中考数学模拟习题带答案

合集下载

2024年中考数学模拟考试卷(含参考答案)

2024年中考数学模拟考试卷(含参考答案)

2024年中考数学模拟考试卷(含参考答案) 学校:___________班级:___________姓名:___________考号:___________ 一、选择题(各小题的四个选项中,只有一项符合题意)1.2024的倒数是()A.﹣2024B.12024C.2024 D.120242.下列计算正确的是()A.2x+3y=5xy B.(x+1)(x﹣2)=x2﹣x﹣2C.a2•a3=a6D.(a﹣2)2=a2﹣43.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥2C.x≥﹣2D.x≤24.下列运算正确的是()A.B.|3.14﹣π|=π﹣3.14C.a2⋅a3=a6D.(a﹣1)2=a2﹣2a﹣15.如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于()A.360°B.300°C.270°D.180°6.若x=2是关于x的一元一次方程ax﹣b=3的解,则4a﹣2b+1的值是()A.7B.8C.﹣7D.﹣87.每周四下午的活动课是学校的特色课程,同学们可以选择自己喜欢的课程.小明和小丽从“二胡课”“轮滑课”“围棋课”三种课程中随机选择一种参加,则两人恰好选择同一种课程的概率是()A.B.C.D.8.已知点A(﹣4,y1),B(2,y2),C(3,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y3<y2<y19.如图,边长为2的正方形ABCD的对角线相交于点O,将正方形沿直线AN折叠,点B 落在对角线上的点M处,折痕AN交BD于点E,则BE的长为()A.B.C.D.10.如图,四边形ABCD是边长为1的正方形,△BPC是等边三角形,连接DP并延长交CB的延长线于点H,连接BD交PC于点Q,下列结论:①∠BPD=135°;②△BDP∽△HDB;③DQ:BQ=1:2;④S△BDP=.其中正确的有()A.①②③B.②③④C.①③④D.①②④二、填空题(本大题共6小题,共24分)11.分解因式:a3﹣4ab2=.12.如图,在直角坐标系中,△ABC与△ODE是位似图形,其中点A(2,1),则位似中心的坐标是.13.已知关于的x方程有两个实数根,请写出一个符合条件的m 的值.14.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=2,则下列结论中正确的有.①4a+b=0;②9a+3b+c<0;③若点A(﹣3,y1),点,点C(5,y3)在该函数图象上,则y1<y3<y2;④若图象过(﹣1,0),则方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.15.如图,放置在直线l上的扇形OAB,由①图滚动(无滑动)到图②,在由图②滚动到图③,若半径OA=2,∠AOB=45°,则点O的路径长为.16.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x 轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n∁n D n的面积是.三.解答题17.(1)计算:;(2)解不等式组:,并写出它的所有整数解.18.为降低校园欺凌事件发生的频率,某课题组针对义务教育阶段学生校园欺凌事件发生状况进行调查并分析.课题组对全国可查的2800例欺凌事件发生原因进行抽样调查并分析,所得数据绘制成统计图如下:根据以上信息,回答下列问题:(1)本次抽样调查的样本容量为.(2)补全条形统计图;(3)在欺凌事件发生原因扇形统计图中,“因琐事”区域所在扇形的圆心角的度数为.(4)估计所有2800例欺凌事件中有多少事件是“因琐事”或因“发泄情绪”而导致事件发生的?19.为响应国家东西部协作战略,烟台对口协作重庆巫山,采购巫山恋橙助力乡村振兴.巫山恋橙主要有纽荷尔和默科特两个品种,已知1箱纽荷尔价格比1箱默科特少20元,300元购买纽荷尔的箱数与400元购买默科特的箱数相同.(1)纽荷尔和默科特每箱分别是多少元?(2)我市动员市民采购两种巫山恋橙,据统计,市民响应积极,预计共购买两种隥子150箱,且购买纽荷尔的数量不少于默科特的2倍,请你求出购买总费用的最大值.20.(10分)如图,一次函数y=﹣x+5的图象与函数的图象交于点A (4,a)和点B.(1)求n的值;(2)若x>0,根据图象直接写出当时x的取值范围;(3)点P在线段AB上,过点P作x轴的垂线,交函数的图象于点Q,若△POQ 的面积为1,求点P的坐标.21.如图,在△ABC中,AB=AC,AD⊥BC于点D,过点C作⊙O与边AB相切于点E,交BC于点F,CE为⊙O的直径.(1)求证:OD⊥CE;(2)若DF=1,DC=3,求AE的长.22.如图,已知抛物线y=ax2+2x+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,直线l:y=﹣2x+b与x轴、y轴分别交于点E,F,直线与抛物线有唯一交点G.(1)求抛物线和直线的解析式.(2)点H为抛物线对称轴上的动点,且到B,G的距离之和最小时,求点H的坐标,并求△HBG内切圆的半径.(3)在第一象限内的抛物线上是否存在点K,使△KBC的面积最大?如果存在,求出△KBC的最大面积,如果不存在,请说明理由.参考答案与试题解析一、选择题(各小题的四个选项中,只有一项符合题意)11.2024的倒数是()A.﹣2024B.12024C.2024 D.12024【解答】解:2024的倒数是1 2024故选:D.2.下列计算正确的是()A.2x+3y=5xy B.(x+1)(x﹣2)=x2﹣x﹣2 C.a2•a3=a6D.(a﹣2)2=a2﹣4【解答】解:A.2x与3y不是同类项,所以不能合并,故本选项不合题意;B.(x+1)(x﹣2)=x2﹣x﹣2,故本选项符合题意;C.a2•a3=a5,故本选项不合题意;D.(a﹣2)2=a2﹣4a+4,故本选项不合题意.故选:B.3.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥2C.x≥﹣2D.x≤2【解答】解:∵3x﹣6≥0∴x≥2故选:B.4.下列运算正确的是()A.B.|3.14﹣π|=π﹣3.14C.a2⋅a3=a6D.(a﹣1)2=a2﹣2a﹣1【解答】解:A.+无法合并,故此选项不合题意;B.|3.14﹣π|=π﹣3.14,故此选项符合题意;C.a2⋅a3=a5,故此选项不合题意;D.(a﹣1)2=a2﹣2a+1,故此选项不合题意;故选:B.5.如图,直线a∥b,点M、N分别在直线a、b上,P为两平行线间一点,那么∠1+∠2+∠3等于()A.360°B.300°C.270°D.180°【解答】解:如图,过点P作P A∥a,则a∥b∥P A∴∠3+∠NP A=180°,∠1+∠MP A=180°∴∠1+∠2+∠3=180°+180°=360°.故选:A.6.若x=2是关于x的一元一次方程ax﹣b=3的解,则4a﹣2b+1的值是()A.7B.8C.﹣7D.﹣8【解答】解:∵x=2是方程ax﹣b=3的解∴2a﹣b=3∴4a﹣2b=6∴4a﹣2b+1=7故选:A.7.每周四下午的活动课是学校的特色课程,同学们可以选择自己喜欢的课程.小明和小丽从“二胡课”“轮滑课”“围棋课”三种课程中随机选择一种参加,则两人恰好选择同一种课程的概率是()A.B.C.D.【解答】解:画树状图为:(用A、B、C分别表示“二胡课”“轮滑课”“围棋课”三种课程)∵共有9种等可能的结果数,其中两人恰好选择同一课程的结果数为3∴两人恰好选择同一课程的概率=.故选:A.8.已知点A(﹣4,y1),B(2,y2),C(3,y3)都在反比例函数的图象上,则y1,y2,y3的大小关系为()A.y1<y2<y3B.y1<y3<y2C.y2<y3<y1D.y3<y2<y1【解答】解:∵反比例函数∴函数图象的两个分支分别在第二、四象限内,且在每一个象限内y随x的增大而增大又∵点A(﹣4,y1),B(2,y2),C(3,y3)∴点A在第二象限内,点B、点C在第四象限内∴y1>0,y2<0,y3<0又∵2<4∴y2<y3∴y2<y3<y1故选:C.9.如图,边长为2的正方形ABCD的对角线相交于点O,将正方形沿直线AN折叠,点B落在对角线上的点M处,折痕AN交BD于点E,则BE的长为()A.B.C.D.【解答】解:如图所示,连接MN∵边长为2的正方形ABCD的对角线相交于点O∴AD=AB=BC=2∴∵将正方形沿直线AN折叠,点B落在对角线上的点M处,折痕AN交BD于点E ∴∠AMN=∠ABN=90°,MN=BN,AM=AB=2∴∵∠ACB=45°∴∠MNC=45°∴∴∵AD∥BN∴△ADE∽△NBE∴,即解得.故选:B.10.如图,四边形ABCD是边长为1的正方形,△BPC是等边三角形,连接DP并延长交CB的延长线于点H,连接BD交PC于点Q,下列结论:①∠BPD=135°;②△BDP∽△HDB;③DQ:BQ=1:2;④S△BDP=.其中正确的有()A.①②③B.②③④C.①③④D.①②④【解答】解:∵△PBC是等边三角形,四边形ABCD是正方形∴∠PCB=∠CPB=60°,∠PCD=30°,BC=PC=CD∴∠CPD=∠CDP=75°则∠BPD=∠BPC+∠CPD=135°,故①正确;∵∠CBD=∠CDB=45°∴∠DBH=∠DPB=135°又∵∠PDB=∠BDH∴△BDP∽△HDB,故②正确;如图,过点Q作QE⊥CD于E设QE=DE=x,则QD=x,CQ=2QE=2x∴CE=x由CE+DE=CD知x+x=1解得x=∴QD=x=∵BD=∴BQ=BD﹣DQ=﹣=则DQ:BQ=:≠1:2,故③错误;∵∠CDP=75°,∠CDQ=45°∴∠PDQ=30°又∵∠CPD=75°∴∠DPQ=∠DQP=75°∴DP=DQ=∴S△BDP=BD•PD sin∠BDP=×××=,故④正确;故选:D.二、填空题(本大题共6小题,共24分)11.分解因式:a3﹣4ab2=a(a+2b)(a﹣2b).【解答】解:a3﹣4ab2=a(a2﹣4b2)=a(a+2b)(a﹣2b).故答案为:a(a+2b)(a﹣2b).12.如图,在直角坐标系中,△ABC与△ODE是位似图形,其中点A(2,1),则位似中心的坐标是(4,2).【解答】解:如图所示:位似中心的坐标是(4,2)故答案为:(4,2).13.已知关于的x方程有两个实数根,请写出一个符合条件的m 的值 1.2.【解答】解:∵关于x方程(m﹣1)x2﹣=0的有两个实数根∴解得:0≤m≤2且m≠1.故答案为:1.2.14.二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,对称轴为直线x=2,则下列结论中正确的有①③④.①4a+b=0;②9a+3b+c<0;③若点A(﹣3,y1),点,点C(5,y3)在该函数图象上,则y1<y3<y2;④若图象过(﹣1,0),则方程a(x+1)(x﹣5)=﹣3的两根为x1和x2,且x1<x2,则x1<﹣1<5<x2.【解答】解:∵∴4a+b=0故①正确;∵抛物线与x轴的一个交点为(﹣1,0),对称轴为直线x=2∴另一个交点为(5,0)∵抛物线开口向下∴当x=3时,y>0,即9a+3b+c>0故②错误;∵抛物线的对称轴为x=2,C(5,0)在抛物线上∴点(﹣1,y3)与C(5,y3)关于对称轴x=2对称∵,在对称轴的左侧,抛物线开口向下,y随x的增大而增大∴y1<y3<y2故③正确;若图象过(﹣1,0),即抛物线与x轴的一个交点为(﹣1,0)方程a(x+1)(x﹣5)=0的两根为x=﹣1或x=5过y=﹣3作x轴的平行线,直线y=﹣3与抛物线的交点的横坐标为方程的两根∵x1<x2,抛物线与x轴交点为(﹣1,0),(5,0)∴依据函数图象可知:x1<﹣1<5<x2故④正确故答案为:①③④.15.如图,放置在直线l上的扇形OAB,由①图滚动(无滑动)到图②,在由图②滚动到图③,若半径OA=2,∠AOB=45°,则点O的路径长为.【解答】解:如图点O的运动路径的长=的长+O1O2+的长==故答案为:.16.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x 轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n∁n D n的面积是()n﹣1.【解答】解:∵直线l为正比例函数y=x的图象∴∠D1OA1=45°∴D1A1=OA1=1∴正方形A1B1C1D1的面积=1=()1﹣1由勾股定理得,OD1=,D1A2=∴A2B2=A2O=∴正方形A2B2C2D2的面积==()2﹣1同理,A3D3=OA3=∴正方形A3B3C3D3的面积==()3﹣1…由规律可知,正方形A n B n∁n D n的面积=()n﹣1故答案为:()n﹣1.三.解答题17.(1)计算:;(2)解不等式组:,并写出它的所有整数解.【解答】解:(1)原式=1﹣2×+2+2=4;(2)由①得:x≤1由②得:x>﹣1∴不等式组的解集为﹣1<x≤1则不等式组的整数解为0,1.18.为降低校园欺凌事件发生的频率,某课题组针对义务教育阶段学生校园欺凌事件发生状况进行调查并分析.课题组对全国可查的2800例欺凌事件发生原因进行抽样调查并分析,所得数据绘制成统计图如下:根据以上信息,回答下列问题:(1)本次抽样调查的样本容量为50.(2)补全条形统计图;(3)在欺凌事件发生原因扇形统计图中,“因琐事”区域所在扇形的圆心角的度数为213°.(4)估计所有2800例欺凌事件中有多少事件是“因琐事”或因“发泄情绪”而导致事件发生的?【解答】解:(1)本次抽样调查的样本容量为:30÷60%=50;故答案为:50;(2)满足欲望的人数有:50×12%=6(人)其他的人数有:50×8%=4(人)补全统计图如下:(3)“因琐事”区域所在扇形的圆心角的度数为:360°×60%=216°;故答案为:216°;(4)2800×(60%+20%)=2240(例)答:估计所有3000例欺凌事件中有2240例事件是“因琐事”或因“发泄情绪”而导致事件发生的.19.为响应国家东西部协作战略,烟台对口协作重庆巫山,采购巫山恋橙助力乡村振兴.巫山恋橙主要有纽荷尔和默科特两个品种,已知1箱纽荷尔价格比1箱默科特少20元,300元购买纽荷尔的箱数与400元购买默科特的箱数相同.(1)纽荷尔和默科特每箱分别是多少元?(2)我市动员市民采购两种巫山恋橙,据统计,市民响应积极,预计共购买两种隥子150箱,且购买纽荷尔的数量不少于默科特的2倍,请你求出购买总费用的最大值.【解答】解:(1)设纽荷尔每箱a元,则默科特每箱(a+20)元由题意得:=解得:a=60经检验,a=60是原分式方程的解∴a+20=80答:纽荷尔每箱60元,默科特每箱80元;(2)设购买纽荷尔x箱,则购买默科特(150﹣x)箱,所需费用为w元由题意得:w=60x+10(150﹣x)=﹣20x+12000∵x≥2(150﹣x)∴x≥100∵﹣20<0∴w随x的增大而减小∴当x=100时,w取得最大值,此时w=﹣20×100+12000=10000答:购买总费用的最大值为10000元.20.(10分)如图,一次函数y=﹣x+5的图象与函数的图象交于点A (4,a)和点B.(1)求n的值;(2)若x>0,根据图象直接写出当时x的取值范围;(3)点P在线段AB上,过点P作x轴的垂线,交函数的图象于点Q,若△POQ 的面积为1,求点P的坐标.【解答】解:(1)∵一次函数y=﹣x+5的图象与过点A(4,a)∴a=﹣4+5=1∴点A(4,1)∵点A在反比例函数的图象上∴n=4×1=4;(2)由,解得或∴B(1,4)∴若x>0,当时x的取值范围是1<x<4;(3)设P(x,﹣x+5),则Q(x,)∴PQ=﹣x+5﹣∵△POQ的面积为1∴=1,即整理得x2﹣5x+6=0解得x=2或3∴P点的坐标为(2,3)或(3,2).21.如图,在△ABC中,AB=AC,AD⊥BC于点D,过点C作⊙O与边AB相切于点E,交BC于点F,CE为⊙O的直径.(1)求证:OD⊥CE;(2)若DF=1,DC=3,求AE的长.【解答】解:(1)∵⊙O与边AB相切于点E,且CE为⊙O的直径∴CE⊥AB∵AB=AC,AD⊥BC∴BD=DC又∵OE=OC∴OD∥EB∴OD⊥CE;(2)连接EF∵CE为⊙O的直径,且点F在⊙O上,∴∠EFC=90°∵CE⊥AB∴∠BEC=90°.∴∠BEF+∠FEC=∠FEC+∠ECF=90°∴∠BEF=∠ECF∴tan∠BEF=tan∠ECF∴又∵DF=1,BD=DC=3∴BF=2,FC=4∴EF=2∵∠EFC=90°∴∠BFE=90°由勾股定理,得∵EF∥AD∴∴.22.如图,已知抛物线y=ax2+2x+3与x轴交于A(﹣1,0),B两点,与y轴交于点C,直线l:y=﹣2x+b与x轴、y轴分别交于点E,F,直线与抛物线有唯一交点G.(1)求抛物线和直线的解析式.(2)点H为抛物线对称轴上的动点,且到B,G的距离之和最小时,求点H的坐标,并求△HBG内切圆的半径.(3)在第一象限内的抛物线上是否存在点K,使△KBC的面积最大?如果存在,求出△KBC的最大面积,如果不存在,请说明理由.【解答】解:(1)把A(﹣1,0)代入y=ax2+2x+3得:0=a﹣2+3解得a=﹣1∴抛物线的解析式为y=﹣x2+2x+3;∵直线y=﹣2x+b与抛物线有唯一交点G∴﹣x2+2x+3=﹣2x+b有两个相等的实数解即x2﹣4x+b﹣3=0有两个相等的实数解∴Δ=0,即16﹣4(b﹣3)=0解得b=7∴直线的解析式为y=﹣2x+7;(2)在y=﹣x2+2x+3中,令y=0得x=﹣1或x=3∴B(3,0)∴抛物线y=﹣x2+2x+3的对称轴为直线x==1由得:∴G(2,3)∵点H为抛物线对称轴上的点∴HB=HA∴HB+HG=HA+HG∴当G,H,A共线时,HB+HG最小,最小值即为AG的长度;如图:由A(﹣1,0),G(2,3)可得直线AG解析式为y=x+1在y=x+1中,令x=1得y=2∴H(1,2);∴OH=OA=2∴△AOH是等腰直角三角形∴∠AHO=45°由对称性可得∠BHO=45°∴∠GHB=90°,即△GHB是直角三角形∵G(2,3),H(1,2),B(3,0)∴HG=,BG=,BH=2设△HBG内切圆的半径为r∴2S△BHG=BH•HG=(HG+BG+BH)•r∴r==∴△HBG内切圆的半径为;(3)存在点K,使△KBC的面积最大,理由如下:过K作KQ∥y轴交BC于Q,如图:设K(m,﹣m2+2m+3)在y=﹣x2+2x+3中,令x=0得y=3∴C(0,3)由B(3,0),C(0,3)可得y=﹣x+3∴Q(m,﹣m+3)∴KQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m∴S△KBC=×(﹣m2+3m)×3=﹣(m﹣)2+∴当m=时,S△KBC取最大值∴△KBC的最大面积是.。

模拟中考数学试题及答案

模拟中考数学试题及答案

模拟中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0.33333B. πC. √4D. 1/3答案:B2. 已知函数y=2x+1,当x=3时,y的值为:A. 7B. 5C. 3D. 1答案:A3. 一个长方形的长是宽的两倍,如果宽增加2米,长减少2米,面积不变,那么原来长方形的长是:A. 4米B. 6米C. 8米D. 10米答案:B4. 一个数的平方是25,这个数是:A. 5B. -5C. 5或-5D. 以上都不是答案:C5. 以下哪个图形是轴对称图形?A. 平行四边形B. 正五边形C. 不规则多边形D. 圆答案:D6. 一个圆的半径是3厘米,那么它的周长是:A. 18.84厘米B. 9.42厘米C. 6.28厘米D. 3.14厘米答案:A7. 一个等腰三角形的底边长为6厘米,底角为45度,那么它的高是:A. 3厘米B. 4厘米C. 6厘米D. 9厘米答案:B8. 以下哪个选项是二次函数的一般形式?A. y=ax^2+bx+cB. y=ax^2+bxC. y=a(x+b)(x+c)D. y=ax+b答案:A9. 一个数的相反数是-3,那么这个数是:A. 3B. -3C. 0D. 6答案:A10. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 以上都不是答案:C二、填空题(每题3分,共30分)11. 一个数的立方根是2,那么这个数是______。

答案:812. 一个数的倒数是1/4,那么这个数是______。

答案:413. 一个三角形的内角和是______度。

答案:18014. 一个等差数列的首项是3,公差是2,那么它的第五项是______。

答案:1115. 一个等比数列的首项是2,公比是3,那么它的第三项是______。

答案:1816. 一个直角三角形的两直角边长分别是3和4,那么它的斜边长是______。

答案:517. 一个圆的直径是10厘米,那么它的面积是______平方厘米。

2024年中考数学模拟考试试卷-带答案(北师大版)

2024年中考数学模拟考试试卷-带答案(北师大版)

2024年中考数学模拟考试试卷-带答案(北师大版)(满分:150分;考试时间:120分钟)学校:___________班级:___________姓名:___________考号:___________一.选择题:本题共10小题,每小题4分,共40分.每小题只有一个选项符合题目要求.1.如图中六棱柱的左视图是()2.中华鲟是地球上最古老的脊椎动物之一,距今约有140000000年的历史,是国家一级保护动物和长江珍稀特有鱼类保护的旗舰型物种.3月28日是中华鲟保护日,有关部门进行放流活动,实现鱼类物种的延续并对野生资源形成持续补充.将140000000用科学记数法表示应为()A.14x107B.1.4x108C.0.14x109D.1.4x1093.已知直线a∥b,将一块含30°角的直角三角板ABC按如图所示的方式放置,其中∠A=30°,∠ACB=90°,若∠1=45°,则∠2的度数为()A.30°B.25°C.20°D.15°4.下列运算错误的是( )A.(a2)³=a6B.a7÷a³=a4C.a³·a6=a9D.a2+a3=a55.下列运动项目图标中,既是轴对称图形又是中心对称图形的是( )6.若点(-2,y1)、(-1,y2)、(3,y3)在反比例函数y=kx(k<0)上,则y1,y2,y3的大小关系是( )A.y1<y2<y3B.y3<y2<y1C.y2<y1<y3D.y3<y1<y27.为了缓解中考备考压力,增加学习兴趣,李老师带领同学们玩转盘游戏.如图为两个转盘,转盘一被四等分,分别写有汉字"中""考""必""胜";转盘二被三等分,分别写有汉字"我""必""胜",将两个转盘转动一次(当指针指向区域分界线时,不作数,重新转动),若得到"必""胜"两字,则获得游戏一等奖,请求出获得游戏等奖的概率()A.12B.14C.16D.1129.如图,在半径为10的扇形AOB中,∠AOB=90°,C是AB上一点,CD⊥OA,CE⊥OB,垂足分别为D、E.若∠CDE=36°,则图中阴影部分的面积为()A.10πB.9πC.8πD.6π9.如图,在△ABC中,AB=AC,以点B为圆心,适当长为半径画弧,交BA于点M,交BC于点N,分别以点M,N为圆心,大于12MN的长为半径画弧,两弧在△ABC的内部相交于点P,画射线BP,交AC于点D,若AD=BD,则∠ADB的度数为( )A.36°B.54°C.72°D.108°10.定义:将平面直角坐标系中中横坐标与纵坐标均为整数的点叫作格点,如(-2,1),(2,0)等均为格点.如图,在平面直角坐标系xOy中,直线l:y=a(x+2)(a>0)与x轴交于点A,与抛物线E:y=ax2(a>0)交于B,C两点(B在C的左边).直线l与抛物线E所围成的封闭图形即阴影部分(不包含边界)中的格点数恰好是26个,则a的取值范围是()A.132<a≤7 B.193<a≤203C.132<a≤203或a=7 D.a=7二.填空题:本题共6小题,每小题4分,共24分.直接填写答案.11.因式分解:x2+6x+9= .12.一个不透明的盒子中装有若干个红球和6个白球,这些球除颜色外均相同.经多次摸球试验后发现,摸到白球的频率稳定在0.25左右,则盒子中红球的个数约为.13.若√7<a<√10,且a为整数,则a的值为.14.如图,正八边形ABCDEFGH的边长为4,以顶点A为圆心,AB的长为半径画圆,则阴影部分的面积为(结果保留π).15.如图,已知在Rt△ABC中,∠C=90°,AC=3,BC=4,分别将Rt△ABC的三边分别沿箭头方向平移2个单位长度并适当延长,得到△A1B1C1,则△A1B1C1的面积为。

2024年湖北省中考数学模拟卷(含答案)

2024年湖北省中考数学模拟卷(含答案)

2024 年湖北省中考模拟卷数学试卷(考试时间:120分钟满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在试卷和答题卡上,并将准考证号条形码粘贴在答题卡上指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用黑色签字笔直接答在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效,作图一律用2B 铅笔或黑色签字笔。

4.考试结束后,请将本试卷和答题卡一并交回。

一、选择题(共 10题,每题3分,共30分。

在每题给出的四个选项中,只有一项符合题目要求)1.月球表面的白天平均温度零上 126℃记作+126℃,则夜间平均温度零下 150℃应记作( )A.+150℃B.-150℃C.+276 ℃D.-276 ℃2.下列轴对称图形中,对称轴条数最多的是 ( )3.不等式组{x−1>1,−2x≤2的解集是 ( )A. x>0B. x>2C.x≥-1D.x≤-14.下列计算正确的是 ( )A.25=± 5B.53×52=56C.a³÷a²= aD.(a−b)²=a²−b²5.若一个多边形的外角和与它的内角和相等,则这个多边形是 ( )A.三角形B.五边形C.四边形D.六边形6.下列说法中,正确的是 ( )A.“在标准大气压下,将水加热到 100℃,水会沸腾”是随机事件B.随机事件是可能会发生,也可能不会发生的事件C.投掷一枚硬币 10 次,一定有 5 次正面向上D.“事件可能发生”是指事件发生的机会很多7.如图,在△ABC 中,AD 平分∠BAC,若∠1+∠3=160°,则∠2 的度数为 ( )A.70°B.75°C.80°D.85°(x⟩0)的图象经过点 C 和 AD 8.如图,正方形 ABCD 的顶点A,B 在y 轴上,反比例函数 y=xx的中点E.若AB=2,则k的值是( )A.3B.4C.5D.69.如图,点 A,B,C在⊙O上,BC∥OA,连接 BO 并延长,交⊙O 于点D,连接 AC,DC.若 CD=8, AC=45,则BC 的长为( )A.4B.5C.6D.5210.已知二次函数 y=ax²+bx+c(a⟩0)的图象经过点(-2,y₁),(m-3,n),(-1,0),(3,y₂),(7-m,n),则下列结论错误的是( )A.y₁>y₂B.5a+c=0C.方程ax²+bx+c=0的解为 x₁=−1,x₂= 5D.对于任意实数t,总有at²+bt+c≥−3a二、填空题(共 5 题,每题 3 分,共 15分)11.维生素C 能够促进白细胞的产生,且帮助其发挥免疫作用,成年人每天维生素C 的摄入量最少为 80 mg.已知1g=1000mg,则将数据 80 mg用科学记数法可表示为g.12.如图,直线 AB,CD 被直线 EF 所截,∠1=100°,当∠2= °时,AB∥CD.13.如图,一段长管中放置着三根同样的绳子,小明从左边随机选一根,张华从右边随机选一根,两人恰好选中同一根绳子的概率是 .14.如图①,“东方之门”通过简单的几何曲线处理,将传统文化与现代建筑融为一体,最大程度地传承了苏州的历史文化.如图②,“门”的内侧曲线呈抛物线形,已知其底部宽度为80m,高度为200m,则离地面 150 m 处的水平宽度(即 CD 的长)为 m. 15.如图,平面直角坐标系中,已知点 A(4,0),B(8,0),P 为y轴正半轴上一个动点,将线段PA 绕点 P 逆时针旋转 90°,点 A 的对应点为Q,则线段 BQ 的最小值是 .三、解答题(共9题,共75分,解答应写出文字说明、证明过程或演算步骤)16.(6分)计算:7a+3(a-3b)-2(b-3a).17.(6分)已知:如图,在矩形 ABCD 中,M,N 分别是AD,BC 的中点.求证: BM‖DN.18.(6分)当下年轻人喜欢喝奶茶,在入夏之际某知名奶茶品牌店推出两款爆款水果茶“满杯杨梅”和“芝士杨梅”.2 月 14 日当天销售“芝士杨梅”共获利润 400 元,“满杯杨梅”共获利润 480元,其中每杯“芝士杨梅”的利润是每杯“满杯杨梅”的5倍,“满杯杨梅”4比“芝士杨梅”多卖 20 杯,求每杯“芝士杨梅”和“满杯杨梅”的利润.19.(8分)为培养学生的数学思维,激发学生学习数学的兴趣,我校某班开展了学生数学讲题比赛,分别从男同学和女同学(含小红)中各选出 10 位选手参赛,成绩如下:男同学:85,85,90,75,90,95,80,85,70,95;女同学:80,95,80,90,85,75,95,80,90,80.数据整理分析如表:平均数中位数众数方差男同学85a8560女同学8582.5b45根据以上统计信息,回答下列问题:(1)表中a= ,b= ;(2)已知小红的成绩在女同学中是中等偏上,则小红的成绩最低可能为分;(3)小红认为在此次讲题比赛中,女同学成绩比男同学成绩好,你同意吗? 请选择适当的统计量说明理由.20.(8分)如图,塔 AB 前有一座高为DE 的观景台,已知( CD=6m,CD 的坡度为 i=1:3,点 E,C,A 在同一条水平直线上.某学习小组在观景台 C 处测得塔顶部 B 的仰角为 45°,在观景台 D处测得塔顶部B 的仰角为 27°.(1)求 DE 的长;(2)求塔 AB 的高度.(结果精确到 1m,参考数据: tan27°≈0.5,3≈ 1.7)21.(8分)如图,AB 是⊙O的弦,C 是⊙O外一点,( OC⊥OA,CO 交 AB 于点 P,交⊙O 于点 D,且CP=CB.(1)判断直线 BC 与⊙O 的位置关系,并说明理由;(2)若∠A=30°,OP=1,求图中阴影部分的面积.22.(10分)某网店专门销售杭州第十九届亚运会吉祥物机器人“江南忆”套装,成本为每件 30元,每天销售 y(件)与销售单价x(元)之间存在一次函数关系,如图所示,网店每天的销售利润为 W元.网店希望每天吉祥物机器人“江南忆”套装的销售量不低于 220 件.(1)求 y 与x之间的函数关系式(不要求写自变量的取值范围).(2)当销售单价为多少元时,每天获得的利润最大? 最大利润是多少?(3)如果每天的利润不低于3000 元,直接写出销售单价x(元)的取值范围.23.(11 分)(1)如图①,△ABC 中,∠BAC=90°,AB=AC.点 P 是底边 BC 上一点,连接 AP,以AP为腰作等腰直角三角形APQ,且∠PAQ=90°,连接 CQ,则BP=CQ(2)如图②,△ABC中,∠BAC=90°,AB=AC.点 P 是腰AB 上一点,连接CP,以CP 为底边作的值.等腰直角三角形CPQ,连接 AQ,求BPAQ(3)如图③,正方形 ABCD 的边长为 10,点 P 是边 AB 上一点,以 DP 为对角线作正方形DEPQ,连接 AQ.当正方形 DEPQ 的面积为 68 时,直接写出 AQ 的长.24.(12 分)如图,点 A 是抛物线 y=−5x2+5x与x轴正半轴的交点,点 B 在这条抛物线8上,且点B 的横坐标为 2.连接AB 并延长交y 轴于点C,抛物线的对称轴交 AC 于点D,交x轴于点E.点P 在线段CA 上,过点 P 作x 轴的垂线,垂足为点 M,交抛物线于点Q.设点 P 的横坐标为m.(1)求直线 AB 对应的函数解析式.(2)当四边形 DEMQ 为矩形时,求点 Q 的坐标.(3)设线段 PQ 的长为 d(d⟩0).①求 d 关于m 的函数解析式;②请直接写出当 d 随m的增大而减小时,m的取值范围?。

中考仿真模拟考试 数学试题 附答案解析

中考仿真模拟考试 数学试题 附答案解析
A. B.
C. D.
10.如图,两个边长相等的正方形ABCD和EFGH,正方形EFGH的顶点E固定在正方形ABCD的对称中心位置,正方形EFGH绕点E顺时针方向旋转,设它们重叠部分的面积为S,旋转的角度为θ,S与θ的函数关系的大致图象是【】
A. B. C. D.
二、填空题(本大题共 6 小题,共 24 分)
【详解】由题意,可得 .
故答案为:5.
【点睛】本题主要考查平均数,掌握平均数的公式是解题的关键.
15.▱ABCD中,已知点A(﹣1,0),B(2,0),D(0,1),则点C的坐标为________.
【答案】(3,1).
【解析】
∵四边形ABCD为平行四边形.
∴AB∥CD,又A,B两点的纵坐标相同,∴C、D两点的纵坐标相同,是1,又AB=CD=3,
17.化简: ÷(a-4)- .
18.已知:如图,在菱形ABCD中,AC、BD交于点O,菱形的周长为8,∠ABC=60°,求BD的长和菱形ABCD的面积.
19.求证:一组对边平行且相等的四边形是平行四边形.(要求:画出图形,写出已知、求证和证明过程)
20.已知反比例函数y= (k≠0)的图象经过点B(3,2),点B与点C关于原点O对称,BA⊥x轴于点A,CD⊥x轴于点D
【解析】
【分析】
由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.
【详解】∵在矩形ABCD中,BD=8,
A.21×10-4B.2.1×10-6C.2.1×10-5D.2.1×10-4

2024年中考数学模拟测试试卷(带有答案)

2024年中考数学模拟测试试卷(带有答案)
A. B. C. D.
【答案】A
【解析】
【分析】设大巴车的平均速度为x千米/时则老师自驾小车的平均速度为 千米/时根据时间的等量关系列出方程即可.
【详解】解:设大巴车 平均速度为x千米/时则老师自驾小车的平均速度为 千米/时
根据题意列方程为:
故答案为:A.
【点睛】本题考查了分式方程的应用,找到等量关系是解题的关键.
21.教育部正式印发《义务教育劳动课程标准(2022年版)》,劳动课成为中小学的一门独立课程,湘潭市中小学已经将劳动教育融入学生的日常学习和生活中某校倡导同学们从帮助父母做一些力所能及的家务做起,培养劳动意识,提高劳动技能.小明随机调查了该校10名学生某周在家做家务的总时间,并对数据进行统计分析,过程如下:

∴ ,故D选项正确
∵ 是直角三角形, 是斜边,则 ,故C选项错误
故选:C.
【点睛】本题考查了等腰三角形的性质,直角三角形斜边上的中线等于斜边的一半,直径所对的圆周角是直角,切线的性质,熟练掌握以上知识是解题的关键.
12.如图,抛物线 与x轴交于点 ,则下列结论中正确的是()
A. B. C. D.
【答案】BD
【答案】2(答案不唯一)
【解析】
【分析】根据实数与数轴的对应关系,得出所求数的绝对值小于 ,且为整数,再利用无理数的估算即可求解.
【详解】解:设所求数为a,由于在数轴上到原点的距离小于 ,则 ,且为整数

∵ ,即
∴a可以是 或 或0.
故答案为:2(答案不唯一).
【点睛】本题考查了实数与数轴,无理数的估算,掌握数轴上的点到原点距离的意义是解题的关键.
15.如图,在 中 ,按以下步骤作图:①以点 为圆心,以小于 长为半径作弧,分别交 于点 ,N;②分别以 ,N为圆心,以大于 的长为半径作弧,在 内两弧交于点 ;③作射线 ,交 于点 .若点 到 的距离为 ,则 的长为__________.

2024年上海中考数学模拟练习卷十及参考答案

2024年上海中考数学模拟练习卷十及参考答案

上海市2024年中考数学模拟练习卷10(本试卷共25题,150分)一、选择题:(本大题共6题,每题4分,共24分)1.(2022中,有理数是()A B C .D2.(2023•成都)近年来,随着环境治理的不断深入,成都已构建起“青山绿道蓝网”生态格局.如今空气质量越来越好,杜甫那句“窗含西岭千秋雪”已成为市民阳台外一道靓丽的风景.下面是成都市今年三月份某五天的空气质量指数():33AQI ,27,34,40,26,则这组数据的中位数是()A .26B .27C .33D .343.(2023•泰安)为了解学生的身体素质状况,国家每年都会进行中小学生身体素质抽测.在今年的抽测中,某校九年级二班随机抽取了10名男生进行引体向上测试,他们的成绩(单位:个)如下:7,11,10,11,6,14,11,10,11,9.根据这组数据判断下列结论中错误的是()A .这组数据的众数是11B .这组数据的中位数是10C .这组数据的平均数是10D .这组数据的方差是4.64.(2021•桂林)下列根式中,是最简二次根式的是()AB C D 5.(2023•常德)下列命题正确的是()A .正方形的对角线相等且互相平分B .对角互补的四边形是平行四边形C .矩形的对角线互相垂直D .一组邻边相等的四边形是菱形6.(2023•宿迁)在同一平面内,已知O 的半径为2,圆心O 到直线l 的距离为3,点P 为圆上的一个动点,则点P 到直线l 的最大距离是()A .2B .5C .6D .8二、填空题:(本大题共12题,每题4分,共48分)7.(2023•青岛)计算:328(2)x y x ÷=.8.(2023•齐齐哈尔)在函数12y x =+-中,自变量x 的取值范围是.9.(2023•内江)分解因式:32x xy -=.10.(2023•贵州)若一元二次方程2310kx x -+=有两个相等的实数根,则k 的值是.11.(20233=的解是.12.(2021•达州)如图是一个运算程序示意图,若开始输入x 的值为3,则输出y 值为.13.(2023•山西)中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分.若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是.14.(2023•新疆)如图,在平面直角坐标系中,OAB ∆为直角三角形,90A ∠=︒,30AOB ∠=︒,4OB =.若反比例函数(0)k y k x =≠的图象经过OA 的中点C ,交AB 于点D ,则k =.15.(2023•湖州)某数学兴趣小组测量校园内一棵树的高度,采用以下方法:如图,把支架()EF 放在离树()AB 适当距离的水平地面上的点F 处,再把镜子水平放在支架()EF 上的点E 处,然后沿着直线BF 后退至点D 处,这时恰好在镜子里看到树的顶端A ,再用皮尺分别测量BF ,DF ,EF ,观测者目高()CD 的长,利用测得的数据可以求出这棵树的高度.已知CD BD ⊥于点D ,EF BD ⊥于点F ,AB BD ⊥于点B ,6BF =米,2DF =米,0.5EF =米, 1.7CD =米,则这棵树的高度(AB 的长)是米.16.(2020•荆州)我们约定:(a ,b ,)c 为函数2y ax bx c =++的“关联数”,当其图象与坐标轴交点的横、纵坐标均为整数时,该交点为“整交点”.若关联数为(m ,2m --,2)的函数图象与x 轴有两个整交点(m 为正整数),则这个函数图象上整交点的坐标为.17.(2023•浦东新区校级模拟)如图,已知在ABC ∆中,点D 在边AC 上,2AD DC =,AB a = ,AC b = ,那么BD = .(用含向量a ,b的式子表示)18.(2023•内蒙古)如图,在Rt ABC ∆中,90ACB ∠=︒,3AC =,1BC =,将ABC ∆绕点A 逆时针方向旋转90︒,得到△AB C ''.连接BB ',交AC 于点D ,则AD DC 的值为.三、解答题:(本大题共7题,10+10+10+10+12+12+14,共78分)19.(2023•恩施州)先化简,再求值:22(1)42x x x ÷---,其中52x =-.20.(2023•常德)解方程组:213423x y x y -=⋯⎧⎨+=⋯⎩①②.21.(2023•宁波)某校与部队联合开展红色之旅研学活动,上午7:00,部队官兵乘坐军车从营地出发,同时学校师生乘坐大巴从学校出发,沿公路(如图1)到爱国主义教育基地进行研学.上午8:00,军车在离营地60km的地方追上大巴并继续前行,到达仓库后,部队官兵下车领取研学物资,然后乘坐军车按原速前行,最后和师生同时到达基地,军车和大巴离营地的路程()t h的函数关系如图2所示.s km与所用时间()(1)求大巴离营地的路程s与所用时间t的函数表达式及a的值.(2)求部队官兵在仓库领取物资所用的时间.22.(2023•苏州)四边形不具有稳定性,工程上可利用这一性质解决问题.如图是某篮球架的侧面示意图,BE,CD,GF为长度固定的支架,支架在A,D,G处与立柱AH连接(AH垂直于MN,垂足为)H,在B,C处与篮板连接(BC所在直线垂直于)MN,EF是可以调节长度的伸缩臂(旋转点F处的螺栓改变EF的长度,使得支架BE绕点A旋转,从而改变四边形ABCD的形状,以此调节篮板的高度).已知AD BC=,∠=︒时,点C离地面的高度为288cm.调节伸缩臂EF,将GAE∠由60︒调节为GAEDH cm=,测得60208︒≈,54︒,判断点C离地面的高度升高还是降低了?升高(或降低)了多少?(参考数据:sin540.8︒≈cos540.6)23.(2023•杨浦区二模)已知:在直角梯形ABCD 中,//AD BC ,90A ∠=︒,ABD ∆沿直线BD 翻折,点A 恰好落在腰CD 上的点E 处.(1)如图,当点E 是腰CD 的中点时,求证:BCD ∆是等边三角形;(2)延长BE 交线段AD 的延长线于点F ,联结CF ,如果2CE DE DC =⋅,求证:四边形ABCF 是矩形.24.(2023•鞍山)如图1,抛物线253y ax x c =++经过点(3,1),与y 轴交于点(0,5)B ,点E 为第一象限内抛物线上一动点.(1)求抛物线的解析式.(2)直线243y x =-与x 轴交于点A ,与y 轴交于点D ,过点E 作直线EF x ⊥轴,交AD 于点F ,连接BE ,当BE DF =时,求点E 的横坐标.(3)如图2,点N 为x 轴正半轴上一点,OE 与BN 交于点M ,若OE BN =,3tan 4BME ∠=,求点E 的坐标.25.(2023•内蒙古)已知正方形ABCD,E是对角线AC上一点.(1)如图1,连接BE,DE.求证:ABE ADE∆≅∆;(2)如图2,F是DE延长线上一点,DF交AB于点G,BF BE⊥.判断FBG∆的形状并说明理由;(3)在第(2)题的条件下,2BE BF==.求AEAB的值.参考答案一、选择题:(本大题共6题,每题4分,共24分)123456C C BD A B二、填空题:(本大题共12题,每题4分,共48分)7.2xy .8.1x >且2x ≠.9.()()x x y x y +-.10.94.11.5y =12.2.13.1614.4.15. 4.116.23a b -+ .17.(1,0)、(2,0)和(0,2)18.5三、解答题:(本大题共7题,共78分)解答应写出文字说明、证明过程或演算步骤.19.(10分)解:22(1)42x x x ÷---22(2)(2)2x x x x x --=÷+--22(2)(2)2x x x -=⋅+--12x =-+,当2x =-时,原式5===.20.(10分)解:①2⨯+②得:525x =,解得:5x =,将5x =代入①得:521y -=,解得:2y =,所以原方程组的解是52x y =⎧⎨=⎩.21.(10分)解:(1)由函数图象可得,大巴速度为602040(/)1km h -=,2040s t ∴=+;当100s =时,1002040t =+,解得2t =,2a ∴=;∴大巴离营地的路程s 与所用时间t 的函数表达式为2040s t =+,a 的值为2;(2)由函数图象可得,军车速度为60160(/)km h ÷=,设部队官兵在仓库领取物资所用的时间为x h ,根据题意得:60(2)100x -=,解得:13x =,答:部队官兵在仓库领取物资所用的时间为13h .22.(10分)解:点C 离地面的高度升高了,理由:如图,当60GAE ∠=︒时,过点C 作CK HA ⊥,交HA 的延长线于点K ,BC MN ⊥ ,AH MN ⊥,//BC AH ∴,AD BC = ,∴四边形ABCD 是平行四边形,//AB CD ∴,60ADC GAE ∴∠=∠=︒,点C 离地面的高度为288cm ,208DH cm =,28820880()DK cm ∴=-=,在Rt CDK ∆中,80160()1cos602DKCD cm ===︒,如图,当54GAE ∠=︒,过点C 作CQ HA ⊥,交HA 的延长线于点Q,在Rt CDQ ∆中,160CD cm =,cos541600.696()DQ CD cm ∴=⋅︒≈⨯=,968016()cm ∴-=,∴点C 离地面的高度升高约16cm .23.(12分)证明:(1)由折叠得:ADB BDE ∠=∠,90A DEB ∠=∠=︒,点E 是腰CD 的中点,BE ∴是DC 的垂直平分线,DB BC ∴=,BDE C ∴∠=∠,BDE C ADB ∴∠=∠=∠,//AD BC ,180ADC C ∴∠+∠=︒,180BDE C ADB ∴∠+∠+∠=︒,60BDE C ADB ∴∠=∠=∠=︒,BCD ∴∆是等边三角形;(2)过点D 作DH BC ⊥,垂足为H ,90DHB DHC∴∠=∠=︒,//AD BC,90A∠=︒,18090ABC A∴∠=︒-∠=︒,∴四边形ABHD是矩形,AD BH∴=,AB DH=,由折叠得:90A DEB∠=∠=︒,AB BE=,18090BEC DEB∴∠=︒-∠=︒,DH BE=,90BEC DHC∠=∠=︒,BCE DCH∠=∠,()BCE DCH AAS∴∆≅∆,DC BC∴=,CE CH=,//AD BC,DFE EBC∴∠=∠,FDE ECB∠=∠,FDE BCE∴∆∆∽,∴CE BC DE DF=,2CE DE DC=⋅,∴CE DC DE CE=,∴BC DC DF CE=,DF CE∴=,CH DF∴=,AD DF BH CH∴+=+,AF BC∴=,∴四边形ABCF是平行四边形,90A∠=︒,∴四边形ABCF 是矩形.24.(12分)解:(1)2223(1)4y x x x =--=-- ,∴抛物线1L 的顶点坐标(1,4)P -,1m = ,点P 和点D 关于直线1y =对称,∴点D 的坐标为(1,6);(2) 抛物线1L 的顶点(1,4)P -与2L 的顶点D 关于直线y m =对称,(1,24)D m ∴+,抛物线222:(1)(24)223L y x m x x m =--++=-+++,∴当0x =时,(0,23)C m +,①当90BCD ∠=︒时,如图1,过D 作DN y ⊥轴于N ,(1,24)D m + ,(0,24)N m ∴+,(0,23)C m + ,1DN NC ∴==,45DCN ∴∠=︒,90BCD ∠=︒ ,45BCO ∴∠=︒,直线//l x 轴,90BOC ∴∠=︒,45CBO BCO ∴∠=∠=︒,BO CO =,3m - ,(23)3BO CO m m m ∴==+-=+,(3,)B m m ∴+,点B 在223y x x =--的图象上,2(3)2(3)3m m m ∴=+-+-,0m ∴=或3m =-,当3m =-时,得(0,3)B -,(0,3)C -,此时,点B 和点C 重合,舍去,当0m =时,符合题意;将0m =代入22:223L y x x m =-+++得22:23L y x x =-++,②当90BDC ∠=︒,如图2,过B 作BT ND ⊥交ND 的延长线于T ,同理,BT DT =,(1,24)D m ∴+,(24)4DT BT m m m ∴==+-=+,1DN = ,1(4)5NT DN DT m m ∴=+=++=+,(5,)B m m ∴+,当B 在223y x x =--的图象上,2(5)2(5)3m m m ∴=+-+-,解得3m =-或4m =-,3m - ,3m ∴=-,此时,(2,3)B -,(0,3)C -符合题意;将3m =-代入22:223L y x x m =-+++得,22:23L y x x =-+-,③易知,当90DBC ∠=︒,此种情况不存在;综上所述,2L 所对应的函数表达式为223y x x =-++或223y x x =-+-;(3)由(2)知,当90BDC ∠=︒时,3m =-,此时,BCD ∆的面积为1,不合题意舍去,当90BCD ∠=︒时,0m =,此时,BCD ∆的面积为3,符合题意,由题意得,EF FG CD ===EF 的中点Q ,在Rt CEF ∆中可求得122CQ EF ==,在Rt FGQ ∆中可求得2GQ =,当Q ,C ,G 三点共线时,CG.25.(14分)(1)证明: 四边形ABCD 是正方形,AB AD CB CD ∴===,90ABC ADC ∠=∠=︒,45BAC BCA DAC DCA ∴∠=∠=∠=∠=︒,在ABE ∆和ADE ∆中,AB ADBAE DAE AE AE=⎧⎪∠=∠⎨⎪=⎩,()ABE ADE SAS ∴∆≅∆.(2)解:FBG ∆是等腰三角形,理由如下:ABE ADE ∆≅∆ ,ABE ADE ∴∠=∠,ABC ABE ADC ADE ∴∠-∠=∠-∠,EBC EDC ∴∠=∠,//AB CD ,FGB EDC ∴∠=∠,FGB EBC ∴∠=∠,BF BE ⊥ ,90FBE ∴∠=︒,90FBG EBC ABE ∴∠=∠=︒-∠,FGB FBG ∴∠=∠,BF GF ∴=,FBG ∴∆是等腰三角形.(3)解:2BE BF == ,90FBE ∠=︒,45F BEF ∴∠=∠=︒,BAC F ∴∠=∠,AEG AGF BAC AGF F FBG ∴∠=∠-∠=∠-∠=∠,AGE FGB ∠=∠ ,且FGB FBG ∠=∠,AGE AEG ∴∠=∠,AE AG ∴=,EF == 2BF GF ==,2GE EF GF ∴=-=-,ABE ADE ∆≅∆ ,2BE DE ∴==,//AG CD ,AGE CDE ∴∆∆∽,∴1AG GECD DE ==,∴1AEAB =-,∴AEAB 1-.。

2023中考数学综合模拟习题一(含答案)

2023中考数学综合模拟习题一(含答案)

2023中考数学综合模拟习题一一.选择题(共12小题)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.扇形B.正五边形C.菱形D.平行四边形2.下列计算正确的是()A.﹣a4b÷a2b=﹣a2b B.(a﹣b)2=a2﹣b2C.a2•a3=a6D.﹣3a2+2a2=﹣a23.下列实数中,最小的数是()A.B.0C.1D.4.下列说法正确的是()A.“明天降雨的概率为50%”,意味着明天一定有半天都在降雨B.了解全国快递包裹产生的包装垃圾数量适合采用全面调查(普查)方式C.掷一枚质地均匀的骰子,骰子停止转动后,6点朝上是必然事件D.一组数据的方差越大,则这组数据的波动也越大5.如图,直线a∥b,c,d是截线且交于点A,若∠1=60°,∠2=100°,则∠A=()A.40°B.50°C.60°D.70°5题图6题图6.已知一次函数y1=kx+b(k≠0)与反比例函数y2=(m>0)的图象如图所示,则当y1>y2时,自变量x满足的条件是()A.1<x<3B.1≤x≤3C.x>1D.x<37.受央视《朗读者》节目的启发的影响,某校七年级2班近期准备组织一次朗诵活动,语文老师调查了全班学生平均每天的阅读时间,统计结果如下表所示,则在本次调查中,全班学生平均每天阅读时间的中位数和众数分别是()每天阅读时间(小时)0.51 1.52人数89103A.2,1B.1,1.5C.1,2D.1,18.已知=3,则代数式的值是()A.B.C.D.9.已知圆内接正三角形的面积为,则该圆的内接正六边形的边心距是()A.2B.1C.D.10.如果关于x的不等式组的整数解仅有x=2、x=3,那么适合这个不等式组的整数a、b组成的有序数对(a,b)共有()A.3个B.4个C.5个D.6个11.如图,四边形AOEF是平行四边形,点B为OE的中点,延长FO至点C,使FO=3OC,连接AB、AC、BC,则在△ABC中S△ABO:S△AOC:S△BOC=()A.6:2:1B.3:2:1C.6:3:2D.4:3:211题图12题图12.如图,正方形ABCD的边长为2,P为CD的中点,连结AP,过点B作BE⊥AP于点E,延长CE交AD于点F,过点C作CH⊥BE于点G,交AB于点H,连接HF.下列结论正确的是()A.CE=B.EF=C.cos∠CEP=D.HF2=EF•CF二.填空题(共6小题)13.若2n(n≠0)是关于x的方程x2﹣2mx+2n=0的根,则m﹣n的值为.14.一个多边形的每一个外角都是18°,这个多边形的边数为.15.已知一组数据10,15,10,x,18,20的平均数为15,则这组数据的方差为.16.如图,在△ABC中,AF平分∠BAC,AC的垂直平分线交BC于点E,∠B=70°,∠F AE=19°,则∠C=度.16题图17题图17.如图,已知抛物线y=ax2﹣4x+c(a≠0)与反比例函数y=的图象相交于点B,且B点的横坐标为3,抛物线与y轴交于点C(0,6),A是抛物线y=ax2﹣4x+c的顶点,P点是x轴上一动点,当P A+PB最小时,P点的坐标为.18.已知函数y=使y=a成立的x的值恰好只有3个时,a的值为.三.解答题(共7题)19.(1)计算:﹣(1﹣)0+sin45°+()﹣1(2)先化简,再求值:÷(﹣),其中a=+2.20.某网络约车公司近期推出了”520专享”服务计划,即要求公司员工做到“5星级服务、2分钟响应、0客户投诉”,为进一步提升服务品质,公司监管部门决定了解“单次营运里程”的分布情况.老王收集了本公司的5000个“单次营运里程”数据,这些里程数据均不超过25(公里),他从中随机抽取了200个数据作为一个样本,整理、统计结果如下表,并绘制了不完整的频数分布直方图(如图).频数组别单次营运里程“x”(公里)第一组0<x≤572第二组5<x≤10a第三组10<x≤1526第四组15<x≤2024第五组20<x≤2530根据统计表、图提供的信息,解答下面的问题:(1)①表中a=;②样本中“单次营运里程”不超过15公里的频率为;③请把频数分布直方图补充完整;(2)请估计该公司这5000个“单次营运里程”超过20公里的次数;(3)为缓解城市交通压力,维护交通秩序,来自某市区的4名网约车司机(3男1女)成立了“交通秩序维护”志愿小分队,若从该小分队中任意抽取两名司机在某一路口维护交通秩序,请用列举法(画树状图或列表)求出恰好抽到“一男一女”的概率.21.如图所示,在平面直角坐标系中,一次函数y=kx+b(k≠0)与反比例函数y=(m ≠0)的图象交于第二、四象限A、B两点,过点A作AD⊥x轴于D,AD=4,sin∠AOD =,且点B的坐标为(n,﹣2).(1)求一次函数与反比例函效的解析式;(2)E是y轴上一点,且△AOE是等腰三角形,请直接写出所有符合条件的E点坐标.22.某销售商准备在某市采购一批丝绸,经调查,用10000元采购A 型丝绸的件数与用8000元采购B型丝绸的件数相等,一件A型丝绸进价比一件B型丝绸进价多100元.(1)求一件A型、B型丝绸的进价分别为多少元?(2)若销售商购进A型、B型丝绸共50件,其中A型的件数不大于B型的件数,且不少于16件,设购进A型丝绸m件.①求m的取值范围.②已知A型的售价是800元/件,销售成本为2n元/件;B型的售价为600元/件,销售成本为n元/件.如果50≤n≤150,求销售这批丝绸的最大利润w(元)与n(元)的函数关系式(每件销售利润=售价﹣进价﹣销售成本).23.如图,在直角三角形ABC中,∠ACB=90°,点H是△ABC的内心,AH的延长线和三角形ABC的外接圆O相交于点D,连结DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC、AB的延长线分别于点E、F,已知CE=1,圆O的直径为5.①求证:EF为圆O的切线;②求DF的长.24.如图,矩形ABCD中,AC=2AB,将矩形ABCD绕点A旋转得到矩形AB′C′D′,使点B的对应点B'落在AC上,B'C'交AD于点E,在B'C′上取点F,使B'F=AB.(1)求证:AE=C′E.(2)求∠FBB'的度数.(3)已知AB=2,求BF的长.25.如图,在等腰直角三角形ABC中,∠BAC=90°,点A在x轴上,点B在y轴上,点C(3,1),二次函数y=x2+bx﹣的图象经过点C.(1)求二次函数的解析式,并把解析式化成y=a(x﹣h)2+k的形式;(2)把△ABC沿x轴正方向平移,当点B落在抛物线上时,求△ABC扫过区域的面积;(3)在抛物线上是否存在异于点C的点P,使△ABP是以AB为直角边的等腰直角三角形?如果存在,请求出所有符合条件的点P的坐标;如果不存在,请说明理由.参考答案二.填空题第13题:12第14题:20 第15题:443第16题:24 第17题:(125,0)第18题:2三.解答题第19题:(1)原式=3√2 2(2)化简,可得,原式=a+2a−2,当a=+2时,原式=1+2√2第20题:(1)①48 ②0.73 ③(画图略)(2)750(3)12第21题:(1) 一次函数的解析式为y =−23x +2反比例函效的解析式为y =−12x(2)E 点坐标为(0,258)或(0,5)或(0,−5)第22题:(1) 解:设一件B 型丝绸的进价为x 元,则一件A 型丝绸的进价为(x+100)元,根据题意,可得,10000x +100=8000x解得,x =400经检验:x =400是原方程的解,且符合题意。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学模拟习题带答案
2017年中考数学模拟习题带答案
A级基础题
1.下列各条件中,不能作出唯一三角形的条件是()
A.已知两边和夹角
B.已知两边和其中一条边所对的角
C.已知两角和夹边
D.已知两角和其中一角的对边
2.如图6­3­10,在△ABC中,∠C=90°,∠B=30°,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N为圆心,大于12MN的长为半径画弧,两弧交于点P,连接AP并延长交
BC于点D,则下列说法:①AD是∠BAC的平分线;②∠ADC=60°;③
点D在AB的中垂线上;④S△DAC∶S△ABC=1∶3.其中正确的'个数是()
A.1个
B.2个
C.3个
D.4个
3.已知:线段AB,BC,∠ABC=90°.求作:矩形ABCD.以下是甲、乙两同学的作业:
甲:①以点C为圆心,AB的长为半径画弧;
②以点A为圆心,BC的长为半径画弧;
③两弧在BC上方交于点D,连接AD,CD,四边形ABCD即为所求(如图6­3­11).
乙:①连接AC,作线段AC的垂直平分线,交AC于点M;
②连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD,四边形ABCD即为所求(如图6­3­12).
对于两人的作业,下列说法正确的是()
A.两人都对
B.两人都不对
C.甲对,乙不对
D.甲不对,乙对
4.如图6­1­13,在△ABC中,∠C=90°,∠CAB=60°.按以下步骤作图:
①分别以A,B为圆心,以大于12AB的长为半径作弧,两弧相交于点P和Q.
②作直线PQ交AB于点D,交BC于点E,连接AE.
若CE=4,则AE=________.
5.两个城镇A,B与两条公路l1,l2的位置如图6­3­14.电信部门需在C处修建一座信号发射塔,要求发射塔到两个城镇A,B的距离必须相等,到两条公路l1,l2的距离也必须相等,那么点C应选在何处?请在下图中,用尺规作图找出所有符合条件的点C(不写已知、求作、作法,只保留作图痕迹).
6.某市计划在新竣工的矩形广场的内部修建一个音乐喷泉,要求音乐喷泉M到广场的两个入口A,B的距离相等,且到广场管理处C 的距离等于A和B之间距离的一半,A,B,C的位置如图6­3­15,请在原图上利用尺规作图作出音乐喷泉M的位置(要求:不写已知、求作、作法和结论,保留作图痕迹,必须用铅笔作图).
B级中等题
7.已知△ABC,且∠ACB=90°.
(1)请用直尺和圆规按要求作图(保留作图痕迹,不写作法和证明).
①以点A为圆心,BC边的长为半径作⊙A;
②以点B为顶点,在AB边的下方作∠ABD=∠BAC.
(2)请判断直线BD与⊙A的位置关系(需证明).
8.如图6­3­17,在平行四边形ABCD中,AD>AB.
(1)作出∠ABC的平分线(尺规作图,保留作图痕迹,不写作法);
(2)若(1)中所作的角平分线交AD于点E,AF⊥BE,垂足为点O,交BC于点F,连接EF.w
求证:四边形ABFE为菱形.
C级拔尖题
9.(1)如图6­3­18(1),已知△ABC,以AB,AC为边向△ABC外作等边三角形ABD和等边三角形ACE.连接BE,CD.请你完成图形,并证明:BE=CD(尺规作图,不写做法,保留作图痕迹);
(2)如图6­3­18(2),已知△ABC,以AB,AC为边向外作正方形ABFD和正方形ACGE.连接BE,CD.BE与CD有什么数量关系?简单说明理由;
如图6­3­18(3),要测量池塘两岸相对的两点B,E的距离,已经测得∠ABC=45°,∠CAE=90°,AB=BC=100米,AC=AE,求BE的长.
(1)(2)(3)
图6­3­18
尺规作图
1.B
2.D
3.A
4.8
5.解:作线段AB的垂直平分线,作两条公路夹角的平分线,两线分别交于点C1,C2.如图48,所以点C1、C2就是符合条件的点.
6.解:如图49,点M为所求.
7.解:(1)如图50.
(2)直线BD与⊙A相切.证明如下:
∵∠ABD=∠BAC,∴AC∥BD.
∵∠ACB=90°,⊙A的半径等于BC,
∴点A到直线BD的距离等于BC.
∴直线BD与⊙A相切.
8.解:(1)如图51.
(2)∵BE平分∠ABC,∴∠ABO=∠FBO.
∵AF⊥BE于点O,
∴∠AOB=∠FOB=∠AOE=90°.
又∵BO=BO,
∴△AOB≌△FOB.∴AO=FO,AB=FB.
∵四边形ABCD是平行四边形,
∴AD∥BC,∴∠AEO=∠FBO.
∴△AOE≌△FOB.∴AE=BF.
又∵AE∥BF,∴四边形ABFE是平行四边形.又∵AB=FB,∴平行四边形ABFE是菱形. 11.(1)证明:如图52.
∵△ABD和△ACE都是等边三角形,
∴AD=AB,AC=AE,∠BAD=∠CAE=60°.
∴∠BAD+∠BAC=∠CAE+∠BAC.
即∠CAD=∠EAB.∴△CAD≌△EAB.
∴BE=CD.
图52图53
(2)解:BE=CD.
理由:∵四边形ABFD和ACGE均为正方形,∴AD=AB,AC=AE,∠BAD=∠CAE=90°.
∴∠CAD=∠EAB.∴△CAD≌△EAB.
∴BE=CD.
(3)解:如图53,过A作等腰直角三角形ABD,∠BAD=90°,则AD=AB=100,∠ABD=45°.∴BD=1002.
连接CD,则由(2)可知BE=CD.
∵∠ABC=45°,在Rt△DBC中,BC=100,BD=1002.
∴CD=1002+10022=1003.
∴BE的长为1003米.。

相关文档
最新文档