高考数学一轮复习 第七章 不等式 7.1 不等关系与不等式课件 理
2015届广东高考数学(理)一轮课件【7.1】不等关系与一元二次不等式

思维启迪 解析 思维升华
含有参数的不等式的求解,往
【例2】 解集:
求下列不等式的
往需要对参数进行分类讨论 .
(1)若二次项系数为常数,首先确 定二次项系数是否为正数,再考 虑分解因式,对参数进行分类讨 论,若不易分解因式,则可依据 判别式符号进行分类讨论;
(1)-x2+8x-3>0; (2)ax -(a+1)x+1<0.
(1)-x2+8x-3>0; (2)ax -(a+1)x+1<0.
2
所以原不等式的解集为 {x|4 - 13 <x<4+ 13}.
题型分类 思想方法 练出高分
基础知识
题型分类·深度剖析
题型二 一元二次不等式的解集
思维启迪 解析 思维升华
(2)若 a=0,原不等式等价于-x+
【例2】 解集:
求下列不等式的
解析
B A
[1,4]
(-5,0)∪(5,+∞)
基础知识
题型分类
思想方法
练出高分
题型分类·深度剖析
题型一
【例1】
c c (1)设a>b>1,c<0,给出下列三个结论:① > ; a b
不等式的性质及应用
②ac<bc;③logb(a-c)>loga(b-c).其中所有正确结论的序号 是 A.① B.①② C.②③ D.①②③ ( )
②中,因为 b<a<0,所以-b>-a>0.
故-b>|a|,即|a|+b<0,故②错误; 1 1 1 1 ③中,因为 b<a<0,又 < <0,所以 a- >b- ,故③正确; a b a b
高三理数一轮讲义:7.1-不等式的性质与一元二次不等式(练习版)

第1节不等式的性质与一元二次不等式最新考纲 1.了解现实世界和日常生活中存在着大量的不等关系,了解不等式(组)的实际背景;2.会从实际问题的情境中抽象出一元二次不等式模型;3.通过函数图象了解一元二次不等式与相应的二次函数、一元二次方程的联系;4.会解一元二次不等式,对给定的一元二次不等式,会设计求解的程序框图.知识梳理1.实数的大小顺序与运算性质的关系(1)a>b⇔a-b>0;(2)a=b⇔a-b=0;(3)a<b⇔a-b<0.2.不等式的性质(1)对称性:a>b⇔b<a;(2)传递性:a>b,b>c⇒a>c;(3)可加性:a>b⇔a+c>b+c ;a >b,c>d⇒a+c>b+d;(4)可乘性:a>b,c>0⇒ac>bc;a>b,c<0⇒ac<bc;a>b>0,c>d>0⇒ac>bd;(5)可乘方:a>b>0⇒a n>b n(n∈N,n≥1);(6)可开方:a>b>0⇒na>nb(n∈N,n≥2).3.三个“二次”间的关系判别式Δ=b2-4ac Δ>0Δ=0Δ<0 二次函数y=ax2+bx+c (a>0)的图象一元二次方程ax2+bx+c=0(a>0)的根有两相异实根x1,x2(x1<x2)有两相等实根x1=x2=-b2a没有实数根ax2+bx+c>0 (a>0)的解集{x|x>x2或x<x1}⎩⎨⎧⎭⎬⎫x|x≠-b2aRax2+bx+c<0(a>0)的解集{x|x1<x<x2}∅∅[微点提醒] 1.有关分数的性质(1)若a >b >0,m >0,则b a <b +m a +m ;b a >b -ma -m (b -m >0).(2)若ab >0,且a >b ⇔1a <1b .2.对于不等式ax 2+bx +c >0,求解时不要忘记a =0时的情形.3.当Δ<0时,不等式ax 2+bx +c >0(a ≠0)的解集为R 还是∅,要注意区别.基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”) (1)a >b ⇔ac 2>bc2.( )(2)若不等式ax 2+bx +c <0的解集为(x 1,x 2),则必有a >0.( )(3)若方程ax 2+bx +c =0(a <0)没有实数根,则不等式ax 2+bx +c >0(a <0)的解集为R .( ) (4)不等式ax 2+bx +c ≤0在R 上恒成立的条件是a <0且Δ=b 2-4ac ≤0.( )2.(必修5P74例1改编)若a >b >0,c <d <0,则一定有( ) A.a d >b c B.a d <b c C.a c >b dD.a c <b d3.(必修5P103A2改编)已知集合A =⎩⎨⎧⎭⎬⎫x ⎪⎪⎪12x -1≤0,B ={x |x 2-x -6<0},则A ∩B =( )A.(-2,3)B.(-2,2)C.(-2,2]D.[-2,2]4.(2018·衡阳联考)若a ,b ,c 为实数,且a <b <0,则下列命题正确的是( ) A.ac 2<bc 2 B.1a <1b C.b a >abD.a 2>ab >b 25.(2019·河北重点八所中学模拟)不等式2x 2-x -3>0的解集为________.6.(2018·汉中调研)已知函数f (x )=ax 2+ax -1,若对任意实数x ,恒有f (x )≤0,则实数a 的取值范围是______.考点一不等式的性质多维探究角度1比较大小及不等式性质的简单应用【例1-1】(1)已知实数a,b,c满足b+c=6-4a+3a2,c-b=4-4a+a2,则a,b,c 的大小关系是()A.c≥b>aB.a>c≥bC.c>b>aD.a>c>b(2)(一题多解)若1a<1b<0,给出下列不等式:①1a+b<1ab;②|a|+b>0;③a-1a>b-1b;④lna2>ln b2.其中正确的不等式是()A.①④B.②③C.①③D.②④角度2利用不等式变形求范围【例1-2】(一题多解)设f(x)=ax2+bx,若1≤f(-1)≤2,2≤f(1)≤4,则f(-2)的取值范围是________.规律方法 1.比较两个数(式)大小的两种方法2.与充要条件相结合问题,用不等式的性质分别判断p⇒q和q⇒p是否正确,要注意特殊值法的应用.3.与命题真假判断相结合问题.解决此类问题除根据不等式的性质求解外,还经常采用特殊值验证的方法.4.在求式子的范围时,如果多次使用不等式的可加性,式子中的等号不能同时取到,会导致范围扩大.【训练1】(1)(2019·东北三省四市模拟)设a,b均为实数,则“a>|b|”是“a3>b3”的() A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件(2)(2018·天一测试)已知实数a ∈(1,3),b ∈⎝ ⎛⎭⎪⎫18,14,则a b 的取值范围是________.考点二 一元二次不等式的解法【例2-1】 (1)(2019·河南中原名校联考)已知f (x )是定义在R 上的奇函数.当x >0时,f (x )=x 2-2x ,则不等式f (x )>x 的解集用区间表示为________.(2)已知不等式ax 2-bx -1>0的解集是{x |-12<x <-13},则不等式x 2-bx -a ≥0的解集是________.【例2-2】 解关于x 的不等式ax 2-2≥2x -ax (a ∈R ).规律方法 1.解一元二次不等式的一般方法和步骤 (1)化:把不等式变形为二次项系数大于零的标准形式.(2)判:计算对应方程的判别式,根据判别式判断方程有没有实根(无实根时,不等式解集为R 或∅).(3)求:求出对应的一元二次方程的根.(4)写:利用“大于取两边,小于取中间”写出不等式的解集.2.含有参数的不等式的求解,首先需要对二次项系数讨论,再比较(相应方程)根的大小,注意分类讨论思想的应用.【训练2】 (1)不等式x +5(x -1)2≥2的解集是( )A.⎣⎢⎡⎦⎥⎤-3,12 B.⎣⎢⎡⎦⎥⎤-12,3 C.⎣⎢⎡⎭⎪⎫12,1∪(1,3] D.⎣⎢⎡⎭⎪⎫-12,1∪(1,3] (2)(2019·清远一模)关于x 的不等式ax -b <0的解集是(1,+∞),则关于x 的不等式(ax +b )(x -3)>0的解集是( ) A.(-∞,-1)∪(3,+∞) B.(1,3)C.(-1,3)D.(-∞,1)∪(3,+∞)考点三 一元二次不等式恒成立问题多维探究角度1 在实数R 上恒成立【例3-1】 (2018·大庆实验中学期中)对于任意实数x ,不等式(a -2)x 2-2(a -2)x -4<0恒成立,则实数a 的取值范围是( ) A.(-∞,2) B.(-∞,2] C.(-2,2)D.(-2,2]角度2 在给定区间上恒成立【例3-2】 (一题多解)设函数f (x )=mx 2-mx -1(m ≠0),若对于x ∈[1,3],f (x )<-m +5恒成立,则m 的取值范围是________.角度3 给定参数范围的恒成立问题【例3-3】 已知a ∈[-1,1]时不等式x 2+(a -4)x +4-2a >0恒成立,则x 的取值范围为( )A.(-∞,2)∪(3,+∞)B.(-∞,1)∪(2,+∞)C.(-∞,1)∪(3,+∞)D.(1,3)规律方法 1.对于一元二次不等式恒成立问题,恒大于0就是相应的二次函数的图象在给定的区间上全部在x 轴上方,恒小于0就是相应的二次函数的图象在给定的区间上全部在x 轴下方.另外常转化为求二次函数的最值或用分离参数法求最值.2.解决恒成立问题一定要搞清谁是主元,谁是参数,一般地,知道谁的范围,谁就是主元,求谁的范围,谁就是参数.【训练3】 (1)(2019·河南豫西南五校联考)已知关于x 的不等式kx 2-6kx +k +8≥0对任意x ∈R 恒成立,则k 的取值范围是( ) A.[0,1]B.(0,1]C.(-∞,0)∪(1,+∞)D.(-∞,0]∪[1,+∞)(2)(2019·安庆模拟)若不等式x 2+ax +1≥0对一切x ∈⎝ ⎛⎦⎥⎤0,12恒成立,则a 的最小值是( ) A.0 B.-2 C.-52 D.-3[思维升华]1.比较法是不等式性质证明的理论依据,是不等式证明的主要方法之一,比较法之一作差法的主要步骤为作差——变形——判断正负.2.判断不等式是否成立,主要有利用不等式的性质和特殊值验证两种方法,特别是对于有一定条件限制的选择题,用特殊值验证的方法更简单. [易错防范]1.“三个二次”的关系是解一元二次不等式的理论基础;一般可把a <0的情况转化为a >0时的情形.2.含参数的不等式要注意选好分类标准,避免盲目讨论.基础巩固题组 (建议用时:40分钟)一、选择题1.若f (x )=3x 2-x +1,g (x )=2x 2+x -1,则f (x ),g (x )的大小关系是( ) A.f (x )=g (x ) B.f (x )>g (x )C.f (x )<g (x )D.随x 的值变化而变化2.已知x ,y ∈R ,那么“x >y ”的充要条件是( ) A.2x >2y B.lg x >lg y C.1x >1yD.x 2>y 23.不等式|x |(1-2x )>0的解集为( ) A.(-∞,0)∪⎝ ⎛⎭⎪⎫0,12B.⎝ ⎛⎭⎪⎫-∞,12 C.⎝ ⎛⎭⎪⎫12,+∞ D.⎝ ⎛⎭⎪⎫0,12 4.若实数m ,n 满足m >n >0,则( ) A.-1m <-1n B.m -n <m -n C.⎝ ⎛⎭⎪⎫12m>⎝ ⎛⎭⎪⎫12nD.m 2<mn5.已知函数f (x )=⎩⎨⎧x ,x ≤0,ln (x +1),x >0,若f (2-x 2)>f (x ),则实数x 的取值范围是( )A.(-∞,-1)∪(2,+∞)B.(-∞,-2)∪(1,+∞)C.(-1,2)D.(-2,1)二、填空题6.若0<a <1,则不等式(a -x )⎝ ⎛⎭⎪⎫x -1a >0的解集是________.7.规定记号“⊙”表示一种运算,定义a ⊙b =ab +a +b (a ,b 为正实数),若1⊙k 2<3,则k 的取值范围是________.8.(2019·阳春质检)设a <0,若不等式-cos 2x +(a -1)cos x +a 2≥0对于任意的x ∈R 恒成立,则a 的取值范围是________.三、解答题9.已知f (x )=-3x 2+a (6-a )x +6. (1)解关于a 的不等式f (1)>0;(2)若不等式f (x )>b 的解集为(-1,3),求实数a ,b 的值.10.某商品每件成本价为80元,售价为100元,每天售出100件.若售价降低x 成(1成=10%),售出商品数量就增加85x 成.要求售价不能低于成本价.(1)设该商店一天的营业额为y ,试求y 与x 之间的函数关系式y =f (x ),并写出定义域; (2)若再要求该商品一天营业额至少为10 260元,求x 的取值范围.能力提升题组 (建议用时:20分钟)11.已知0<a <b ,且a +b =1,则下列不等式中正确的是( ) A.log 2a >0B.2a -b <12 C.log 2a +log 2b <-2 D.2a b +b a <1212.(2019·保定调研)已知定义在R 上的奇函数f (x )满足:当x ≥0时,f (x )=x 3,若不等式f (-4t )>f (2m +mt 2)对任意实数t 恒成立,则实数m 的取值范围是( ) A.(-∞,-2) B.(-2,0)C.(-∞,0)∪(2,+∞)D.(-∞,-2)∪(2,+∞)13.已知-1<x +y <4,2<x -y <3,则3x +2y 的取值范围是________.14.(2019·济南质检)已知f (x )是定义在R 上的偶函数,且当x ≥0时,f (x )=e x .若对任意x ∈[a ,a +1],恒有f (x +a )≥f (2x )成立,求实数a 的取值范围.。
高考北师大版数学总复习课件:7.1不等关系与不等式

π π 5.(教材改编题)已知- <α <β < ,则 α-β 的取值范围是 2 2 ________.
[答案] (-π,0) π π π π [解析] ∵- <α<β < ,∴- <α< ,α-β<0, 2 2 2 2
π π - <-β< ,∴-π<α-β<0 2 2
6. (2012· 盐城模拟 )已知 a<0,- 1<b<0,那么 a, ab, ab2 的大小关系是________.
[答案] A
)
B.充分不必要条件 D.既不充分也不必要条件
[解析] ∵“a+c>b+d”⇒ / “a>b 且 c> d”, ∴充分性不成立; 又“a> b 且 c> d”⇒“a+c>b+d”, ∴必要性成立,故选 A.
2.(2012· 泉州模拟)若 a、b、c 为实数,则下列命题正确的 是( ) A.若 a> b,则 ac2> bc2 B.若 a< b<0,则 a2> ab> b2 1 1 C.若 a< b<0,则 < a b b a D.若 a< b<0,则 > a b
知识梳理 1.比较两个实数大小的法则 设 a, b∈ R,则 (1)a>b⇔ a-b>0 ; (2)a= b⇔a-b=0; (3)a<b⇔ a-b<0 .
2.不等式的基本性质 (1)a>b⇔ b<a ; (2)a>b, b>c⇒ a>c ; (3)a>b⇔a+c>b+c ; (4)a>b, c>0⇒ ac>bc; a>b, c<0⇒ ac<bc;
一轮复习教案:第7章 第1讲 不等关系与不等式

3≤2x+y≤9
(3)若变量 x,y 满足约束条件
,则 z=x+2y 的最小值为________.
6≤x-y≤9
[解析] (1)∵ab>0,bc-ad>0,
∴c-d=bc-ad>0,∴①正确; a b ab
∵ab>0,又c-d>0,即bc-ad>0,
ab
ab
∴bc-ad>0,∴②正确;
∵bc-ad>0,又c-d>0,即bc-ad>0,
ab
ab
∴ab>0,∴③正确.故选 D.
(2)∵M-N=a1a2-(a1+a2-1)=(a1-1)(a2-1),又∵a1,a2∈(0,1),∴M-N>0,即 M>N, 选 B.
(3)令 z=x+2y=λ(2x+y)+μ(x-y)=(2λ+μ)x+(λ-μ)y,
2λ+μ=1
λ=1
∴
,∴
,∴z=(2x+y)-(x-y),
大.
[正解] 解法一:设 f(-2)=mf(-1)+nf(1)(m,n 为待定系数),则 4a-2b=m(a-b)+n(a+
b),
即 4a-2b=(m+n)a+(n-m)b.
m+n=4,
m=3,
于是得
解得
n-m=-2,
n=1,
∴f(-2)=3f(-1)+f(1).
又∵1≤f(-1)≤2,2≤f(1)≤4,
2.若 a>b>0,c<d<0,则一定有( )
A.a>b cd
C.a>b dc
B.a<b cd
D.a<b dc
答案 D
解析 ∵c<d<0,∴-c>-d>0,
高考数学一轮复习 第七章 不等式 7.1 不等式及其解法课件 理

D.a2>ab>b2
答案 D 选项A,∵c为实数,∴取c=0,得ac2=0,bc2=0,此时ac2=bc2,故选项A不正确;选项B, 1 - 1 =
ab
b ,a∵a<b<0,∴b-a>0,ab>0,∴ b>0a,即 >1 ,1故选项B不正确;选项C,∵a<b<0,∴取a=-2,b=-1,
ab
ab
ab
12/11/2021
2.(2014江苏,10,5分)已知函数f(x)=x2+mx-1,若对于任意x∈[m,m+1],都有f(x)<0成立,则实数m的
取值范围是
.
答案
2 2
,0
解析 要满足f(x)=x2+mx-1<0对于任意x∈[m,m+1]恒成立,
只需
f f
(即m ) 0,解得-
(m 1) 0,
∵0<log0.20.3<log0.20.2=1,log20.3<log20.5=-1,即0<a<1,b<-1,∴a+b<0,排除D.
∵ b =l o g 2=0 . 3 =llgo0g.220.2,∴b- =logb 20.3-log20.2=log2
a lo g 0.2 0 .3 l g 2
a
解法二:易知0<a<1,b<-1,∴ab<0,a+b<0,
<1,∴3 b<1+
2
⇒ab b<a+b,排除A.故选B.
a
∵ 1 +1 =log0.30.2+log0.32=log0.30.4<1,
高考数学一轮复习第七章不等式推理与证明1二元一次不等式与简单的线性规划问题课件新人教A版22

标函数的几何意义是斜率问题还是距离问题,依据几何意义可求得
最值.
-27考点1
考点2
考点3
对点训练 2(1)(2020 河北唐山二模)已知 x,y 满足约束条件
- + 2 ≥ 0,
-2 + 1 ≤ 0,则 z=x-y 的最大值为( B )
包括
标系中画不等式Ax+By+C≥0所表示的平面区域时,此区域应_____
实线
边界直线,则把边界直线画成
.
(2)因为对直线Ax+By+C=0同一侧的所有点(x,y),把它的坐标(x,y)
代入Ax+By+C,所得的符号都 相同
,所以只需在此直线的同
一侧取一个特殊点(x0,y0)作为测试点,由Ax0+By0+C的 符号 即
-1 ≤ 0,
- + 1 ≥ 0
为( D )
A.-5
B.1
C.2
D.3
(2)如图,阴影部分表示的区域可用二元一次不等式组表示
+ -1 ≥ 0,
为 -2 + 2 ≥. 0
-17考点1
考点2
考点3
+ -1 ≥ 0,
解析: (1)不等式组 -1 ≤ 0,
所围成的平面区域如图所示.
3
3
7
A.1
B.
C.
D.
2
4
4
- ≥ 0,
2 + ≤ 2,
(2)若不等式组
表示的平面区域是一个三角形,则
≥ 0,
+ ≤
a 的取值范围是( D )
高考理科数学一轮复习不等式全套课件

【互动探究】
比较1816与1618的大小.
解:11861168=1186161162=9816 1216=8 9 216.
∵ 8
9
2∈(0,1),∴8
9
216<1.∵1618>0,∴1816<1618.
易错、易混、易漏 ⊙忽略考虑等号能否同时成立 例题:设 f(x)= ax2+bx,1≤f(-1)≤2,2≤f(1)≤4,求f(-2) 的取值范围. 正解:方法一,设 f(-2)=mf(-1)+nf(1)(m,n 为待定系 数),则 4a-2b=m(a-b)+n(a+b). 即 4a-2b=(m+n)a+(n-m)b. 则有mn-+mn= =4-,2. 解得nm==13.,
ac>>db>>00⇒ac_>___bd
⇒
可乘方性 可开方性
a>b>0⇒an>bn(n∈N,n≥2) a,b 同为正数
a>b>0⇒ n a > n b (n∈N,n≥2)
ቤተ መጻሕፍቲ ባይዱ
1.(2014 年四川)若 a>b>0,c<d<0,则一定有( B )
ab A.d>c
ab B.d<c
ab C.c>d
解析:令 x=-2,y=-3,a=3,b=2,符合题意 x>y, a>b.
因为 a-x=3-(-2)=5,b-y=2-(-3)=5,所以 a-x =b-y.故①不成立;
因为 ax=-6,by=-6,所以 ax=by.故③也不成立; 因为ay=-33=-1,bx=-22=-1,所以ay=bx.故⑤不成立.
答案:B
(2)在等比数列{an}中,an>0(n∈N),公比q≠1.则( ) A.a1+a8>a4+a5 B.a1+a8<a4+a5 C.a1+a8=a4+a5 D.不确定
【高考精品复习】第七篇 不等式 第1讲 不等关系与不等式

第1讲 不等关系与不等式【高考会这样考】结合命题真假判断、充要条件、大小比较等知识考查不等式性质的基本应用. 【复习指导】不等式的性质是解(证)不等式的基础,关键是正确理解和运用,要弄清条件和结论,近几年高考中多以小题出现,题目难度不大,复习时,应抓好基本概念,少做偏难题.基础梳理1.不等式的定义在客观世界中,量与量之间的不等关系是普遍存在的,我们用数学符号>、<、≥、≤、≠连接两个数或代数式以表示它们之间的不等关系,含有这些不等号的式子,叫做不等式. 2.比较两个实数的大小两个实数的大小是用实数的运算性质来定义的,有a -b >0⇔a >b ;a -b =0⇔a =b ;a -b <0⇔a <b .另外,若b >0,则有a b >1⇔a >b ;a b =1⇔a =b ;ab <1⇔a <b .3.不等式的性质 (1)对称性:a >b ⇔b <a ; (2)传递性:a >b ,b >c ⇔a >c ;(3)可加性:a >b ⇔a +c >b +c ,a >b ,c >d ⇒a +c >b +d ; (4)可乘性:a >b ,c >0⇒ac >bc ;a >b >0,c >d >0⇒ac >bd ; (5)可乘方:a >b >0⇒a n >b n (n ∈N ,n ≥2); (6)可开方:a >b >0⇒n a >nb (n ∈N ,n ≥2).一个技巧作差法变形的技巧:作差法中变形是关键,常进行因式分解或配方. 一种方法待定系数法:求代数式的范围时,先用已知的代数式表示目标式,再利用多项式相等的法则求出参数,最后利用不等式的性质求出目标式的范围. 两条常用性质 (1)倒数性质:①a >b ,ab >0⇒1a <1b ; ②a <0<b ⇒1a <1b ; ③a >b >0,0<c <d ⇒a c >bd ;④0<a <x <b 或a <x <b <0⇒1b <1x <1a . (2)若a >b >0,m >0,则 ①真分数的性质:b a <b +m a +m ;b a >b -ma -m (b -m >0); ②假分数的性质:a b >a +m b +m ;a b <a -mb -m (b -m >0).双基自测1.(人教A 版教材习题改编)给出下列命题:①a >b ⇒ac 2>bc 2;②a >|b |⇒a 2>b 2;③a >b ⇒a 3>b 3;④|a |>b ⇒a 2>b 2.其中正确的命题是( ). A .①② B .②③ C .③④D .①④解析 当c =0时,ac 2=bc 2,∴①不正确;a >|b |≥0,a 2>|b |2=b 2,∴②正确;a 3-b 3=(a -b )(a 2+ab +b 2)=(a -b )·⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫a +12b 2+34b 2>0,∴③正确;取a =2,b =-3,则|a |>b ,但a 2=4<b 2=9,∴④不正确.答案 B2.限速40 km/h的路标,指示司机在前方路段行驶时,应使汽车的速度v不超过40 km/h,写成不等式就是().A.v<40 km/h B.v>40 km/hC.v≠40 km/h D.v≤40 km/h答案 D3.(2012·银川质检)已知a,b,c∈R,则“a>b”是“ac2>bc2”的().A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析a>b /⇒ac2>bc2,∵当c2=0时,ac2=bc2;反之,ac2>bc2⇒a>b.答案 B4.已知a>b,c>d,且c,d不为0,那么下列不等式成立的是().A.ad>bc B.ac>bdC.a-c>b-d D.a+c>b+d解析由不等式性质知:a>b,c>d⇒a+c>b+d.答案 D5.12-1与3+1的大小关系为________.解析12-1-(3+1)=(2+1)-(3+1)=2-3<0,∴12-1<3+1.答案12-1<3+1考向一比较大小【例1】►已知a,b,c是实数,试比较a2+b2+c2与ab+bc+ca的大小.[审题视点] 采用作差法比较,作差后构造完全平方式即可.解∵a2+b2+c2-(ab+bc+ca)=12[(a-b)2+(b-c)2+(c-a)2]≥0,当且仅当a=b=c时取等号.∴a 2+b 2+c 2≥ab +bc +ca .比较大小的方法常采用作差法与作商法,但题型为选择题时可以用特殊值法来比较大小.【训练1】 已知a ,b ∈R 且a >b ,则下列不等式中一定成立的是( ). A.ab >1 B .a 2>b 2C .lg(a -b )>0 D.⎝ ⎛⎭⎪⎫12a <⎝ ⎛⎭⎪⎫12b解析 令a =2,b =-1,则a >b ,a b =-2,故ab >1不成立,排除A ;令a =1,b =-2,则a 2=1,b 2=4,故a 2>b 2不成立,排除B ;当a -b 在区间(0,1)内时,lg(a -b )<0,排除C ;f (x )=⎝ ⎛⎭⎪⎫12x 在R 上是减函数,∵a >b ,∴f (a )<f (b ).答案 D考向二 不等式的性质【例2】►(2012·包头模拟)若a >0>b >-a ,c <d <0,则下列命题:(1)ad >bc ;(2)a d +bc <0;(3)a -c >b -d ;(4)a ·(d -c )>b (d -c )中能成立的个数是( ). A .1 B .2 C .3 D .4[审题视点] 利用不等式的性质说明正误或举反例说明真假. 解析 ∵a >0>b ,c <d <0,∴ad <0,bc >0,∴ad <bc , ∴(1)错误.∵a >0>b >-a ,∴a >-b >0, ∵c <d <0,∴-c >-d >0, ∴a (-c )>(-b )(-d ),∴ac +bd <0,∴a d +b c =ac +bdcd <0,∴(2)正确. ∵c <d ,∴-c >-d ,∵a >b ,∴a +(-c )>b +(-d ), a -c >b -d ,∴(3)正确.∵a >b ,d -c >0,∴a (d -c )>b (d -c ),∴(4)正确,故选C. 答案 C在判断一个关于不等式的命题真假时,先把要判断的命题和不等式性质联系起来考虑,找到与命题相近的性质,并应用性质判断命题真假,当然判断的同时还要用到其他知识,比如对数函数,指数函数的性质等.【训练2】 已知三个不等式:①ab >0;②bc >ad ;③c a >db .以其中两个作为条件,余下一个作为结论,则可以组成正确命题的个数是( ). A .0 B .1 C .2 D .3解析 命题1:若ab >0,c a >db ,则bc >ad ; 命题2:若ab >0,bc >ad ,则c a >db ; 命题3:若c a >db ,bc >ad ,则ab >0. 答案 D考向三 不等式性质的应用【例3】►已知函数f (x )=ax 2+bx ,且1≤f (-1)≤2,2≤f (1)≤4.求f (-2)的取值范围.[审题视点] 可利用待定系数法寻找目标式f (-2)与已知式f (-1),f (1)之间的关系,即用f (-1),f (1)整体表示f (-2),再利用不等式的性质求f (-2)的范围. 解 f (-1)=a -b ,f (1)=a +b .f (-2)=4a -2b . 设m (a +b )+n (a -b )=4a -2b . ∴⎩⎨⎧ m +n =4,m -n =-2,∴⎩⎨⎧m =1,n =3.∴f (-2)=(a +b )+3(a -b )=f (1)+3f (-1). ∵1≤f (-1)≤2,2≤f (1)≤4, ∴5≤f (-2)≤10.由a <f (x ,y )<b ,c <g (x ,y )<d ,求F (x ,y )的取值范围,可利用待定系数法解决,即设F (x ,y )=mf (x ,y )+ng (x ,y ),用恒等变形求得m ,n ,再利用不等式的性质求得F (x ,y )的取值范围.【训练3】 若α,β满足⎩⎨⎧-1≤α+β≤1,1≤α+2β≤3,试求α+3β的取值范围.解 设α+3β=x (α+β)+y (α+2β)=(x +y )α+(x +2y )β.由⎩⎨⎧ x +y =1,x +2y =3,解得⎩⎨⎧x =-1,y =2. ∵-1≤-(α+β)≤1,2≤2(α+2β)≤6, ∴两式相加,得1≤α+3β≤7.考向四 利用不等式的性质证明简单不等式【例4】►设a >b >c ,求证:1a -b +1b -c +1c -a>0. [审题视点] 充分运用已知条件及不等式性质进行求证. 证明 ∵a >b >c ,∴-c >-b . ∴a -c >a -b >0,∴1a -b >1a -c>0. ∴1a -b +1c -a >0.又b -c >0,∴1b -c >0. 1a -b +1b -c +1c -a>0.(1)运用不等式性质解决问题时,必须注意性质成立的条件.(2)同向不等式的可加性与可乘性可推广到两个以上的不等式. 【训练4】 若a >b >0,c <d <0,e <0, 求证:e (a -c )2>e(b -d )2.证明 ∵c <d <0,∴-c >-d >0. 又∵a >b >0,∴a -c >b -d >0. ∴(a -c )2>(b -d )2>0.∴0<1(a -c )2<1(b -d )2. 又∵e <0,∴e (a -c )2>e(b -d )2.难点突破15——数式大小比较问题数式大小的比较是高考中最常见的一种命题方式,涉及的知识点和问题求解的方法不仅局限于不等式知识,而且更多的关联到函数、数列、三角函数、向量、解析几何、导数等知识,内容丰富多彩.命题的方式主要是选择题、填空题,考查不等式性质、函数性质的应用.一、作差法【示例】►(2011·陕西)设0<a<b,则下列不等式中正确的是().A.a<b<ab<a+b2B.a<ab<a+b2<bC.a<ab<b<a+b2 D.ab<a<a+b2<b二、作商法【示例】►若0<x<1,a>0且a≠1,则|log a(1-x)|与|log a(1+x)|的大小关系是().A.|log a(1-x)|>|log a(1+x)|B.|log a(1-x)|<|log a(1+x)|C.不确定,由a的值决定D.不确定,由x的值决定三、中间量法【示例】►若a=20.6,b=logπ3,c=log2sin 2π5,则().A.a>b>c B.b>a>c C.c>a>b D.b>c>a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
12345
答案
3.若a,b∈R,若a+|b|<0,则下列不等式中正确的是__④______. ①a-b>0 ②a3+b3>0 ③a2-b2<0 ④a+b<0 解析 由a+|b|<0知,a<0,且|a|>|b|, 当b≥0时,a+b<0成立, 当b<0时,a+b<0成立,∴a+b<0成立.
12345
解析答案
4.下列各组代数式的关系正确的是________. ①x2+5x+6<2x2+5x+9; ②(x-3)2<(x-2)(x-4); ③当x>1时,x3>x2-x+1; ④x2+y2+1>2(x+y-1).
12345
解析答案
5.若 0<a<b,且 a+b=1,则将 a,b,12,2ab,a2+b2 从小到大排 列为____________________.
思考辨析
答案
2
考点自测
1 若 x>y,a>b,则在①a-x>b-y,②a+x>b+y,③ax>by,④x-b>y -a,⑤ay>bx这五个式子中,恒成立的所有不等式的序号是________.
12345
解析答案
2.下列四个结论,正确的是_①__③_____. ①a>b,c<d⇒a-c>b-d; ②a>b>0,c<d<0⇒ac>bd;
ab<1⇔a < b
(a∈R,b>0).
答案
2.不等式的基本性质
性质 对称性 传递性 可加性
性质内容
b<a
a>c
a>b⇔
a+c>b+c
a>a>bb, b>acc⇒>bc
c>0
ac<>a0b>b⇔ac<bc
特别 提醒 ⇔
⇒ ⇔
答案
同向可
a>b
c>d
⇒ a+c>b+d
⇒
加性
同向同
a>b>0
ac>bd
⇔|a||b|+|b|<|a||b|+|a|⇔|b|<|a|,
∵a<b<0,∴|b|<|a|成立.
解析答案
(2)设a>b>1,c<0,给出下列三个结论: ①ac>bc;②ac<bc;③logb(a-c)>loga(b-c).
其中所有正确结论的序号是________.
解析答案
易错警示系列
易错警示系列 7.不等式变形中扩大变量范围致误
思维升华
解析答案
(1)若a<b<0,则下列不等式一定成立的是__③______. ①a-1 b>1b ②a2<ab
跟踪训练3
③||ba||<||ba||++11 ④an>bn 解析 (特值法)取a=-2,b=-1,逐个检验,可知①,②,④均
不正确; ③中,||ba||<||ba||+ +11⇔|b|(|a|+1)<|a|(|b|+1)
典例 设f(x)=ax2+bx,若1≤f(-1)≤2,2≤f(1)≤4,则f(-2)的取值 范围是________.
易错分析 解题中多次使用同向不等式的可加性,先求出a,b的
解析 由c<b<a且ac<0知c<0且a>0. 由b>c得ab>ac一定成立.
思维升华
解析答案
跟踪训练2
若 a>0>b>-a,c<d<0,则下列结论:①ad>bc;②ad+bc<0;③a-c>b-d; ④a(d-c)>b(d-c)中成立的个数是________.解析答案题型三 不等式性质的应用
例 3 已知 a>b>0,给出下列四个不等式: ①a2>b2;②2a>2b-1;③ a-b> a- b;④a3+b3>2a2b. 其中一定成立的不等式为__________.
(2)有关分数的性质 若 a>b>0,m>0,则 ①ba<ba++mm;ba>ba- -mm(b-m>0). ②ab>ab++mm;ab<ab- -mm(b-m>0).
判断下面结论是否正确(请在括号中打“√”或“×”) (1)a>b⇔ac2>bc2.( × ) (2)1a>1b⇔a<b(ab≠0).( × ) (3)a>b,c>d⇒ac>bd.( × ) (4)若1a<1b<0,则|a|>|b|.( × ) (5)若 a3>b3 且 ab<0,则1a>1b.( √ )
解析答案
(2)若 a=ln33,b=ln44,c=ln55,则 a,b,c 的大小关系为__________.
思维升华
解析答案
跟踪训练1
(1)已知 x∈R,m=(x+1)(x2+2x+1),n=(x+12)(x2+x+1),则 m,n 的 大小关系为__________.
解析答案
(2)若a=1816,b=1618,则a与b的大小关系为____a_<_b________. 解析 ab=11861168=(1186)161162 =(98)16( 12)16=(892)16,
∵ 8
9
2∈(0,1),∴(8
9
2)16<1,
∵1816>0,1618>0,∴1816<1618.即a<b.
解析答案
题型二 不等式的性质
例2 已知a,b,c满足c<b<a,且ac<0,那么下列关系式中一定成 立的是___①_____. ①ab>ac ②c(b-a)<0 ③cb2<ab2 ④ac(a-c)>0
12345
解析答案
题型分类 深度剖析
题型一 比较两个数(式)的大小
例1 (1)已知实数a,b,c满足b+c=6-4a+3a2,c-b=4-4a+a2, 则a,b,c的大小关系是__c_≥__b_>_a___. 解析 ∵c-b=4-4a+a2=(a-2)2≥0,∴c≥b. 又b+c=6-4a+3a2,∴2b=2+2a2,∴b=a2+1, ∴b-a=a2-a+1=(a-12)2+34>0, ∴b>a,∴c≥b>a.
c>d>0
正
an>b⇒n
⇒
可乘性
可乘方
n a>n b
a>b>0⇒ 性
(n∈N,n≥1) a,b
答案
3.不等式的一些常用性质 (1)倒数的性质 ①a>b,ab>0⇒1a<1b. ②a<0<b⇒1a<1b. ③a>b>0,0<c<d⇒ac>bd. ④0<a<x<b 或 a<x<b<0⇒1b<1x<1a.
第七章 不等式
§7.1 不等关系与不等式
内容 索引
基础知识 自主学习 题型分类 深度剖析 易错警示系列 思想方法 感悟提高 练出高分
基础知识 自主学习
1
知识梳理
1.两个实数比较大小的方法
a-b>0⇔a > b (1)作差法a-b=0⇔a = b
a-b<0⇔a < b
(a,b∈R);
ba>1⇔a > b (2)作商法ab=1⇔a = b