考研数学配套辅导知识点(矩阵)【圣才出品】
矩阵的知识点总结

矩阵的知识点总结一、基本概念1.1 矩阵的定义矩阵是一个由数字排成的矩形阵列。
它由m行n列的数域(通常是实数域或复数域)中的元素所组成,用A=(aij)m×n表示。
1.2 矩阵的分类按行、列的数量可以将矩阵分为行矩阵、列矩阵和方阵;按元素的类型可以分为实矩阵和复矩阵。
1.3 矩阵的转置矩阵A的转置记作A^T,其中A^T的行数等于A的列数,A^T的列数等于A的行数。
1.4 矩阵的秩矩阵的秩是指矩阵中非零行的最大数目。
二、性质2.1 矩阵的加法性质设A、B是同一维数的矩阵,则它们的和A+B也是同一维数的矩阵,它的元素是A和B 对应元素的和。
2.2 矩阵的数乘性质设A是m×n的矩阵,k是数,则kA是m×n的矩阵,它的元素是k与A中对应元素的乘积。
2.3 矩阵的乘法性质设A是m×n的矩阵,B是n×p的矩阵,那么它们的乘积AB是m×p的矩阵。
2.4 矩阵的逆若存在一个矩阵B,使得AB=BA=I,其中I是单位矩阵,则称B是A的逆矩阵,记作A^-1。
2.5 矩阵的行列式对于n阶方阵A,其行列式是一个标量,通常用det(A)或|A|表示,代表了矩阵A的某种代数性质。
三、运算3.1 矩阵的加法设A=(aij)m×n,B=(bij)m×n,那么A+B=(aij+bij)m×n。
3.2 矩阵的数乘设A=(aij)m×n,k是数,则kA=(kaij)m×n。
3.3 矩阵的乘法设A=(aij)m×n,B=(bij)n×p,那么AB=(cij)m×p,其中cij=∑(k=1→n)aij*bkj。
3.4 矩阵的转置对于n×m的矩阵A,它的转置矩阵是m×n的矩阵,且满足(a^T)ij=aji。
四、特殊矩阵4.1 方阵每个元素是一个标量的矩阵,其中行数和列数相等。
4.2 零矩阵所有元素都是零的矩阵。
矩阵知识点总结

矩阵知识点总结矩阵是线性代数中重要的概念和工具之一,广泛应用于数学、物理、工程、计算机科学等领域。
下面将对矩阵的基本知识点进行总结。
1. 矩阵的定义:矩阵是一个按照长和宽排列的矩形数组,其中的元素可以是任意类型的数值。
一个矩阵由行和列组成,通常记作A=[a_ij]。
2. 矩阵的运算:(1) 矩阵的加法和减法:对应元素相加或相减。
(2) 矩阵的乘法:矩阵乘法是一种非交换运算,两个矩阵相乘的结果是第一个矩阵的行乘以第二个矩阵的列。
(3) 矩阵的转置:将矩阵的行和列交换位置得到的新矩阵。
(4) 矩阵的数量乘法:将矩阵的每个元素同一个实数相乘得到的新矩阵。
3. 矩阵的特殊类型:(1) 方阵:行数和列数相等的矩阵。
(2) 零矩阵:所有元素都为零的矩阵。
(3) 对角矩阵:除了对角线上的元素外,其他元素都为零的矩阵。
(4) 单位矩阵:对角线上的元素都为1,其他元素都为零的矩阵。
(5) 上三角矩阵:下三角(低三角)矩阵:除了对角线及其以上的元素外,其他元素都为零的矩阵。
4. 矩阵的性质:(1) 矩阵的加法和乘法满足结合律和分配律,但不满足交换律。
(2) 矩阵乘法的转置性质:(AB)^T = B^T A^T。
(3) 矩阵的逆:如果矩阵A的逆存在,记作A^(-1),则A和A^(-1)的乘积等于单位矩阵:A A^(-1) = I。
(4) 矩阵的秩:矩阵的秩是指矩阵中非零行的最大线性无关组数。
5. 矩阵的应用:(1) 线性方程组的解:通过矩阵的运算和逆矩阵可以解决线性方程组的求解问题。
(2) 向量空间的表示:矩阵可以表示向量空间内的线性变换和线性组合。
(3) 特征值和特征向量:矩阵的特征值和特征向量可以用于描述矩阵的性质和变换规律。
(4) 数据处理和机器学习:矩阵在数据处理和机器学习中广泛应用,用于存储和处理大量数据。
总的来说,矩阵是一种重要的数学工具,它的运算性质和特殊类型有助于解决线性方程组、描述线性变换和计算大量数据等问题。
考研数学(三)考试大纲解析(线性代数 第2章 矩 阵)【圣才出品】

c.对称矩阵的特征值为实数;
d.必存在正交矩阵,将对称矩阵化为对角矩阵,且对角矩阵的对角线元素即为特征值.
(7)反对称矩阵
①表达式
0
a a 12
12
0
a a 1n
2n
a1n a 2n
λa1n λa 2n
λamn
5 / 15
(2)运算规律 设 A、B 为 m×n 矩阵,λ、μ 为数, ①(λμ)A=λ(μA); ②(λ+μ)A=λA+μA; ③λ(A+B)=λA+λB.
三、矩阵的乘法
1.定义
设 A= aij 是一个 m×s 矩阵, B bij 是一个 s×n 矩阵,则规定矩阵 A 与矩阵 B 的乘积
③设矩阵 A= aij ,记: A= aij ,-A 称为矩阵 A 的负矩阵,显然有 A+(-A)=0,
由此规定矩阵的减法为:A-B=A+(-B).
2.数与矩阵相乘
(1)定义
数 λ 与矩阵 A 的乘积记作 λA 或 Aλ,规定为
λA
Aλ
λa11 λa 21
λam1
λa12 λa 22
λa m 2
λ1
0
0
λ2
0
0
0 0
λn
②性质
a.对角矩阵为方阵;
b.对角矩阵的秩等于主对角线上非零元素的个数.
(5)三角矩阵
①表达式
a a
a A
11
0
12 22
0 0
a1n a 2n
ann
0
a 11
a a B
21
矩阵知识点完整归纳

矩阵知识点完整归纳矩阵是大学数学中比较重要和基础的概念之一,具有广泛的应用领域,例如线性代数、微积分、计算机科学等。
本文将全面归纳和总结矩阵的基本概念、性质以及相关应用,旨在帮助读者更好地理解和掌握矩阵知识。
一、基本概念1.矩阵的定义矩阵是由一个$m\times n$ 的矩形阵列(数组)表示的数表,其中$m$ 表示矩阵的行数,$n$ 表示矩阵的列数。
如下所示:$$A = \begin{bmatrix}a_{11} & a_{12} & \cdots & a_{1n} \\\a_{21} & a_{22} & \cdots & a_{2n} \\\\vdots & \vdots & \ddots & \vdots \\\a_{m1} & a_{m2} & \cdots & a_{mn}\end{bmatrix}$$其中,$a_{ij}$ 表示矩阵的第$i$ 行、第$j$ 列元素。
2.矩阵的分类矩阵根据其元素的性质可以分为不同类型,主要有以下几种:(1)行矩阵(行向量):只有一行的矩阵,例如$[a_1,a_2,\cdots,a_n]$。
(2)列矩阵(列向量):只有一列的矩阵,例如$\begin{bmatrix}a_1\\\ a_2\\\ \vdots\\\ a_m\end{bmatrix}$。
(3)方阵:行数等于列数的矩阵,例如$A=\begin{bmatrix}1 & 2 & 3\\\ 4 & 5 & 6\\\ 7 & 8 & 9\end{bmatrix}$。
(4)零矩阵:所有元素都为$0$ 的矩阵,例如$\begin{bmatrix}0 & 0 & 0\\\ 0 & 0 & 0\\\ 0 & 0 & 0\end{bmatrix}$。
考研数学线性代数的知识点怎么复习范本三份

考研数学线性代数的知识点怎么复习范本三份知识点一:矩阵1.矩阵的定义:矩阵是一个由数域中的元素排列成的矩形阵列。
2.矩阵的运算:包括矩阵的加法、减法、数乘、乘法等。
3.矩阵的类型:包括列矩阵、行矩阵、方阵、行满秩矩阵、列满秩矩阵等。
4.矩阵的转置:行变为列,列变为行。
5.矩阵的逆:满足矩阵乘法交换律的方阵,存在逆矩阵。
6.矩阵的秩:线性无关行(列)向量的最大个数。
知识点二:行列式1.行列式的概念:一个由n*n个元素构成的方阵,与其他方阵不同的一个特殊数。
2.行列式的性质:包括行互换、列互换、其中一行(列)乘以一个非零常数、其中一行(列)加上另外一行(列)的k倍等运算。
3.行列式的计算:包括按定义计算、按行(列)展开、按行列式的性质计算等方法。
4.行列式的性质与结论:含有零行(列)的行列式为零、对调两行(列)行列式变号、行列式与其转置行列式相等等。
知识点三:向量空间1.向量空间的定义:满足一定条件的集合,其中的元素可以进行向量运算。
2.向量空间的性质:包括封闭性、线性组合、线性无关、向量子空间等性质。
3.线性相关与线性无关:一组向量之间的线性组合关系。
4.基、维数与坐标:向量空间的基、维数与坐标之间的关系。
5.线性映射:保持向量空间的线性性质的映射。
6.矩阵的秩与线性方程组的解:矩阵的秩与方程组解的个数及解的性质之间的关系。
知识点四:特征值与特征向量1.特征值与特征向量的定义:对于一个n*n矩阵A,如果存在常数λ和非零向量x,使得Ax=λx,则称λ为矩阵A的特征值,x为矩阵A的特征向量。
2.特征值与特征向量的计算:包括求解特征方程、求解特征向量的过程。
3.特征值与特征向量的性质:特征值的和等于矩阵的迹,特征向量对应不同特征值的特征向量线性无关等。
知识点五:二次型1.二次型的定义:一个含有二次项和线性项的多项式。
2.二次型的矩阵表示:用矩阵表示二次型。
3.二次型的规范化:将二次型化为标准形,即去除二次项的干涉项。
矩阵考研知识点总结

矩阵考研知识点总结一、矩阵的定义矩阵是由 m×n 个数排成的矩形阵列。
这 m×n 个数称为矩阵的元素,通常用aij (i=1,2,…,m;j=1,2,…,n) 表示矩阵的元素。
当 m=n 时,矩阵称为方阵,特别地,当 m=1 或 n=1 时,矩阵称为行矩阵或列矩阵。
二、矩阵的运算1. 矩阵的加法和减法定义:设 A=(aij) 和 B=(bij) 是同型矩阵,那么 A+B 和 A-B 分别定义为A+B = (aij+bij) 和 A-B = (aij-bij) 。
性质:(1)交换律:A+B = B+A;A-B ≠ B-A(2)结合律:A+(B+C) = (A+B)+C;A-(B-C) ≠ (A-B)-C(3)0 矩阵:对任意矩阵 A 有 A+0=A 和 A-0=A2. 矩阵的数乘定义:数 k 与一个 m×n 阶矩阵 A=(aij) 相乘,得到一个 m×n 阶矩阵 kA=(kaij)。
性质:(1)k(A+B)=kA+kB(2)(k+l)A=kA+lA(3)k(lA)=(kl)A3. 矩阵的乘法定义:设 A 是一个 m×s 阶的矩阵,B 是一个 s×n 阶的矩阵,那么称 C=AB 为 A 和 B 的乘积,其中C=(cij) (i=1,2,…,m;j=1,2,…,n) 且cij=a(i1)b(1j)+a(i2)b(2j)+…+a(is)b(sj)。
性质:(1)乘法不交换:一般情况下,AB≠BA。
(2)结合律:A(BC)=(AB)C(3)单位矩阵:对于任意 n 阶方阵 A,有IA=AI=A(4)分配律:A(B+C)=AB+AC4. 矩阵的转置定义:设 A=(aij) 是一个 m×n 阶矩阵,把它的行和列互换得到一个 n×m 阶矩阵,这个矩阵称为 A 的转置矩阵,记做 A^T。
性质:(1)(A^T)^T=A(2)(kA)^T=kA^T(3)(A+B)^T=A^T+B^T5. 矩阵的逆定义:设 A 是一个 n 阶方阵,如果存在 n 阶方阵 B 使得 AB=BA=I,那么称 B 为 A 的逆矩阵,记做 A^{-1}。
矩阵知识点归纳及例题

矩阵知识点归纳及例题一、矩阵知识点归纳。
(一)矩阵的定义。
1. 矩阵的概念。
- 由m× n个数a_ij(i = 1,2,·s,m;j = 1,2,·s,n)排成的m行n列的数表(a_11a_12·sa_1n a_21a_22·sa_2n ⋮⋮⋱⋮ a_m1a_m2·sa_mn)称为m× n矩阵,简称矩阵,其中a_ij称为矩阵的第i行第j列的元素。
2. 特殊矩阵。
- 零矩阵:所有元素都为0的矩阵,记为O。
- 方阵:行数与列数相等的矩阵,即m = n时的矩阵A称为n阶方阵。
- 对角矩阵:除主对角线元素外,其余元素都为0的方阵,即a_ij=0(i≠ j)的n 阶方阵(a_110·s0 0a_22·s0 ⋮⋮⋱⋮ 00·sa_nn)。
- 单位矩阵:主对角线元素都为1,其余元素都为0的n阶方阵,记为I或E,即(10·s0 01·s0 ⋮⋮⋱⋮ 00·s1)。
(二)矩阵的运算。
1. 矩阵的加法。
- 设A=(a_ij)和B=(b_ij)是两个m× n矩阵,则A + B=(a_ij+b_ij),即对应元素相加。
- 矩阵加法满足交换律A + B=B + A和结合律(A + B)+C = A+(B + C)。
2. 矩阵的数乘。
- 设A=(a_ij)是m× n矩阵,k是一个数,则kA=(ka_ij),即矩阵的每个元素都乘以k。
- 数乘满足分配律k(A + B)=kA + kB和(k + l)A=kA + lA(k、l为常数)。
3. 矩阵的乘法。
- 设A=(a_ij)是m× s矩阵,B=(b_ij)是s× n矩阵,则AB是m× n矩阵,其中(AB)_ij=∑_k = 1^sa_ikb_kj。
- 矩阵乘法一般不满足交换律,即AB≠ BA(在A、B可乘的情况下),但满足结合律(AB)C = A(BC)和分配律A(B + C)=AB + AC,(A + B)C = AC+BC。
考研数学矩阵知识点总结

考研数学矩阵知识点总结一、矩阵的基本概念矩阵是一个二维的数组,由m行n列的元素组成。
通常用大写字母A、B、C等表示矩阵,元素用小写字母a_ij、b_ij、c_ij等表示。
例如,一个3行2列的矩阵可以写成:A = [a11 a12][a21 a22][a31 a32]矩阵具有一些基本的性质,包括矩阵的相等、相加、相乘等。
两个矩阵A和B相等,当且仅当它们的对应元素相等,即a_ij=b_ij (i=1,2,…,m;j=1,2,…,n)。
两个矩阵A和B的和是一个矩阵C,其元素c_ij等于a_ij+b_ij。
两个矩阵A和B的乘积是一个矩阵C,其元素c_ij等于a_i1*b1_j+a_i2*b2_j+…+a_in*bn_j。
二、矩阵的运算矩阵的加法和乘法是矩阵运算中的基本操作,它们有一些基本的性质。
矩阵A、B和C满足结合律、分配律、交换律等。
具体的运算规则和性质如下:1. 矩阵的加法设A、B是相同阶数的矩阵,则矩阵的加法满足交换律和结合律,即A+B=B+A,(A+B)+C=A+(B+C)。
矩阵的加法还满足分配律,即A(B+C)=AB+AC。
同时,零矩阵是矩阵加法的单位元素。
2. 矩阵的乘法设A是m行n列的矩阵,B是n行p列的矩阵,则矩阵的乘法满足结合律和分配律,即A(BC)=(AB)C,A(B+C)=AB+AC。
但矩阵的乘法不满足交换律,即AB≠BA。
同时,单位矩阵是矩阵乘法的单位元素。
三、特征值和特征向量特征值和特征向量是矩阵理论中的重要概念,它们在研究矩阵的性质和应用中具有重要的作用。
1. 特征值设A是一个n阶矩阵,如果存在数λ和非零向量x,使得Ax=λx成立,则λ称为矩阵A的特征值,x称为对应于特征值λ的特征向量。
矩阵A的特征值可以通过求解矩阵的特征方程det(A-λE)=0来得到。
特征值和特征向量在矩阵的对角化、矩阵的相似性等方面有重要的应用。
2. 特征向量设A是一个n阶矩阵,如果存在数λ和非零向量x,使得Ax=λx成立,则λ称为矩阵A的特征值,x称为对应于特征值λ的特征向量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章矩阵
一、矩阵
1.概念
由m×n个数排成的m行n列的数表
称为m行n列矩阵,简称m×n矩阵.记为
2.特殊矩阵及其性质
(1)方阵
①表达式
②性质
若A为方阵,则
a.
b.
c.
(2)单位矩阵
①表达式
②性质
a.对角线上元素都为1,其余元素都为0;b.EA=AE=A.
(3)数量矩阵
①表达式
②性质
a.数量矩阵必能相似对角化;
b.数量矩阵有且只有一个n重特征值.(4)对角矩阵
①表达式
②性质
a.对角矩阵为方阵;
b.对角矩阵的秩等于主对角线上非零元素的个数.
(5)三角矩阵
①表达式
其中,A为上三角矩阵,B为下三角矩阵.
②性质
a.上(下)三角矩阵中沿对角线以下(上)的元素全为0;
b.上(下)三角矩阵的行列式的值=对角线上所有元素的乘积;
c.上(下)三角矩阵的特征值就是矩阵对角线上的元素.
(6)对称矩阵
①表达式
②性质
a.元素以对角线为对称轴对应相等,即;
b.若A为对称矩阵,则A的转置;
c.对称矩阵的特征值为实数;
d.必存在正交矩阵,将对称矩阵化为对角矩阵,且对角矩阵的对角线元素即为特征值.(7)反对称矩阵
①表达式
②性质
a.元素以对角线为对称轴对应的数的绝对值相等,符号相反,即;b.反对称矩阵的对角线元素必为0.
(8)正交矩阵
①定义
如果n阶矩阵A满足
则A称为正交矩阵,又称正交阵.
②性质
a.若A为正交矩阵,则也是正交矩阵,且或(-1);
b.若A和B都是正交矩阵,则AB也是正交矩阵;
c.A的各行(列)是单位向量且两两正交.
二、矩阵的线性运算
1.矩阵的加法
(1)定义
设有两个m×n矩阵和,则矩阵A与B的和记作A+B,规定为
注:只有当两个矩阵是同型矩阵时,这两个矩阵才能进行加法运算.
(2)运算规律
设A,B,C都是m×n矩阵,则
①A+B=B+A;
②(A+B)+C=A+(B+C);
③设矩阵,记:,-A称为矩阵A的负矩阵,显然有A+(-A)=0,由此规定矩阵的减法为:A-B=A+(-B).
2.数与矩阵相乘
(1)定义
数λ与矩阵A的乘积记作λA或Aλ,规定为
(2)运算规律
设A、B为m×n矩阵,λ、μ为数,
①(λμ)A=λ(μA);
②(λ+μ)A=λA+μA;
③λ(A+B)=λA+λB.
三、矩阵的乘法
1.定义
设是一个m×s矩阵,是一个s×n矩阵,则规定矩阵A与矩阵B的乘积是一个m×n矩阵,其中
并把此乘积记为C=AB.
2.运算规律
(1)(AB)C=A(BC);
(2)(AB)=(A)B=A(B)(其中λ为数);
(3)A(B+C)=AB+AC,(B+C)A=BA+CA;
(4)EA=AE=A;
(5).。