单行的数组,转置一下就会行转换为列,再max就求一个最大的值,如果不转置,只能求出每列的最大值。

f = 1 - I/maxvalue; %为什么要用1去减?
Image1=f;。

相关文档
最新文档