高频电路频率变换电路的特点及分析

合集下载

高频电路

高频电路

由图可见:
(1)前者在谐振频率点的阻抗最小,相频特性曲线斜率 为正;后者在谐振频率点的阻抗最大,相频特性曲线斜率为
负。
(2)串联回路在谐振时,通过电流 IOO 最大;并联回路在谐振时,两 端电压UOO最大。 (3)使用,在实际选频应用时,串联回路适合与信号源和负载串联 连接,使有用信号通过回路有效地传送给负载;并联回路适合 与信号源和负载并联连接,使有用信号在负载上的电压振幅增 大。 (4) 串、并联回路的导纳特性曲线正好相反。 前者在谐振频率处 的导纳最大,且相频特性曲线斜率为负;后者在谐振频率 处的导纳最小,且相频特性曲线斜率为正。
(4.2.11)
根据式(4.2.11)可作出归一化谐振曲线 N ( f )。 该曲线如 图3所示。 1
N( f )
1 + Q02 (
2f 2 ) f0
图3
归一化谐振曲线
(7) 通频带
Q0 越大,谐振曲线越尖锐,选择性越好。 由图3可知, 为了衡量回路对于不同频率信号的通过能力,定义归一化谐振 1 N ( f ) 曲线上 2 所包含的频率范围为回路的通频带, 用 BW0.7 表示。在图上 BW0.7 f 2 f1 ,取
曲线越陡峭, 选择性越好,但通频带却越窄。 一个理想的谐振回路, 其幅频特性曲线应该是通频带内完全
平坦,信号可以无衰减通过,而在通频带以外则为零,信号完
全通不过,如图3所示宽度为 BW0.7 、高度为1的矩形。
4.2.2
LC串联谐振回路
图3 是串联LC谐振回路的基本形式, 其中r是电感
L的损耗电阻。
按流通信号形式:
模拟电子线路和数字电子线路
按集成度高低:
分立电路和集成电路
按包含元器件的性质:

高频电路原理与分析

高频电路原理与分析

射线
(a) 电离层
(b) 对流层
(c)
(d)
图1— 5
(a) 直射传播; (b) 地波传播; (c) 天波传播; (d) 散射传播
5. 调制特性
无线电传播一般都要采用高频(射频)的另一个原因就是高频适于天线 辐射和无线传播。 只有当天线的尺寸到可以与信号波长相比拟时, 天线的辐 射效率才会较高, 从而以较小的信号功率传播较远的距离, 接收天线也才能有 效地接收信号。
信号的时间特性要求传输该信号的电路的时间特性(如时间常数)与之相 适应。
2. 频谱特性 对于较复杂的信号(如话音信号、 图像信号等), 用频谱分析法表示较 为方便。
0 t
图 1 — 2 信号分解离散的频率分量(各分量间成谐频关 系), 例如图 1 — 3即为图 1 — 2所示信号的频谱图; 对于非周期性信号, 可以用 傅里叶变换的方法分解为连续谱, 信号为连续谱的积分。
(2) 按照通信方式来分类, 主要有(全)双工、 半双工和单工方式。
(3) 按照调制方式的不同来划分, 有调幅、 调频、 调相以及混合调制 等。
(4) 按照传送的消息的类型分类, 有模拟通信和数字通信, 也可以分为 话音通信、 图像通信、 数据通信和多媒体通信等。
各种不同类型的通信系统, 其系统组成和设备的复杂程度都有很大不同。 但是组成设备的基本电路及其原理都是相同的, 遵从同样的规律。 本书将 以模拟通信为重点来研究这些基本电路, 认识其规律。 这些电路和规律完 全可以推广应用到其它类型的通信系统。
1.2 信号、 频谱与调制
在高频电路中, 我们要处理的无线电信号主要有三种: 基带(消息)信号、 高频载波信号和已调信号。 所谓基带信号, 就是没有进行调制之前的原始信 号, 也称调制信号。

高频电路原理和分析课件第7章_频率调制和解调

高频电路原理和分析课件第7章_频率调制和解调
第7章 角度调制与解调
第7章 角度调制与解调
7.1 角度调制信号分析 7.2 调频器与调频方法 7.3 调频电路 7.4 鉴频器与鉴频方法 7.5 鉴频电路 7.6 调频收发信机及附属电路 7.7 调频多重广播
第7章 角度调制与解调
概述
在无线通信中,频率调制和相位调制是又一类重要的 调制方式。
1、频率调制又称调频(FM)——模拟信号调制,它是使 高频振荡信号的频率按调制信号的规律变化(瞬时频率变化 的大小与调制信号成线性关系),而振幅保持恒定的一种调 制方式。调频信号的解调称为鉴频或频率检波。
些边频对称地分布在载频两边,其幅度取决于调制指数mf ;
(2) 由于mf=Δ ωm/Ω=Δ fm/F,且Δ ωm=kfUΩ,因此调制指 数mf既取决于最大频偏,又取决于调制信号频率F。 (3) 由于相邻两根谱线的间隔为调制信号频率,因此调制信 号频率越大,谱线间隔越大,在相同的调制指数mf时,最 大频偏也越大。
(7-3)
第7章 角度调制与解调
式中, m


m f 为调频指数。FM波的表示式为
u F M ( t ) U C c o s (c t m fs i n t ) R e [ U C e j e t e j m fs i n t ]
(7-4)
图7-1画出了频率调制过程中调制信号、调频信号及 相应的瞬时频率和瞬时相位波形。
J
2 n
(mf
)

1
n
PFM

1 2RL
Uc2
Pc
(7-14) (7-15)
第7章 角度调制与解调
(7-15)式说明,调频波的平均功率与未调载波的平均 功率相等。当调制指数mf由零增加时,已调制的载波功 率下降,而分散给其他边频分量。这就是说,调频的过 程就是进行功率的重新分配,而总功率不变,即调频器 可以看作是一个功率分配器。

高频电子线路二版第二章.高频电路基础

高频电子线路二版第二章.高频电路基础

次级回路自阻抗
M2
Zf1 Z22
初级回路自阻抗
M2
Zf2
Z11
Z22 次级回路自阻抗
Z11 初级回路自阻抗
广义失谐量: 0L ( 0 ) 2Q
r 0
0
耦合因子: A Q
临界耦合 A 1
欠耦合 A<1
过耦合 A>1
理相
1
0.7
实际
0.1
0
ω0
ω
② 选择性: 表征了对无用信号的抑制能力,
Q值越高,曲线越陡峭,选择性越好,但通频
带越窄。
③ 理想回路:幅频特性在通频带内应完全
平坦。是一个矩型.
矩型系数: 表征实际幅频特性与理想幅
频特性接近的程度.谐振曲线下降为谐振值( f0 处 )的0.1时对应的频带宽度B0.1与通频带B0.707 之比:
+
IS
RS
C
N1 N2 RL
+
R'L
IS
RS
C
L
分析:
由 N1:N2=1:n ,得 n = N2 / N1(接入系数)。利用ⅰ 的方法,也可求得负载RL等效到初级回路的等效电阻是:
பைடு நூலகம்RL
1 n2
RL
或 gL n2gL
ⅲ. 电容分压式阻抗变换电路
Ú
+
IS RS
L
C1 ÚT
C2
IS RS C L
C1 R'L
⑷ 分析几种常用的抽头并联谐振回路
ⅰ.自耦变压器阻抗变换电路
Ú1
+
IS
RS
C
N1 Ú2 L
N2
RL

《频率变换电路》课件

《频率变换电路》课件
数字信号处理技术在频率变换电路中能够实现更为复杂和精确的控制算法,提高电路的性 能和稳定性。
感谢您的观看
THANKS
ቤተ መጻሕፍቲ ባይዱ
杂散抑制性能
总结词
杂散抑制性能是衡量频率变换电路性能的重要指标,它反映了电路抑制杂散信号的能力。
详细描述
杂散信号是指与所需输出信号无关的干扰信号,杂散抑制性能越好的频率变换电路,能够更好地抑制 杂散信号,提高输出信号的质量。杂散抑制性能的优劣直接影响到频率变换电路的性能和输出信号的 质量。
动态范围与线性度
实现方式
频率变换电路可以通过不同的方式实现,如通过RC电路、LC 电路、晶体管等元件实现。不同的实现方式具有不同的特点 和适用范围。
频率变换电路的应用场景
应用场景
频率变换电路广泛应用于通信、雷达、导航、电子对抗等领域。例如,在通信领域中,通过频率变换电路可以将 信号从低频搬移到高频,实现信号的传输和接收。在雷达和导航领域中,频率变换电路用于实现信号的调制和解 调,以实现对目标的探测和定位。
数字信号处理器的DDS技术
利用直接数字合成技术,产生任意波形和频 率的信号。
数字信号处理器的滤波器设计
利用数字滤波器对信号进行滤波处理,实现 特定频率范围的信号提取或抑制。
基于FPGA/ASIC的频率变换
FPGA/ASIC的定制设计
01
根据具体应用需求,定制具有特定功能的频率变换电路。
FPGA/ASIC的高速采样技术
《频率变换电路》PPT课件
目 录
• 频率变换电路概述 • 频率变换电路的类型 • 频率变换电路的实现方法 • 频率变换电路的性能指标 • 频率变换电路的设计与优化 • 频率变换电路的发展趋势与展望

高频电路的基本知识

高频电路的基本知识

高频电路的基本知识
rL C s I
(a)
(b)
并联型互感耦合谐振电路 并联型电容耦合谐振电路
高频电路的基本知识
串联型互感耦合谐振电路
串联型电容耦合谐振电路
电子整机维修
电子整机维修
高频电路的基本知识
1.高频信号的概念:所谓高频信号,一般是指适合天线发射、传播和 接收的射频信号。对于高频信号的频率一般认为应该在10MHz或 20MHz以上的频率可以称为高频信号;能处理此类信号的电路称为 高频电路。采用高频信号的原因主要是:(1)频率越高,可利用 的频带宽度就越宽,信道容量就越大,而且可以减小或避免频道间 的干扰;(2)高频信号更适合电线辐射和接收,因为只有天线尺 寸大小可以与信号波长相比拟时,才有较高的辐射效率和接收效率, 这样,可以采用较小的信号功率,传播较远的距离,也可获得较高 的接收灵敏度。
高频电路的基本知识
2.高频电路的常用元件:高频电路中的常用元器件一般分为两大类: 无源器件和有源器件。无源器件一般是指电阻、电容、电感等器件 在高频电路中不能忽略的非本征特性。电阻器件在接收高频信号时 其本身的分布电容和管脚引线电感是不能忽略的;其次是由介质隔 开的两个导体构成的电容,一个理想电容器的等效电路如图(a) 所示,理想电容器的阻抗为1/(jωC), 如图(b)虚线所示,其中, f为
晶体管在高频状态下有较高的输出功率。
高频电路的基本知识
3.高频振荡电路的常见电路:高频电路中的无源组件或无源网络 主要有高频振荡(谐振)回路、高频变压器、谐振器与滤波器 等。他们完成信号的传输、频率选择和阻抗变换等功能。常用 的高频振荡电路一般有串联谐振电路(如图a)和并联谐振电 路(如图b)和耦合谐振电路(如图c)。
工作频率, ω=2πf。当频率大于SRF时,电容呈现出电感特性。这

《高频电子线路》(刘彩霞)参考答案

《高频电子线路》(刘彩霞)参考答案

《自测题、思考题与习题》参考答案第1章自测题一、1.信息的传递;2.输入变换器、发送设备、传输信道、噪声源、接收设备、输出变换器;3.振幅、频率、相位;4.弱、较大、地面、天波;5.高频放大器、振荡器、混频器、解调器;6.提高通信传输的有效性、提高通信传输的可靠性。

二、1.D ;2.A ;3.D ;4.B ;5.C ;6.A 。

三、1.×;2.×;3.×;4.√;5.√;6.√。

思考题与习题1.1答:是由信源、输入变换器、输出变换器、发送设备、接收设备和信道组成。

信源就是信息的来源。

输入变换器的作用是将信源输入的信息变换成电信号。

发送设备用来将基带信号进行某种处理并以足够的功率送入信道,以实现信号的有效传输。

信道是信号传输的通道,又称传输媒介。

接收设备将由信道送来的已调信号取出并进行处理,还原成与发送端相对应的基带信号。

输出变换器将接收设备送来的基带信号复原成原来形式的信息。

1.2答:调制就是用待传输的基带信号去改变高频载波信号某一参数的过程。

采用调制技术可使低频基带信号装载到高频载波信号上,从而缩短天线尺寸,易于天线辐射,实现远距离传输;其次,采用调制技术可以进行频分多路通信,实现信道的复用,提高信道利用率。

1.3答:混频器是超外差接收机中的关键部件,它的作用是将接收机接收到的不同载频已调信号均变为频率较低且固定的中频已调信号。

由于中频是固定的,且频率降低了,因此,中频选频放大器可以做到增益高、选择性好且工作稳定,从而使接收机的灵敏度、选择性和稳定性得到极大的改善。

1.4解:根据c fλ=得:851331010m =100km 310c f λ⨯===⨯,为超长波,甚低频,有线传输适用于架空明线、视频电缆传输媒介,无线传输适用于地球表面、海水。

823310300m 100010c f λ⨯===⨯,为中波,中频,有线传输适用于架空明线、视频电缆传输媒介,无线传输适用于自由空间。

高频电子线路概要

高频电子线路概要

噪声分析
噪声来源
分析电路中各种噪声的来源,如热噪声、散粒噪声、闪烁噪声等 。
噪声系数
评估电路的噪声性能,包括功率噪声系数和电压噪声系数。
噪声与失真
研究噪声对电路输出信号失真的影响。
失真分析
非线性失真
01
分析电路由于非线性效应产生的失真,如谐波失真、互调失真
等。
线性失真
02
分析电路由于线性效应产生的失真,如频率响应失真、相位失
高频电子线路在卫星通信领域的应用也十分 重要,用于实现远距离、高速的数据传输。
02
高频电子线路的基本元件
电阻器
01
02
03
固定电阻器
使用最广泛的电阻器,其 阻值在制造时确定,不能 调整。
可变电阻器
阻值可调的电阻器,一般 用于信号调整和匹配网络 。
敏感电阻器
对温度、光照、压力等物 理量敏感的电阻器,用于 传感器和放大器的输入端 。
高频电子线路概要
2023-11-04
contents
目录
• 高频电子线路概述 • 高频电子线路的基本元件 • 高频电子线路的基本分析方法 • 高频电子线路的常用电路形式 • 高频电子线路的设计与优化 • 高频电子线路的未来发展趋势与挑战
01
高频电子线路概述
高频电子线路的定义与特点
定义
高频电子线路是指工作频率在射频(RF)范围内的电子线路,用于传输、接 收路 形式
振荡电路
1 2
振荡电路的作用
振荡电路在高频电子线路中起着至关重要的作 用,主要用于产生高频正弦波信号,为其他电 路提供所需的本振信号。
振荡电路的分类
根据振荡信号的频率,振荡电路可分为低频振 荡电路、高频振荡电路和微波振荡电路。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

虽然在线性放大电路里也使用了晶体管这一非线性器件, 但是必须采取一些措施来尽量避免或消除它的非线性效应或 频率变换效应, 而主要利用它的电流放大作用。 例如, 使小信 号放大电路工作在晶体管非线性特性中的线性范围内, 在丙 类谐振功放中利用选频网络取出输入信号中才有的有用频率 分量而滤除其它无用的频率分量, 等等。
其中UG是栅极直流
可见, 输出电流中除了直流和ωs这两个输入信号频率分 量之外, 只产生了一个新的2ωs频率分量。
例 5.2 知变容二极管结电容Cj与两端电压u的非线性关 系如图例5.2所示, 分析流经变容二极管的电流i与u之间的频 率变换关系, 并与线性电容器进行比较。
解:流经电容性元器件的电流i与其两端的电压u和存贮 的电荷q具有以下的关系式:
本章以晶体二极管伏安特性为例, 介绍了非线性元器件 频率变换特性的几ቤተ መጻሕፍቲ ባይዱ分析方法,然后进一步介绍频率变换电路 的特点及实现方法。
5.2 非线性元器件频率变换特性的分析方法
5.2.1 指数函数分析法
晶体二极管的正向伏安特性可用指数函数描述为:
(5.2.1) 其中, 热电压UT≈26mV(当T=300K时)。 在输入电压u较小时, 式(5.2.1)与二极管实际特性是吻合的 , 但当u增大时, 二者有较大的误差, 如图5.2.1所示。所以指数 函数分析法仅适用于小信号工作状态下的二极管特性分析。
显然, 展开的泰勒级数必须满足收敛条件。
综上所述, 非线性元器件的特性分析是建立在函数逼近的 基础之上。当工作信号大小不同时, 适用的函数可能不同, 但 与实际特性之间的误差都必须在工程所允许的范围之内。
例 5.1 已知结型场效应管的转移特性可用平方律函数
表示,分析它的频率变换特性。 解:设输入电压 偏压,则输出电流为
解: 这道题实际上是分析在直流偏压上迭加两个不同频 率输入交流信号时的频率变换情况。
设晶体管转移特性为iC=f(uB), 用幂级数分析法将其在UQ处 展开为
iC=a0+a1(u1+u2)+a2(u1+u2)2+…+an(u1+u2)n+…
将u1=Um1cosω1t, u2=Um2cos ω2t代入上式, 然后对各项进行 三角函数变换, 则可以求得iC中频率分量的表达式
ωo=|±pω1±qω2| p、q=0, 1, 2, … (5.2.6)
所以, 输出信号频率是两个不同输入信号频率各次谐波的各 种不同组合, 包含有直流分量。
5.3 频率变换电路的要求与实现方法
由图例5.2可见, 当u=-UQ+Uscosωst时, 结电容Cj是一个周期 性的略为失真的余弦函数, 故可展开为傅里叶级数
将此式和u的表达式一起代入式(5.2.5), 可以求得
展开后可知i中的频率分量为ωo=nωs, n=1, 2, 3, …, 所以变容二 极管有频率变换功能。
例5.3 已知晶体管基极输入电压为uB=UQ+u1+u2, 其中 u1=Um1cosω1t, u2=Um2cosω2t, 求晶体管集电极输出电流中的频 率分量。
5.2.3幂级数分析法
假设晶体二极管的非线性伏安特性可用某一个函数i=f(u) 表示。此函数表示的是一条连续曲线。 如果在自变量u的某一 点处(例如静态工作点UQ)存在各阶导数, 则电流i可以在该点附 近展开为泰勒级数:
式中 当输入电压
n=0,1,2,3,…
可见输出电流中出现的频率分量与式(5.2.3)相同。
(5.2.5)
图例 5.2
对于线性电容器, 它的库伏特性在q-u平面上是一条直线, 故电容量C是一常数。 由式 (5.2.5)可知, 除了无直流分量之外, i 中的频率分量与u中的频率分量应该相同。所以线性电容器无 频率变换功能。
对于变容二极管, 它的库伏特性不仅是一条曲线, 而且它的 法伏特性在C-u平面上也是一条曲线, 其表达式如第4章(4.5.1)式 所示。
ωo=nωs n=0, 1, 2, …
(5.2.3)
由于指数函数是一种超越函数, 所以这种方法又称为超 越函数分析法。
5.2.2折线函数分析法
当输入电压较大时, 晶体二极管的伏安特性可用两段折线 来逼近, 由图5.2.1可以证实这一点。由于晶体三极管的转移特 性与晶体二极管的伏安特性有相似的非线性特性, 所以第4章 第4.2节利用折线法对大信号工作状态下集电极电流进行了分 析。 由分析结果可知, 当输入电压为直流偏压上迭加单频余 弦波时, 集电极电流中的频率分量与式(5.2.3)相同。
频率变换电路属于非线性电路, 其频率变换功能应由非线 性元器件产生。 在高频电子线路里, 常用的非线性元器件有 非线性电阻性元器件和非线性电容性元器件。 前者在电压— 电流平面上具有非线性的伏安特性。如不考虑晶体管的电抗 效应, 它的输入特性、转移特性和输出特性均具有非线性的伏 安特性, 所以晶体管可视为非线性电阻性器件。 后者在电荷— 电压平面上具有非线性的库伏特性。如第4章介绍的变容二极 管就是一种常用的非线性电容性器件。
图 5.2.1 晶体二极管的伏安特性
利用指数函数的幂级数展开式 若u=UQ+Uscosωst, 由式(5.2.1)可得到:
利用三角函数公式将上式展开后, 可以看到, 输入电压中 虽然仅有直流和ωs分量, 但在输出电流中除了直流和ωs分量外 , 还出现了新的频率分量, 这就是ωs的二次及以上各次谐波分 量。 输出电流的频率分量可表示为:
高频电路频率变换电路 的特点及分析
2020年4月24日星期五
5.1概述
本书第2章与第3章分别介绍的小信号放大电路与功率放 大电路均为线性放大电路。线性放大电路的特点是其输出信 号与输入信号具有某种特定的线性关系。从时域上讲, 输出信 号波形与输入信号波形相同, 只是在幅度上进行了放大; 从 频域上讲, 输出信号的频率分量与输入信号的频率分量相同。 然而, 在通信系统和其它一些电子设备中, 需要一些能实现频 率变换的电路。这些电路的特点是其输出信号的频谱中产生 了一些输入信号频谱中没有的频率分量, 即发生了频率分量的 变换, 故称为频率变换电路。
相关文档
最新文档