单片机模拟I2C总线及AT24C01应用实例(格式整理版)
实验八 51系列单片机IIC

I2C总线上的所有器件连接在一个公共的总线上,因此,主器件在进行数据传输前选择需要通信的从器件,即进行总线寻址。 I2C总线上所有外围器件都需要有惟一的地址,由器件地址和引脚地址两部分组成,共7位。器件地址是I2C器件固有的地址编码,器件出厂时就已经给定,不可更改。引脚地址是由I2C总线外围器件的地址引脚(A2,A1,A0)决定,根据其在电路中接电源正极、接地或悬空的不同,形成不同的地址代码。引脚地址数也决定了同一种器件可接入总线的最大数目。 地址位与一个方向位共同构成I2C总线器件寻址字节。寻址字节的格式如表所示。方向位(R/)规定了总线上的主器件与外围器件(从器件)的数据传输送方向。当方向位R/=1,表示主器件读取从器件中的数据;R/=0,表示主器件向从器件发送数据。
从地址中读取一个字节的数据
INT8U read_random(INT8U RomAddress) { INT8U Read_data; I_Start(); I_Write8Bit(WriteDeviceAddress); I_TestAck(); I_Write8Bit(RomAddress); I_TestAck(); I_Start(); I_Write8Bit(ReadDeviceAddress); I_TestAck(); Read_data=I_Read8Bit(); I_NoAck(); I_Stop(); return (Read_data); }
8.4.1 串行EEPROM存储器简介
串行EEPROM存储器是一种采用串行总线的存储器,这类存储器具有体积小、功耗低、允许工作电压范围宽等特点。目前,单片机系统中使用较多的EEPROM芯片是24系列串行EEPROM。其具有型号多、容量大、支持I2C总线协议、占用单片机I/O端口少,芯片扩展方便、读写简单等优点。 目前,Atmel、MicroChip、National等公司均提供各种型号的I2C总线接口的串行EEPROM存储器。下面以Atmel公司的产品为例进行介绍。 AT24C01/02/04/08系列是Atmel公司典型的I2C串行总线的EEPROM。这里以AT24C08为例介绍。AT24C08具有1024×8位的存储容量,工作于从器件模式,可重复擦写100万次,数据可以掉电保存100年。8引脚DIP封装的AT24C08的封装结构,如图所示。
I2C总线AT24C01读写程序(汇编和C)

NOP
NOP
MOV C,SDA
RLC A
CLR SCL
DJNZ B,I2C_RECEIVE8IT_A
RET
C语言写的24C01 单字节读写程序
LCALL I2C_SEND8BIT
LCALL I2C_ACK
JC I2C_READ_A ;=1,表示无确认,再次发送
MOV A,Address
LCALL I2C_SEND8BIT
LCALL I2C_ACK
unsigned char i2c_read(unsigned char Address)
{
unsigned char c;
do{
i2c_start();
i2c_send8bit(0xA0);
}while(i2c_ack()); //=1,表示无确认,再次发送
; 24C01存储器I2C总线实验 汇编语言例子
; =======================================================
SDA EQU P2.0
SCL EQU P2.1
i2c_write(地址,数据),写一个字节
=======================================================*/
void i2c_write(unsigned char Address,unsigned char Data)
{
do{
I2C总线AT24C01读写程序(汇编和C)
--------------------------------------------------------------------------------
单片机模拟I2C总线及AT24C01应用实例(格式整理版)

单片机模拟I2C总线及AT24C01应用实例(格式整理版) I2C(Inter-Integrated Circuit)总线是一种由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备。
I2C总线产生于在80年代,最初为音频和视频设备开发,如今主要在服务器管理中使用,其中包括单个组件状态的通信。
例如管理员可对各个组件进行查询,以管理系统的配置或掌握组件的功能状态,如电源和系统风扇。
可随时监控内存、硬盘、网络、系统温度等多个参数,增加了系统的安全性,方便了管理。
1.I2C总线特点I2C总线最主要的优点是其简单性和有效性。
由于接口直接在组件之上,因此I2C总线占用的空间非常小,减少了电路板的空间和芯片管脚的数量,降低了互联成本。
总线的长度可高达25英尺,并且能够以10Kbps的最大传输速率支持40个组件。
I2C总线的另一个优点是,它支持多主控(multimastering),其中任何能够进行发送和接收的设备都可以成为主总线。
一个主控能够控制信号的传输和时钟频率。
当然,在任何时间点上只能有一个主控。
2.I2C总线工作原理2.1总线的构成及信号类型I2C总线是一种串行数据总线,只有二根信号线,一根是双向的数据线SDA,另一根是时钟线SCL。
在CPU与被控IC之间、IC与IC之间进行双向传送,最高传送速率100kbps。
各种被控制电路均并联在这条总线上,但就像电话机一样只有拨通各自的号码才能工作,所以每个电路和模块都有唯一的地址,在信息的传输过程中,I2C总线上并接的每一模块电路既是主控器(或被控器),又是发送器(或接收器),这取决于它所要完成的功能。
CPU发出的控制信号分为地址码和控制量两部分,地址码用来选址,即接通需要控制的电路,确定控制的种类;控制量决定该调整的类别(如对比度、亮度等)及需要调整的量。
这样,各控制电路虽然挂在同一条总线上,却彼此独立,互不相关。
2.2位的传输SDA线上的数据必须在时钟的高电平周期保持稳定数据线的高或低电平状态只有在SCL 线的时钟信号是低电平时才能改变,见图1:图12.3开始信号SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。
I2C总线原理及应用实例

I2C总线原理及应用实例I2C总线是一种串行通信总线,全称为Inter-Integrated Circuit,是Philips(飞利浦)公司在1982年推出的一种通信协议。
它可以用于连接各种集成电路(Integrated Circuits,ICs),如处理器、传感器、存储器等。
I2C总线的原理是基于主从架构。
主设备(Master)负责生成时钟信号,并发送和接收数据,从设备(Slave)通过地址识别和响应主设备的命令。
I2C总线使用两根线来传输数据,一根是时钟线(SCL),用于主设备生成的时钟信号;另一根是数据线(SDA),用于双向传输数据。
1. 主设备发送起始位(Start)信号,将SDA线从高电平拉低;然后通过SCL线发送时钟信号,用于同步通信。
2.主设备发送从设备的地址,从设备通过地址识别确定是否响应。
3.主设备发送要传输的数据到从设备,从设备响应确认信号。
4. 主设备可以继续发送数据,或者发送停止位(Stop)信号结束通信。
停止位是将SDA线从低电平拉高。
1.温度监测器:I2C总线可以连接到温度传感器上,通过读取传感器的输出数据,进行温度的监测和控制。
主设备可以设置警报阈值,当温度超过阈值时,可以触发相应的措施。
2.显示屏:很多智能设备上的显示屏都采用了I2C总线,如液晶显示屏(LCD)或有机发光二极管(OLED)等。
主设备通过I2C总线发送要显示的信息,并控制显示效果,如亮度、对比度、清晰度等参数。
3.扩展存储器:I2C总线可以用于连接外部存储器,如电子存储器(EEPROM)。
通过I2C总线,可以读取和写入存储器中的数据,实现数据的存储和传输。
4.触摸屏控制器:许多触摸屏控制器也使用了I2C总线,主要用于将触摸信号传输给主设备,并接收主设备的命令。
通过I2C总线,可以实现对触摸屏的操作,如单击、滑动、缩放等。
5.电源管理器:一些电源管理器也采用了I2C总线,用于控制和监测电池电量、充电状态、电压、电流等参数。
用AVR单片机IO口模拟I2C总线操作AT24CXX的通用程序

*c=ret;
return(ret);
}
以下为AT24CXX的操作函数实现:
at24cxx.h:
//AT24CXX.H
#ifndef AT24CXX_H
#define AT24CXX-H
void At24cxxWaitBusy(void);
#include <util/delay.h>
#include <stdint.h>
/*注:
AVR单片机I/O口模拟I2C总线时建议在外部连接上拉电阻
这样可通过改变I/O口输入输出方向的方式来设置高低
输出口保持不变(0)
此时如DDRX寄存器为1则变成输出0
若DDRX为0,则I/O口程高阻,但因外部的上拉电阻,总线相当于设置高
#define TW_READ 1
#define TW_ACK 1
#define TW_NOACK 0
Hale Waihona Puke /*以下两个宏控制AT24CXX的WP引脚,如未连接可定义为空:
#define EEPROM_WRITE_ENABLE
#define EEPROM_WRITE_DISABLE
AT24CXX中WP引脚接地时写允许,接电源(高)时写保护,
如不接,器件内部有接地电阻,即写允许. */
//在CA-M8X板上该引脚通过S7(3)连接MEGA8的PC3
#define EEPROM_WRITE_ENABLE PORTC&=~_BV(PC3),DDRC|=_BV(PC3)
void At24cxxConfig(uint8_t device_addr,uint8_t page_size);
串行i2c总线e2prom at24cxxx的应用.

9.串行I2C总线E2PROM AT24CXXX的应用这一篇介绍I2C存储器的使用。
主要是介绍AT24CXX系列器件,它分为两类,主要是通过被存储容量地址来分的,一类是AT24C02-AT24C16,它的存储容量从256字节到2048字节。
另一类是AT24C32-AT24C1024,容量从4K-128K。
(理论上好像可以达到最高512K字节容量,但现在网上最高也就能看到AT24C1024也就是128K字节容量)原理:I2C总线是一种用于IC器件之间连接的二线制总线。
它通过SDA(串行数据线)及SCL(串行时钟线)两根线在连到总线上的器件之间传送信息,并根据地址识别每个器件:不管是单片机、存储器、LCD驱动器还是键盘接口。
I2C总线接口电路结构如图所示。
SDA和SCL均为双向I/O线,通过上拉电阻接正电源。
当总线空闲时,两根线都是高电平。
连接总线的器件的输出级必须是集电极或漏极开路,以具有线“与”功能。
I2C总线的数据传送速率在标准工作方式下为100kbit/s,在快速方式下,最高传送速率可达400kbit/s。
在I2C总线技术规范中,开始和结束信号(也称启动和停止信号)的定义如图所示。
当时钟线SCL为高电平时,数据线SDA由高电平跳变为低电平定义为“开始”信号;当SCL 线为高电平时,SDA线发生低电平到高电平的跳变为“结束”信号。
开始和结束信号都是由主器件产生。
在开始信号以后,总线即被认为处于忙状态;在结束信号以后的一段时间内,总线被认为是空闲的。
I2C总线的数据传送格式是:在I2C总线开始信号后,送出的第一个字节数据是用来选择从器件地址的,其中4-7位为器件码,如1010就是代表串行E2PROM器件。
1-3位为存储器的片选地址或存储器内的块地址码,如何区分?后面再做详细说明,第8位为方向位(R/W)。
方向位为“0”表示发送,即主器件把信息写到所选择的从器件;方向位为“1”表示主器件将从从器件读信息。
单片机模拟I2C总线读写EEPROM(24CXX)程序一

单片机模拟I2C总线读写EEPROM(24CXX)程序一下面是一个最简单的读写程序,可以用来检测线路状况。
先附上程序和电路,后面附有说明。
电路:说明:P2 口的LED 都是我用来检测电路执行到哪一步的,个人觉得一目了然。
程序:#include #define unit unsigned int#define uchar unsigned charint ok;sbit scl=P0;sbit sda=P0;sb it led0=P2;sbit led1=P2;sb it led2=P2 ;sbit led3=P2;sb it led4=P2;sb it led5=P2 ;sbit led6=P2;sb it led7=P2;delay(void) //delay{ int i; led1=1; for(i=0;istart(void) //start{ sda=1; scl=1; delay(); sda=0; delay(); scl=0; led0=0;}stop(void) //stop{ sda=0; scl=1; delay(); sda=1; delay(); scl=0;}checkanswer(void) //check answer{ sda=1; scl=1; if(sda==1) { F0=1; led7=0; } scl=0; led3=0;}sendabyte(int temps) //send a byte{ uchar n=8; while(n--) { led2=1; if((temps&0x80)==0x80){ sda=1; scl=1; delay(); scl=0;}else{ sda=0; scl=1; delay(); scl=0;}temps=tempsreciveabyte() //recive a byte{ uchar n=8,tempr; while(n--) {//uchar idata *abyte scl=1;tempr=temprmain(void) //MAIN{start();sendabyte(0xa0);checkanswer();if(F0==1) return;sendabyte(0x00);checkanswer();if(F0==1) return;sendabyte(0x11);checkanswer();if(F0==1) return;/*-----------------------*/start(); sendabyte(0xa0);checkanswer();if(F0==1) return;。
51单片机模拟I2C总线的C语言实现

51单片机模拟I2C总线的C语言实现电路原理图EEPROM为ATMEL公司的AT24C01A。
单片机为ATMEL公司的AT89C51。
软件说明C语言为Franklin C V3.2。
将源程序另存为testi2c.c,用命令C51 testi2c.cL51 TESTI2C.OBJOHS51 TESTI2C编译,连接,得到TESTI2C.HEX文件,即可由编程器读入并进行写片,实验。
3.源程序#include <reg51.h>#include <intrins.h>#define uchar unsigned char#define uint unsigned int#define AddWr 0xa0 /*器件地址选择及写标志*/#define AddRd 0xa1 /*器件地址选择及读标志*/#define Hidden 0x0e /*显示器的消隐码*//*有关全局变量*/sbit Sda= P3^7; /*串行数据*/sbit Scl= P3^6; /*串行时钟*/sbit WP= P3^5; /*硬件写保护*/void mDelay(uchar j){ uint i;for(;j>0;j--){ for(i=0;i<125;i--){;}}}/*发送起始条件*/void Start(void) /*起始条件*/{Sda=1;Scl=1;_nop_ ();_nop_ ();_nop_ ();_nop_ ();Sda=0;_nop_ ();_nop_ ();_nop_ ();_nop_ ();}void Stop(void) /*停止条件*/{Sda=0;Scl=1;_nop_ ();_nop_ ();_nop_ ();_nop_ ();Sda=1;_nop_ ();_nop_ ();_nop_ ();_nop_ ();}void Ack(void) /*应答位*/ {Sda=0;_nop_ ();_nop_ ();_nop_ ();_nop_ ();Scl=1;_nop_ ();_nop_ ();_nop_ ();_nop_ ();Scl=0;}void NoAck(void) /*反向应答位*/{Sda=1;_nop_ ();_nop_ ();_nop_ ();_nop_ ();Scl=1;_nop_ ();_nop_ ();_nop_ ();_nop_ ();Scl=0;}void Send(uchar Data) /*发送数据子程序,Data为要求发送的数据*/ {uchar BitCounter=8; /*位数控制*/uchar temp; /*中间变量控制*/do{temp=Data;Scl=0;_nop_ ();_nop_ ();_nop_ ();_nop_ ();if((temp&0x80)==0x80)/* 如果最高位是1*/Sda=1;elseSda=0;Scl=1;temp=Data<<1; /*RLC*/Data=temp;BitCounter--;}while(BitCounter);Scl=0;}uchar Read(void) /*读一个字节的数据,并返回该字节值*/ {uchar temp=0;uchar temp1=0;uchar BitCounter=8;Sda=1;do{Scl=0;_nop_ ();_nop_ ();_nop_ ();_nop_ ();Scl=1;_nop_ ();_nop_ ();_nop_ ();_nop_ ();if(Sda) /*如果Sda=1;*/temp=temp|0x01; /*temp的最低位置1*/elsetemp=temp&0xfe; /*否则temp的最低位清0*/ if(BitCounter-1){ temp1=temp<<1;temp=temp1;}BitCounter--;}while(BitCounter);return(temp);}void WrToROM(uchar Data[],uchar Address,uchar Num) {uchar i;uchar *PData;PData=Data;for(i=0;i<Num;i++){Start(); /*发送启动信号*/Send(0xa0); /*发送SLA+W*/Ack();Send(Address+i); /*发送地址*/Ack();Send(*(PData+i));Ack();Stop();mDelay(20);}}void RdFromROM(uchar Data[],uchar Address,uchar Num) {uchar i;uchar *PData;PData=Data;for(i=0;i<Num;i++){Start();Send(0xa0);Ack();Send(Address+i);Ack();Start();Send(0xa1);Ack();*(PData+i)=Read();Scl=0;NoAck();Stop();}}void main(){uchar Number[4]={1,2,3,4};WP= 1;WrToROM(Number,4,4); /*将初始化后的数值写入EEPROM*/mDelay(20);Number[0]=0;Number[1]=0;Number[2]=0;Number[3]=0; /*将数组中的值清掉,以验证读出的数是否正确*/RdFromROM(Number,4,4);}问题:本程序中未采用块读写的方法,显得有点‘笨’,这是由于项目原因,现项目已完成,程序已写好,短时不会修改,也不会花上一定的精力去做,虽然理论上已很成熟,就这样写一下,未必不对,但与我的本栏目要求不符,所以就未做上去,如果以后我做了,将再补上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单片机模拟I2C总线及AT24C01应用实例(格式整理版) I2C(Inter-Integrated Circuit)总线是一种由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备。
I2C总线产生于在80年代,最初为音频和视频设备开发,如今主要在服务器管理中使用,其中包括单个组件状态的通信。
例如管理员可对各个组件进行查询,以管理系统的配置或掌握组件的功能状态,如电源和系统风扇。
可随时监控内存、硬盘、网络、系统温度等多个参数,增加了系统的安全性,方便了管理。
1.I2C总线特点I2C总线最主要的优点是其简单性和有效性。
由于接口直接在组件之上,因此I2C总线占用的空间非常小,减少了电路板的空间和芯片管脚的数量,降低了互联成本。
总线的长度可高达25英尺,并且能够以10Kbps的最大传输速率支持40个组件。
I2C总线的另一个优点是,它支持多主控(multimastering),其中任何能够进行发送和接收的设备都可以成为主总线。
一个主控能够控制信号的传输和时钟频率。
当然,在任何时间点上只能有一个主控。
2.I2C总线工作原理2.1总线的构成及信号类型I2C总线是一种串行数据总线,只有二根信号线,一根是双向的数据线SDA,另一根是时钟线SCL。
在CPU与被控IC之间、IC与IC之间进行双向传送,最高传送速率100kbps。
各种被控制电路均并联在这条总线上,但就像电话机一样只有拨通各自的号码才能工作,所以每个电路和模块都有唯一的地址,在信息的传输过程中,I2C总线上并接的每一模块电路既是主控器(或被控器),又是发送器(或接收器),这取决于它所要完成的功能。
CPU发出的控制信号分为地址码和控制量两部分,地址码用来选址,即接通需要控制的电路,确定控制的种类;控制量决定该调整的类别(如对比度、亮度等)及需要调整的量。
这样,各控制电路虽然挂在同一条总线上,却彼此独立,互不相关。
2.2位的传输SDA线上的数据必须在时钟的高电平周期保持稳定数据线的高或低电平状态只有在SCL 线的时钟信号是低电平时才能改变,见图1:图12.3开始信号SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。
2.4结束信号:SCL为高电平时,SDA由低电平向高电平跳变,结束传送数据。
图22.5应答信号:接收数据的IC在接收到8bit数据后,向发送数据的IC发出特定的低电平脉冲,表示已收到数据。
CPU向受控单元发出一个信号后,等待受控单元发出一个应答信号,CPU接收到应答信号后,根据实际情况作出是否继续传递信号的判断。
若未收到应答信号,由判断为受控单元出现故障。
2.6总线基本操作I2C规程运用主/从双向通讯。
器件发送数据到总线上,则定义为发送器,器件接收数据则定义为接收器。
主器件和从器件(本文为AT24C01)都可以工作于接收和发送状态。
总线必须由主器件(通常为微控制器CPU)控制,主器件产生串行时钟(SCL)控制总线的传输方向,并产生起始和停止条件。
SDA线上的数据状态仅在SCL为低电平的期间才能改变,SCL为高电平的期间,SDA状态的改变被用来表示起始和停止条件。
参见图2。
3.I2C应用实例AT24C01AT24C系列串行E2PROM具有I2C总线接口功能,功耗小,宽电源电压(根据不同型号2.5V~6.0V),工作电流约为3mA,静态电流随电源电压不同为30μA~110μA。
3.1AT24C系列E2PROM接口及地址选择由于I2C总线可挂接多个串行接口器件,在I2C总线中每个器件应有唯一的器件地址,按I2C总线规则,器件地址为7位数据(即一个I2C总线系统中理论上可挂接128个不同地址的器件),它和1位数据方向位构成一个器件寻址字节,最低位D0为方向位(读/写)。
器件寻址字节中的最高4位(D7~D4)为器件型号地址,不同的I2C总线接口器件的型号地址是厂家给定的,如AT24C系列E2PROM的型号地址皆为1010,器件地址中的低3位为引脚地址A2A1A0,对应器件寻址字节中的D3、D2、D1位,在硬件设计时由连接的引脚电平给定。
图3对于E2PROM的片内地址,容量小于256字节的芯片(AT24C01/02),8位片内寻址(A0~A7)即可满足要求。
然而对于容量大于256字节的芯片,则8位片内寻址范围不够,如AT24C16,相应的寻址位数应为11位(211=2048)。
若以256字节为1页,则多于8位的寻址视为页面寻址。
在AT24C系列中对页面寻址位采取占用器件引脚地址(A2、A1、A0)的办法,如AT24C16将A2、A1、A0作为页地址。
凡在系统中引脚地址用作页地址后,该引脚在电路中不得使用,作悬空处理。
AT24C系列串行E2PROM的器件地址寻址字节如图4所示,表中P0P1P2表示页面寻址位。
图43.2AT89S51单片机与AT24C01E2PROM通讯的硬件实现图5是用AT89S51P2口模拟I2C总线与E2PROM连接电路图(以AT24C01为例),由于AT24C01是漏极开路,图中R1、R2为上拉电阻(5.1k)。
A0~A2地址引脚脚均接地。
图5AT24C01与51单片机接口3.3AT24C系列E2PROM读写操作软件实现方法对AT24C系列E2PROM的读写操作完全遵守I2C总线的主收从发和主发从收的规则。
3.3.1AT24C01的写操作写操作分为字节写和页面写两种操作,对于页面写根据芯片的一次装载的字节不同有所不同。
关于页面写的地址、应答和数据传送的时序参见图6和图7。
连续写操作是对E2PROM连续装载n个字节数据的写入操作,n随型号不同而不同,一次可装载字节数也不同。
AT24C01/028字节/每页,AT24C04/08/1616字节/每页。
图6写一个字节的时序图图7写一页的时序图3.3.2AT24C01的读操作读操作有三种基本操作:当前地址读、随机读和顺序读。
图10给出的是顺序读的时序图。
应当注意的是:最后一个读操作的第9个时钟周期不是“不关心”。
为了结束读操作,主机必须在第9个周期间发出停止条件或者在第9个时钟周期内保持SDA为高电平、然后发出停止条件。
AT24C系列片内地址在接收到每一个数据字节地址后自动加1,故装载一页以内规定数据字节时,只须输入首地址,若装载字节多于规定的最多字节数,数据地址将“上卷”,前面的数据被覆盖。
连续读操作时为了指定首地址,需要两个伪字节写来给定器件地址和片内地址,重复一次启动信号和器件地址(读),就可读出该地址的数据。
由于伪字节写中并未执行写操作,地址没有加1。
以后每读取一个字节,地址自动加1。
在读操作中接收器接收到最后一个数据字节后不返回肯定应答(保持SDA高电平)随后发停止信号。
图8读当前地址内容图9读任意地址内容图10读连续地址内容4 汇编写的24C01 单字节读写程序;======================================================= ;24C01存储器I2C总线实验 汇编语言例子;======================================================= ;;ew51仿真编程器 配套实验板学习例程;;中山单片机学习网 诚电科技站长:逸风;;;E-mail:ew51@;======================================================= SDA EQU P2.0SCL EQU P2.1Address EQU 08HI2CData EQU 09HORG 0000HSTART:MOV SP,#60HMOV Address,#00HMOV I2CData,#55HCALL I2C_WRITE ;写入数据MOV I2CDATA,#0AAHMOV Address,#00HCALL I2C_READMOV I2CData,A ;读出数据NOPNOPMAIN:JMP MAIN;=======================================================; 写一个字节 Address地址 I2CDatata写入的数据;=======================================================I2C_WRITE:I2C_WRITE_A:LCALL I2C_STARTMOV A,#10100000BLCALL I2C_SEND8BITLCALL I2C_ACKJC I2C_WRITE_A ;=1,表示无确认,再次发送MOV A,AddressLCALL I2C_SEND8BITLCALL I2C_ACKMOV A,I2CDataLCALL I2C_SEND8BITLCALL I2C_ACKLCALL I2C_STOPRET;=======================================================; 读一个字节 Address地址 Data读出的数据;=======================================================I2C_READ:I2C_READ_A:LCALL I2C_STARTMOV A,#10100000BLCALL I2C_SEND8BITLCALL I2C_ACKJC I2C_READ_A ;=1,表示无确认,再次发送MOV A,AddressLCALL I2C_SEND8BITLCALL I2C_ACKI2C_READ_B:LCALL I2C_STARTMOV A,#10100001BLCALL I2C_SEND8BITLCALL I2C_ACKJC I2C_READ_BLCALL I2C_RECEIVE8BITMOV I2CData,ALCALL I2C_ACKLCALL I2C_STOPRET;======================================================= ; 发送开始信号;======================================================= I2C_START:SETB SCLSETB SDANOPNOPCLR SDANOPNOPCLR SCLRET;======================================================= ; 发送结束信号;======================================================= I2C_STOP:CLR SDANOPNOPSETB SCLNOPNOPSETB SDARET;======================================================= ; 发送/接收确认信号;======================================================= I2C_ACk:SETB SDASETB SCLNOPNOPJB SDA,I2C_ACK0CLR CSJMP I2C_ACK_ENDI2C_ACK0:SETB CI2C_ACK_END:CLR SCLRET;======================================================= ; 送八位数据;======================================================= I2C_SEND8BIT:MOV B,#08HI2C_SEND8BIT_A:RLC AMOV SDA,CSETB SCLNOPNOPCLR SCLDJNZ B,I2C_SEND8BIT_ARET;======================================================= ; 接收八位数据;======================================================= I2C_RECEIVE8BIT:MOV B,#08HCLR ASETB SDAI2C_RECEIVE8IT_A:SETB SCLNOPNOPMOV C,SDARLC ACLR SCLDJNZ B,I2C_RECEIVE8IT_ARET5. C语言写的24C01 单字节读写程序/*======================================================= 24C01存储器I2C总线实验 C语言例子======================================================= ew51仿真编程器 配套实验板学习例程中山单片机学习网 诚电科技 站长:逸风E-mail:ew51@=======================================================*/ #i nclude#i ncludesbit SDA=0x90;sbit SCL=0x91;//函数声明unsigned char i2c_read(unsigned char);void i2c_write(unsigned char,unsigned char);void i2c_send8bit(unsigned char);unsigned char i2c_receive8bit(void);void i2c_start(void);void i2c_stop(void);bit i2c_ack(void);//======================================================= void main(void){unsigned char dd;i2c_write(0x00,0x55);_nop_();dd=i2c_read(0x00);for(;;){}}/*======================================================= i2c_write(地址,数据),写一个字节=======================================================*/ void i2c_write(unsigned char Address,unsigned char Data){do{i2c_start();i2c_send8bit(0xA0);}while(i2c_ack());i2c_send8bit(Address);i2c_ack();i2c_send8bit(Data);i2c_ack();i2c_stop();return;}/*======================================================= i2c_read(地址,数据),写一个字节=======================================================*/ unsigned char i2c_read(unsigned char Address){unsigned char c;do{i2c_start();i2c_send8bit(0xA0);}while(i2c_ack()); //=1,表示无确认,再次发送i2c_send8bit(Address);i2c_ack();do{i2c_start();i2c_send8bit(0xA1);}while(i2c_ack());c=i2c_receive8bit();i2c_ack();i2c_stop();return(c);}//======================================================= //发送开始信号void i2c_start(void){SDA = 1;SCL = 1;SDA = 0;SCL = 0;return;}//发送结束信号void i2c_stop(void){SDA = 0;SCL = 1;SDA = 1;return;}//发送接收确认信号bit i2c_ack(void){bit ack;SDA = 1;SCL = 1;if (SDA==1)ack = 1;elseack = 0;SCL = 0;return (ack);}//送八位数据void i2c_send8bit(unsigned char b) {unsigned char a;for(a=0;a<8;a++){if ((b << a ) & 0x80)SDA = 1;elseSDA = 0;SCL = 1;SCL = 0;}return;}//接收八位数据unsigned char i2c_receive8bit(void) {unsigned char a;unsigned char b=0;for(a=0;a<8;a++){SCL = 1;b=b<<1;if (SDA==1)b=b 0x01; //按位或SCL = 0;}return (b);}6.在I 2 C总线的应用中应注意的事项总结为以下几点 :1)严格按照时序图的要求进行操作2)若与口线上带内部上拉电阻的单片机接口连接,可以不外加上拉电阻。