飞行器姿态控制法综述

飞行器姿态控制法综述
飞行器姿态控制法综述

飞行器姿态控制方法综述

一.引言

经过一个世纪的发展,各种飞行器如雨后春笋般出现,从飞机、导弹到火箭、卫星,从宇宙飞船、航天飞机、空间站到月球探测器、火星探测器。这些飞行器能在空中按预定的轨迹运动总离不开它的姿态控制系统,飞行器在空间的运动是十分复杂的。为使问题简单化,总是将一飞行器的空间运动分解为铅锤平面的纵向运动和水平面内的侧向运动,将飞行器在空间的角运动分解成俯仰、偏航和滚动三个角运动。由于角运.动使飞行器的姿态发生变化,所以对角运动的控制就是对飞行器姿态的控制。对于飞行器姿态的控制,不同的飞行器需要不同的策略,本文主要就飞行器姿态控制方法的应用与发展作一一论述。

二.姿态控制的数学模型

要控制飞行器的姿态,就是要控制使飞行器三个姿态角发生变化的力矩大小。飞行器的姿态模型可以认为是一类不确定MIMO 仿射非线性系统,如式(1)所示:

()//()//()//(cos sin )/cos cos sin sin tan cos tan x y z y x x x x x z x x x y y y x x y x y z z z x x x z x y z I I I M I I I I M I I I I M I ωωωωωωωωωψ

ωθωθ??ωθωθ

θωθ?ωωθ?=-+??=-+??=-+??=-??=+?=+-?? (1) 式中,x 、y 、z 下标表示空间飞行器的三个主轴方向;I 表示相对于飞行器质心的惯量矩,设飞行器是主轴对称的,则惯量积可以忽略;ω表示飞行器相对于惯性空间的角速度;M 表示控制力矩;,,ψ?θ分别是飞行器的欧拉角。控制了M 的大小,就可以控制飞行器按我们期望的轨迹运动。M 由飞行器上的执行机构产生,常见的有空气舵、推力矢量发动机、反作用飞轮、喷气执行机构或由其它环境力执行机构。

三.飞行器姿态控制方法

3.1空气动力控制

根据运动的相对性原理和气体流动时的基本定律,当飞行器在大气中以一定

的速度飞行时,飞行器都会受到空气动力的作用。空气动力可以分解为升力、侧力和阻力,而对应的气动力矩可以分解为影响飞行器姿态的滚动力矩、偏航力矩和俯仰力矩。

大量实验表明,空气动力和力矩与飞行器的飞行速度、飞行高度、飞行器的外形及飞行器相对来流的姿态等因素有关。来流速度越大,即飞行器速度越大,动能就越大,来流吹到飞行器上后,由于受到阻滞,大部分动能转换为压力能,总的空气动力也增大。基本上来说,升力、侧力和阻力与飞行速度的平方成正比。空气密度越大,则空气的惯性就越大,飞行器向前飞行需要的推力就越大。根据作用力与反作用力的原理,空气必将以更大的力作用在飞行器上。因此,空气动力与空气密度成正比。由于空气密度随高度增加而减小,所以高度越高,作用在飞行器上的气流速度分布也不同,必然影响着空气动力的大小和方向。另外,飞行器在空气中的姿态不同,空气动力也不同。

使用空气动力来控制飞行器的姿态是一种成熟的技术,其相应的执行机构—舵机也有了很大的发展,对于大气层内飞行的普通飞行器来说是足够的。但它也有很多缺点:

(l)使用空气动力控制姿态的飞行器的飞行区域限制在大层内。

(2)随着对飞行器(大气层内)性能日益提高的要求,普通的气动布局(三个控制面:升降舵、方向舵和副翼)已不能满足要求,需要有更多的控制面:水平鸭翼、垂直鸭翼、缝翼、襟翼、全动平尾、全动垂尾等,这些控制面协同偏转可以完成一般飞行器难以实现的飞行任务,达到较高的飞行性能,但同时飞行控制系统的设计将变得非常复杂。

(3)对低速、低动压(高空空气稀薄)的条件下,不能实现姿态的控制,如一些垂直短距起降的飞行器和一些高空气飞行器。空气动力控制用于大气层内飞行的大多数飞机、导弹。

3.2推力矢量控制

所谓推力矢量控制是指改变发动机排出的气流方向来控制飞行器飞行的一种控制方法。不采用推力矢量技术的飞行器,发动机的喷流都是与飞行器的轴线重合的,产生的推力也沿轴线向前,这种情况下发动机的推力只是用于克服飞行器所受到的阻力,提供飞行器加速的动力。采用推力矢量技术的飞行器,则是通过喷管偏转,利用发动机产生的推力,获得多余的控制力矩,实现飞行器的姿态控制。其突出特点是控制力矩与发动机紧密相关,而不受飞行器本身姿态的影响。实现推力矢量控制的方法主要有:小辅助喷管控制、固定喷管的喷流偏转、摆动喷管和侧向二次喷射等。文章[4——11]介绍了推力矢量技术及其发展和运用综

述。推力矢量控制的优点是:

(1)可以保证在飞行器作低速、大攻角机动飞行,而操纵舵面几近失效时,利用推力矢量提供的额外操纵力矩来控制飞行器机动。它可使飞行器获得更大的机动性,实现过失速机动飞行,突破“失速障碍”。

(2)使用推力矢量技术的飞行器不仅其机动性大大提高,而且还具有前所未有的短距起落能力,这是因为使用推力矢量技术的飞行器的超环量升力和推力,在升力方向的分量都有利于减小飞行器的离地和接地速度,缩短飞行器的滑跑距离。另外,由于推力矢量喷管很容易实现推力反向,飞行器在降落之后的制动力也大幅提高,因此,着陆滑跑离更加缩短了。

(3)推力矢量技术的运用提高了飞行器控制效率,使飞行器的气动控制面,例如垂尾和立尾可以大大缩小,从而飞行器的重量可以减轻。另外,垂尾和立尾形成的角反射器也因此缩小,飞行器的隐身性能也得到了改善。

推力矢量控制的主要应用有:

(l)具有超机动性和具有垂直/短距起飞的飞机,如俄罗斯的苏-37战斗机装备的发动机,不仅推重比大,而且采用了最先进的推力矢量技术,可以做的机动动作有;在“普加乔夫眼镜蛇”机动动作后,接着做一个360度滚转、尾冲:在垂直平面内作360度后向转向的圆形机动;低速360度转弯;高速高旋时以大攻角攻击目标;甚至可以在大迎角情况下以接近零速的状态飞行。除此之外,还有其他尚未命名的机动作,因此被称为“超机动性”。美国的F-22“猛禽”战斗机也可实现“零”速度和大攻角下的高机动性。实现全推力矢量控制还可能导致无尾飞机的问世,美国麦道公司提出的X-36无人战斗机方案就是其中的一种。

(2)战略导弹。战略导弹均为垂直发射,所以,有了推力矢量控制技术将大大提高其发射安全性和空间变轨能力。如前苏联的陆基战略弹道导弹的固体发动机主要以燃气舵、空气舵、二次喷射方式等实现推力矢量控制;白杨导弹第一级发动机就采用了燃气舵加空气舵(4个栅格翼、4个稳定翼)的推力矢量控制方法。而使用了柔性摆动喷管推力矢量控制技术的白杨-M导弹的主要战术技术性能更是大大改进,投掷重量和命中精度均明显提高,并具有独特的突防反拦截能力。

(3)舰载导弹垂直发射系统。采用垂直发射方式,必须解决导弹自身转向问题,但导弹刚发射时速度小、动压低,空气舵几乎没有控制效果,因此,必须采用推力矢量控制系统来提供转弯所需要的控制力。现在世界上服役的舰载导弹垂直发射系统主要有美国的Mk41型导弹垂直发射系统和Mk48型导弹垂直发射系统,英国的“海狼”导弹垂直发射系统,法国的“西尔维亚”A43型导弹垂直发射系统,俄罗斯的SA-N-6、SA-N-9、55-N-19导弹垂直发射系统,以色列的“巴拉克”I型导弹垂直发射系统。而最具代表性的是美国的Mk41型导弹垂直发射

系统。

(4)越肩发射的空空导弹。越肩发射是一种新的攻击方式,即本机利用机载火控系统控制机载空空导弹,攻击尾追本机的敌机的攻击方式。越肩发射又可分为两种发射方式:一种是导弹向前发射,在空小转弯,然后去攻击后方的目标,叫做“前射”(forward-firing);另一种是导弹直接向后发射,去攻击后方的目标,叫做“后射”(rear-firing),也叫“后向攻击”。所以,都要经过一个速度过零状态,在这种情况下就需要使用推力矢量控制来稳定其姿态。其代表有俄罗斯的

R-73。

(5)新型碟型飞行器。文[55-60]中的新型碟型飞行器使用推力矢量控制和变质心控制两者的复合控制,首次实现了一类碟型飞行器的无舵控制。

(6)运载火箭。如中国的长征系列火箭。

3.3喷气反作用控制

喷气反作用控制是指飞行器本身利用自身携带的气源,或由燃料燃烧或分解产生的高压气体,经喷气发动机(推力器)向飞行器体外喷射出去,产生反作用力和反作用力矩,从而控制飞行器姿态的一种控制方法。常用作姿态控制的喷气系统有:

(l)冷气系统。它以高压液态惰性气体为工质,如美国PANERO公司设计的SabreRoeket飞行器的反作用控制系统,其工作介质是冷氢气。

(2)单组元系统。它以无水阱为燃料,当加压的阱通过多孔的催化剂床时,燃烧分解产生高温高压气体喷出。如欧空局的地球同步通信卫星,即轨道试验卫星(OTS)的反作用控制系统(RCS),使用单组元脱(NZH4)作为推进剂。系统由两组推力器构成,每组有10个推力器,推进剂贮存在4个贮箱中。

(3)双组元系统。使用燃烧剂和氧化剂两种液体推进剂,在推力器的燃烧室混合、燃烧,推进效率较高。

与推力矢量控制不同,喷气反作用控制系统一般由若干个喷嘴组成,分别安装在飞行器的翼端和飞行器前部或后部,分别对飞行器的俯仰、偏航和滚动进行控制。如俄罗斯的雅客-141,飞机在低速飞行时的姿态控制力来源于主发动机产生的喷气,前后发动机的推力之差控制俯仰,翼尖的反作用力控制系统和横滚,偏航则靠机头的反作用力控制系统来实现。美国的“联合攻击战斗机”(JSF)计划中,承包商波音公司的方案中也采用了一套喷气反作用控制系统(包括俯仰、偏航和滚转喷管),可保证飞机在STOVL(短距起飞与垂直着陆)工作状态下的稳定。承包商洛克西德·马丁公司的STOVL方案中也有一套反作用控制系统。

喷气反作用控制适合于在低速和高空低动压条件下飞行的飞行器,而使用最

多的是卫星、航天飞机和空间站。但它一般只作为一种辅助手段和其它控制方法复合使用。如对地观测卫星上常用的执行机构有以喷气为主和以飞轮为主两种。喷气执行机构具有设计简单、可产生较大控制力矩等优点,但由于要消耗卫星上的燃料而不适于长寿命运行的卫星。采用这类执行机构的航天器有美国的“阿波罗”飞船以及国外早期的一些返回式遥感卫星。以飞轮为主的执行机构通常又以喷气力矩等为辅助手段,这类系统适用于指向精度较高的长寿命卫星(如“陆地卫星-6”、SPOT-4、ADEOS等)。

将喷气反作用控制用于战术导弹的情形还不多见,美国的Hydra导弹就使用了一套喷气反作用控制系统代替传统的可动舵面来控制导弹的姿态,而其“先进吸气式双射程导弹”(AADRM)计划也已在莱特实验室开始实施。这种导弹的一个关键技术就是尾鳍/反作用喷气飞行控制系统,美军将用这种控制系统取代传统的气动控制面或推力矢量控制系统,为导弹近距格斗提供超机动性能。在近距格斗时,每个反作用喷气装置可提供的推力为2.7千牛。与尾鳍相结合可使导弹在极高攻角下攻击机动飞行目标;在超视距拦截时,反作用喷气装置只在飞行末段使用,可攻击过载达9g的机动飞行目标。莱特实验室在这方面已有技术准备,它曾实施一项名为“备用控制技术”(ACT)的探索性研究计划,成功地演示了高效率尾鳍反作用喷气控制的技术可行性,使导弹的攻角增加到70°以上,大大提高了机动性,同时减小了阻力和在载机上所占空间。喷气反作用控制还用于十字梁控制实验系统。为了实现在高空低动压区域飞行,在美国一项应用于飞行器姿态控制的喷气反作用力研究早在20世纪50年代中期已展开。1956年,Dryden 飞行研究中心已开始了反作用力姿态控制的仿真和飞行方面的开创性作,并研制出了一台基于地面的有人操纵的十字梁模拟器。经过近半个世纪的发展,美国的超音速飞行器研究系列,从X-1到X-45A已经发展了20几个试验型号。高超音速飞行器依靠喷气反作用力,控制在空间边缘飞行。美国的空间飞行器和航天飞机的大气层外姿态控制大都采用十字梁实验系统的原理来实现的。

3.4飞轮控制

飞轮控制是应用于卫星上的一种成熟的控制技术。飞轮是指具有大惯量的轮体,当它的旋转运动被加速或减速时,产生反作用控制力矩。飞轮可以正反两向旋转,转速在零附近的惯性轮是反作用轮,又称零动量轮。如果惯性轮在加速减速过程中始终具有较高转速,则称为动量轮,又称偏置动量轮。动量轮不仅能产生控制力矩,而且其角动量可以使转轴在惯性空间保持稳定。

反作用轮三轴姿态控制属于主动姿态控制范畴。主动姿态控制的优点是控制精度较高,灵活性较强,快速性好;不足之处是要消耗卫星上能源,控制电路较

复杂,成本较高。反作用轮三轴姿态控制方法至少要用三个飞轮。一般说来,反作用轮比偏置动量轮小,速度低,而且反作用轮三轴姿态控制方法与单框架、双框架控制力矩陀螺比较起来,又具有简单、可靠的优点。在采用高精度姿态敏感器和高性能反作用轮后,控制系统的精度还会进一步提高。所以,国外在高精度控制的应用场合,首先考虑采用反作用轮三轴姿态控制方法。反作用轮控制方法所达到的姿态稳定度,大约要比偏置动量控制方法高一个数量级。

就反作用轮控制方法而言,又可以有多种不同的配置方案。一般说来,三个反作用飞轮的配置方案,存在着飞轮的过零问题。对此,一般的解决方法是增加反作用飞轮数(大多用四个),将积累的全部角动量分配给各个飞轮,使每个飞轮都不出现过零。这样增加了飞轮数,还能构成冗余系统;其缺点是把本来具备的可反转能力消除了一半多。因此,就必须牺牲重量,携带大型飞轮。

反作用轮控制的一大缺点是当反作用轮转速过零时,由于摩擦力矩相对控制力矩较大,会对卫星姿态产生较大的影响。因此,为使这一控制技术得以实际应用,必须对反作用轮转速过零时低速摩擦产生的扰动进行有效抑制。关于反作用轮低速摩擦特性的补偿问题,国内外学者已进行了一定的研究。目前,存在以下三种解决方案:

①在反作用轮输人端加人与转速同向,且幅值等于库仑摩擦力矩的补偿信号,以减小摩擦影响。但由于库仑摩擦只是理想化模型,与实际情况并不相符,且需要精确测量转速换向时刻,因此该方法在实际上很难奏效;②引人反作用轮转速反馈。该方法能在一定程度上克服低速摩擦影响,且效果随反馈系数的增大而变好。当反馈系数过大时,会出现极限环振荡,且功耗较大;③当反作用轮转速较低时,在其输人端叠加一小幅值正弦振颤信号,将摩擦特性谐波线性化,以改善姿态控制性能。而文[28]与上述几种方法不同,作者结合某型立体测绘小卫星,采用变结构控制方法设计姿态控制系统来抑制低速摩擦影响。

飞轮控制主要应用于卫星、星际飞行器、月球探测器等,主要原因是飞轮提供的力矩有限,飞轮转速很容易达到饱和。

3.5磁力矩器控制

磁力矩器控制仅用于卫星的姿态控制,主要是因为磁力矩器所能提供的力矩有限,不能满足飞行器做大幅度机动的要求,但对于只需做小幅机动的卫星等航天器来说却是可行的。磁力矩器是一个线圈,通电时产生磁偶极矩,与地磁场作用产生力矩ll2]。磁力矩器产生的磁力矩为: {},,,T x y z M x m m m ==m B m ,表示沿着卫星三个轴向的磁偶极子,B 是卫星所处位置的地磁场强度,可以通过三轴磁强计测量给出。磁控力矩要同时受到卫星当地磁场和本身磁偶极子的限制,只

能在垂直于地磁场强度B的平面内产生。

3.6变质心控制

许多年来,一般来说,对于导弹和再人飞行器(RV)飞行特性的控制技术倾向于使用于能够提供相对较大控制能力的系统,这是由于大多数飞行器的飞行任务都需要做较大幅度的机动。然而,对于一些执行特殊任务的飞行器,如用于突防的空一空导弹或是再人飞行器,需要控制系统能够提供大的侧向加速度的能力。能够提供这种能力的技术有鸭式构型、升降舵补助翼、射流互作用副翼、推力矢量控制以及其他方法。由于固有的导航误差,使得仅能提供不大控制能力的控制系统几乎没有价值。然而,随着全球定位系统(GPS)的日见成熟,一些简单的控制方法和GPS紧密配合,就可以提高现有系统的导航精度。其中,变质心控制

就是这样一种方法。

变质心控制又被称为质量控制或质量矩控制。我们知道飞行器的飞行姿态控制是通过飞行器所受外力相对质心的力矩来实现的,而力矩M与力F和力臂r

=?我们熟悉的常规控制(例如飞机、导弹),力臂r 有关,有力矩计算公式M r F

不变,通过副翼和舵面的偏角变化改变主翼和尾翼的升力,即改变力F对飞行器的质心形成力矩,达到改变飞行器的姿态。如果力不变,通过改变力臂r,即飞行器的质心位置来达到改变力矩,完成对飞行器的姿态控制,这就是变质心控制。变质心控制在宇航飞行器、再人飞行器、水下运载器、KKV、碟型飞行器、导

弹中都有研究及应用。对变质心控制最初的探索研究是由美国的Regan和Kavetsky等人开始的,他们设计出一种简单的变质心控制器,能够在接近目标时对弹道做适度的修正,以提高最终的制导精度。它通过移动弹体内部活动质量块,改变弹道导弹的质心,利用气动配平力矩或弹体惯量主轴的偏移,改变导弹飞行姿态,从而实现导弹机动控制。文[41-43]对火箭和宇航飞行器的质量控制进行了稳定性分析,为变质心控制的可行性和有效性奠定了理论指导。国内的研究代表主要有西北工业大学的周凤岐和周军教授等,文[44]首次详细推导了基于变质心控制导弹的空间六自由度动力学方程,并建立了一套完整的仿真系统,针对导弹在垂直平面内运动情况进行仿真,为深人探讨变质心控制弹头的控制机理奠定了基础。文[45]建立了完整的变质心控制导弹运动模型,深人分析了由于导弹质心移动引起弹体姿态角变化的两个重要因素,分别给出了针对弹体自旋频率较高、较低不同情况时相应的控制策略,为进一步设计导弹控制系统奠定了坚实的基础。文[46]利用根轨迹法对变质心控制旋转导弹的稳定性进行分析,给出了变质心控制导弹稳定的充分必要条件,并针对弹体参数大范围剧烈变化的特点,根据H

二状态反馈鲁棒控制器,大大减小了弹体自身参数变化对制导系统性能的不良影

响,从而提高了弹体的抗干扰性能。文[48]讨论了变质心控制在KKV中的应用。文[49]进行了变质心控制技术的机理分析及方程简化研究,给出了重要结论。文[51-54]研究探讨了变质心控制机理以及一些应用模型。文[55-60]研究了变质心控制在一类碟型飞行器中的应用。所有研究分析与应用表明变质心控制在飞行器姿态控制中的应用前景广阔。

变质心控制与传统的气动舵控制相比较,主要有三个方面的优越性:

(1)变质心控制机构完全在弹头内部工作,不会影响弹头良好的气动外形,有利于获得较高的末端制导精度。

(2)无需特殊解决控制机构的烧蚀问题。

(3)利用弹头高速运行产生的气动力和力矩进行弹头姿态和机动控制,能获得很大的控制力和力矩,节省能量消耗,结构简单。

3.7复合控制

目前,常用的几种飞行器姿态控制方法主要有以上几种,有些只能用于特定的飞行器,比如磁力矩器控制方法;其它用于卫星姿态控制的方法还有重力梯度杆、控制力矩陀螺、太阳阵或天线的指向驱动装置、太阳光压装置等。

当然,这些控制方法很多并不是单独使用的,而是和其它控制方法复合使用。比如磁力矩器和反作用轮复合控制卫星姿态,可以提高姿态控制系统的鲁棒性,而且可以缩短姿态捕获时间;又如以飞轮为主的执行机构,通常又以喷气力矩等为辅助手段;又如使用空气动力控制和推力矢量控制的飞机、导弹,使用空气动力控制和喷气反作用控制复合的垂直短距起降飞机等;又如使用空气动力控制、推力矢量控制和喷气反作用力控制的白杨-M导弹;再如使用变质心控制和推力矢量控制的碟型飞行器实现了无舵控制。

4展望

作为飞行器控制系统组成的重要部分,姿态控制对于提高飞行器的工作与作战效能及生存能力具有重要作用。单一的姿态控制方案已经不能再满足人们对飞行器性能的要求,所以采用复合控制的方法是未来的发展趋势。而且飞行器发展项目一直是花费巨额投资的重点科学项目,以小的代价发展高性能的飞行器也是飞行器的发展方向。所以,飞行器的姿态控制系统也必将向小型化的方向发展,利用微机电系统(MEMS)技术制造小型机械装置将是以后发展的重点。

轴飞行器作品说明书

四轴飞行器 作品说明书 摘要 四轴飞行器在各个领域应用广泛。相比其他类型的飞行器,四轴飞行器硬件结构简单紧凑,而软件复杂。本文介绍四轴飞行器的一个实现方案,软件算法,包括加速度计校正、姿态计算和姿态控制三部分。校正加速度计采用最小二乘法。计算姿态采用姿态插值法、需要对比这三种方法然后选出一种来应用。控制姿态采用欧拉角控制或四元数控制。 关键词:四轴飞行器;姿态;控制

目录 1.引言 (1) 2.飞行器的构成? (1) .硬件构成..............................................1? 机械构成 (1) 电气构成 (3) .软件构成 (3) 上位机 (3) 下位机........... . (4) 3.飞行原理........... ................................ (4) . 坐标系统 (4) .姿态的表示 (5) .动力学原理 (5) 4.姿态测量........... ................................ (6) .传感器校正 (6) 加速度计和电子罗盘 (6) 5.姿态控制 (6) .欧拉角控制 (6) .四元数控制 (7) 6.姿态计算 (7) 7.总结 (8) 参考文献 (9)

四轴飞行器最开始是由军方研发的一种新式飞行器。随着MEMS?传感器、单片机、电机和电池技术的发展和普及,四轴飞行器成为航模界的新锐力量。到今天,四轴飞行器已经应用到各个领域,如军事打击、公安追捕、灾害搜救、农林业调查、输电线巡查、广告宣传航拍、航模玩具等。 目前应用广泛的飞行器有:固定翼飞行器和单轴的直升机。与固定翼飞行器相比,四轴飞行器机动性好,动作灵活,可以垂直起飞降落和悬停,缺点是续航时间短得多、飞行速度不快;而与单轴直升机比,四轴飞行器的机械简单,无需尾桨抵消反力矩,成本低?。 本文就小型电动四轴飞行器,介绍四轴飞行器的一种实现方案,讲解四轴飞行器的原理和用到的算法,并对几种姿态算法进行比较。 2.飞行器的构成 四轴飞行器的实现可以分为硬件和软件两部分。比起其他类型的飞行器,四轴飞行器的硬件比较简单,而把系统的复杂性转移到软件上,所以本文的主要内容是软件的实现。? .硬件构成? 飞行器由机架、电机、螺旋桨和控制电路构成。 机械构成? 机架呈十字状,是固定其他部件的平台,本项目采用的是碳纤维材料的机架。电机采用无刷直流电机,固定在机架的四个端点上,而螺旋桨固定在电机转子上,迎风面垂直向下。螺旋桨按旋转方向分正桨和反桨,从迎风面看逆时针转的为正桨,四个桨的中心连成的正方形,正桨反桨交错安装。 CA D设计机架如图: 整体如图2-1: 电气构成 电气部分包括:控制电路板、电子调速器、电池,和一些外接的通讯、传感器模块。控制电路板是电气部分的核心,上面包含MCU、陀螺仪、加速度计、电子罗盘、气压计等芯片,负责计算姿态、处理通信命令和输出控制信号到电子调速器。电子调速器简称电调,用于控制无刷直流电机。 电气连接如图2-2所示。 .软件构成

飞机控制系统的外回路主要用于控制和操纵飞机的姿态运动

901 飞机控制系统的外回路主要用于 3 控制和操纵飞机的姿态运动控制飞机质心的轨迹运动 控制和操纵飞机的航路控制飞机外部操纵系统 902 飞机的自动驾驶仪通常有()两个通道。 2 速度通道和姿态通道横滚通道和俯仰通道数字通道和模拟通道计算通道和控制通道 903 现代民航飞机多采用的座舱压力控制器是 4 直接气动式间接气动式主动控制式电子式 904 消除刹车松软的有效措施是()。 4 更换刹车摩擦块用清洁剂清洁刹车块润滑刹车块刹车系统排气905 自动驾驶仪由()组成。2 计算机、控制面板、惯导系统、飞行管理系统 传感器、控制面板、反馈回路、伺服系统、比较放大器 传感器、计算机、控制面板、显示控制组件、显示器 陀螺、推力管理系统、反馈回路、伺服系统、比较放大器 906 下列哪一项不是电子式防滞系统的功能? 4 接地保护锁轮保护控制机轮滑移率控制刹车计量活门来调定刹车压力907 确定刹车系统中存在的空气已全部排除的方法是()。 3 观察刹车脚蹬行程 观察液压油箱的目视油量表,直到无液体流动为止 连接放气管到刹车装置放气活门,实施刹车,直到流出的油液没有气泡 实施刹车时,观察刹车压力表是否平稳地向全刻度方向偏转 908 定量泵液压系统,发现比平时卸荷频繁,然而又没有不正常的渗漏现象,其最大可能原因是()。4 安全活门调节的压力过高。油箱通气管堵塞。油箱中的油液过多。储压器充气压力不足。 909 当给液压系统储压器放气时,如果液压油从充气活门芯中放了出来,这表明()。 4 储压器充气压力过大。系统压力过高。单向活门内漏。储压器活塞密封损坏。

910 外场检查多盘式刹车装置磨损量的方法是()。 3 用专用测量塞规测量刹车盘片间隙松开停留刹车,观察磨损指示销伸出量设置停留刹车,观察磨损指示销伸出量用探伤方法探测刹车片表面状态 911 电子式防滞刹车系统比惯性传感器式的防滞系统效率高的原因是()。 3 利用轮速传感器感受机轮的减速度连续控制飞机的滑跑速度 连续控制机轮与地面之间的滑移率在飞机着陆后驾驶员可以把脚蹬踏板压倒最大刹车压力位置 912 惯性防滞刹车系统中防滞传感器的功用是()。 4 减小刹车阻力提高刹车效率减小刹车压力感受机轮的滞动情况 913 前轮转弯系统中压力补偿器的作用为()。 2 提高液压供油压力使转弯作动筒的低压腔保持一定的压力,实现中立减摆 当供压系统失效时,作为应急动力源拖行释压 914 现代民用运输机主油箱的型式为()。 4 软式油箱硬式油箱半硬式油箱结构油箱 915 组成定量泵卸荷系统的基本附件,除了液压泵外应有()。 4 安全活门、选择活门、旁通活门和作动筒。单向活门、选择活门、安全活门和储压器。 单向活门、安全活门、卸荷活门和作动筒。单向活门、卸荷活门和储压器。 916 轮胎充气压力过低,对轮胎磨损情况的影响是()。 2 不引起轮胎特殊损伤引起胎肩过度磨损引起整个胎面过度磨损引起胎缘损伤 917 在拆卸一个液压系统的增压油箱之前()。 2 要操纵液压系统工作,以释放压力。通过人工释压活门释放油箱中的空气压力。 要释放储压器的压力。要断开所有电源。 918 对于压力加油系统,当油箱油量达到设定油量时,如何关断加油活门?3 人工监控油箱加油流量表,当加油流量减小到规定值时,手动关断 人工监控油箱油量表,手动关断 利用浮子电门,自动关断 利用浮子直接堵住加油管,加油活门在回压作用下关闭 919 下面哪条不是对放油系统的要求? 3

国外卫星导航应用标准综述概论

国外卫星导航应用标准综述 一、引言 全球卫星导航系统已深入到各国安全、经济领域的方方面面,已成为现代高新技术民用的成功典范。以产业化程度最高的GPS为例,已逐步演变为一种世界性的高新技术产业,它使航空、航海、测绘、时间及机械控制等传统产业的工作方式发生了根本的转变,它开拓了个人移动位置服务等全新的信息服务领域。随着卫星导航应用的逐步深入及应用领域的逐渐拓展,国外发布了大量卫星导航应用标准,本文将主要针对目前检索到的国外卫星导航应用标准进行梳理和分析。 二、国际及国外卫星导航相关标准化组织 卫星导航应用范围非常广,涉及卫星导航相关的国际和国外标准化组织也非常多,它们共同研究制定各国在航空、航海等领域赖以遵循、统一通用的导航条约法规、规范等标准。与卫星导航相关的国际级标准化组织主要有国际标准化组织(ISO)、国际电工委员会(IEC)、国际电信联盟(ITU)。此外,还有其他比较权威的区域标准化组织和国际组织也参与制定和发布卫星导航技术标准。经过调研与分析,共整理出了24个与卫星导航相关的标准化组织,这些标准化组织并不能涵盖卫星导航应用的所有领域,但已反映了卫星导航应用主流领域的标准化组织情况,如表1所示。其中美国的标准化组织有8个,欧洲的标准化组织有4个,核心的标准化组织除ISO、IEC和ITU外,还有ARINC、ETSI、FAA、NMEA、RTCM 和RTCA。

三、国外卫星导航应用标准分析 通过对表1中24个组织和机构的调研,共检索到卫星导航应用相关标准191项。经过整理和分析, 表1 与卫星导航相关的国际、国外标准化组织和国际组织(双线分割)

可将其归纳为卫星导航系统标准、卫星导航应用基础标准、电子地图标准、接收设备数据格式标准、差分技术标准、接收设备性能要求与检测方法六类。其中,卫星导航系统标准主要是各卫星导航系统的接口标准、系统性能标准;卫星导航应用基础标准主要为术语类和时空系统类标准;接收设备数据格式主要为应用领域的接收设备通用数据格式要求标准,差分技术标准为增强导航定位精度采用的差分技术和格式标准;接收设备性能要求与检测方法主要是各类接收机的标准。 1.卫星导航系统标准 1.1系统接口标准 系统接口标准主要是各卫星导航系统研制国公布的接口控制文件。目前GPS系统、GLONASS系统和Galileo系统都已经公布了各自的接口控制文件。 以GPS系统为例,自20世纪90年代末美国政府提出GPS现代化计划以来,美国军方先后发布了IS-GPS-200、IS-GPS-705、IS-GPS-800和IS-GPS-870四类接口性能规范:IS-GPS-200对GPS空间段与GPS无线电频率链路1(L1)和2(L2)的用户接收机之间的接口要求进行了定义,最新版本为IS-GPS-200G; IS-GPS-705规定了GPS无线电频率链路5(L5)上全球定位系统空间段和导航用户段之间的接口要求,其最新版本为IS-GPS-705C; IS-GPS-800定义了无线电频率链路1(L1)上GPS卫星与导航接收机之间的信号传输特征。虽然广播频段L1内有多个信号,这个接口规范只定义了L1内的民用信号(L1C),其最新版本为IS-GPS-800C;

惯性_地磁组合导航系统自适应卡尔曼滤波算法研究

文章编号:1671-637Ⅹ(2007)0620074204 惯性Π地磁组合导航系统自适应卡尔曼滤波算法研究 晏登洋, 任建新, 牛尔卓 (西北工业大学自动化学院,西安 710072) 摘 要: 针对惯性Π地磁组合导航中遇到的滤波的发散问题,采用自适应卡尔曼滤波估计导航系统的误差。该算法通过实时估计和修正系统噪声以及观测噪声的统计特性达到降低模型误差、抑制滤波发散的目的。在Matlab环境下的仿真证实了该方案可以防止滤波器发散,缩小滤波误差,提高滤波精度。 关 键 词: 组合导航; 惯性导航; 地磁场模型; 地磁导航; 磁偏角; 磁倾角 中图分类号: V249.32文献标识码: A On an algorithm of adaptive K alman filter of INSΠGNS integrated navigation system Y AN Deng-yang, RE N Jian-xin, NI U Er-zhuo (Department o f Automatic Control,Northwestern Polytechnical Univer sity,Xi’an710072,China) Abstract: Divergence often occurs in Inertial Navigation SystemΠG eomagnetic Navigation System(I NSΠG NS) integrated navigation system.T o s olve the problem,adaptive K alman filter is used for estimating the error of the navigation system.The alg orithm reduces the error of m odel and restrains filtering divergence through real -time estimating and by m odifying the statistical characteristics of systemΠmeasurement noise.The results of simulation under Matlab show that the presented method can reduce the error of actual filter,restrain filtering divergence and im prove the accuracy. K ey w ords: integrated navigation; inertial navigation; geomagnetic field m odel; G NS; geomagnetic declination; geomagnetic inclination 0 引言 由于图像匹配和地形匹配技术在某些场合存在一定缺陷。例如在图像匹配时,实时图是低空摄取的大视角图像,而参考图是卫星遥感图,由于不同天气条件下光照不同,不同季节地表覆盖物的灰度不同,以及山地、建筑物的相互遮挡等影响,实时图和参考图之间存在较大的差异,灰度和位移特征也都有变化,影响匹配精度和可靠性。此外当飞行器飞越海洋和平原时,其灰度和纹理等特征基本相同,无法实现图像匹配,因而利用稳定地形的地形匹配“TERC OM”技术,在海面和平原地区无法使用。 收稿日期:2006206219 修回日期:2006209204 作者简介:晏登洋(1980-),男,湖北随州人,硕士生,研究方向为先进导航与制导系统。 如果把惯导系统与地磁导航系统(G eomagnetic Navigation System,G NS)结合使用,则可为航空、航海以及陆地运输提供更精确的定位信息。目前的三轴捷联磁场计的分辨率已经可以达到0.1nT,可用于惯性Π地磁组合导航系统。这种地磁传感器可根据从磁南极到磁北极的磁场定位来提供所需要的定位信息。 惯性Π地磁组合导航的关键主要在3个方面:1)地磁信号的采集问题。因为地磁信号是弱物理信号,如何在干扰背景下分离弱地磁信号是地磁导航系统能否使用的先决条件;2)地磁与三维位置匹配定位的解算。高效和高精度的地磁定位解算的具体实现方法也是组合是否具有意义的关键;3)惯性Π地磁组合中的数据融合。针对使用标准卡尔曼滤波中出现的问题,采用自适应卡尔曼滤波估计导航系统的误差。 第14卷第6期2007年12月 电光与控制 E LECTRONICS OPTICS&C ONTRO L V ol.14 №.6 Dec.2007

北斗卫星导航系统与应用综述

北斗卫星导航系统及应用综述 0引言 北斗卫星导航系统是中国自行研制的全球卫星定位与通信系统(BDS),是继美全球定位系统(GPS)和俄GLONASS之后第三个成熟的卫星导航系统。系统由空间端、地面端和用户端组成,可在全球围全天候、全天时为各类用户提供高精度、高可靠定位、导航、授时服务,并具短报文通信能力,已经初步具备区域导航、定位和授时能力,定位精度优于20m,授时精度优于100ns。2012年12月27日,北斗系统空间信号接口控制文件正式版正式公布,北斗导航业务正式对亚太地区提供无源定位、导航、授时服务。 1 北斗卫星导航系统基本信息介绍 中国在2003年完成了具有区域导航功能的北斗卫星导航试验系统,之后开始构建服务全球的北斗卫星导航系统,于2012年起向亚太大部分地区正式提供服务,并计划至2020年完成全球系统的构建。北斗卫星导航系统和美国全球定位系统、俄罗斯格洛纳斯系统及欧盟伽利略定位系统一起,是联合国卫星导航委员会已认定的供应商。 1.1 北斗卫星导航系统的定位原理 “北斗一号”卫星导航系统的定位原理与GPS系统不同,GPS采用的是被动式伪码单向测距三维导航,由用户设备独立解算自己的三维定位数据,而“北斗一号”卫星导航定位系统则采用主动式双向测距二维导航, 由地面中心控制系统解算供用户使用的三维定位数据。“北斗”卫星是中国“北斗”导航系统空间段组成部分,由两种基本形式的卫星组成,分别适应于GEO和MEO轨道。“北斗”导航卫星由卫星平台和有效载荷两部分组成。卫星平台由测控、数据管理、姿态与轨道控制、推进、热控、结构和供电等分系统组成。有效载荷包括导航分系统、天线分系统。GEO卫星还含有RDSS有效载荷。因此,“北斗”卫星为提供导航、通信、授时一体化业务创造了条件。“北斗”导航卫星分别在1559MH z~1610MH z、1200MH z~1300MH z两个频段各设计有两个粗码、两个精密测距码导航信号, 具有公开服务和授权服务两种服务模式[1]。 “北斗二号”导航卫星系统体制第二代导航卫星系统与第一代导航卫星系统在体制上的差别主要是: 第二代用户机可免发上行信号,不再依靠中心站电子高程图处理或由用户提供高程信息,而是通过直接接收卫星单程测距信号来自己定位, 系统的用户容量不受限制,并可提高用户位置隐蔽性。

地磁导航技术综述及其与卫星导航等的关系

地磁导航技术综述及其与卫星导航等的关系 (2011-03-01 14:00:45) 转载▼ 标签: 卫星导航 gps 地磁 地磁导航 it 1、什么是地磁场? 地磁场是地球的固有资源,为航空、航天、航海提供了天然的坐标系。自从1989年美国Cornell 大学的Psiaki等人率先提出利用地磁场确定卫星轨道的概念以来,这一方向成为国际导航领域的一大研究热点。地磁导航具有无源、无辐射、全天时、全天候、全地域、能耗低的优良特征,其原理是通过地磁传感器测得的实时地磁数据与存储在计算机中的地磁基准图进行匹配来定位。由于地磁场为矢量场,在地球近地空间内任意一点的地磁矢量都不同于其他地点的矢量,且与该地点的经纬度存在一一对应的关系。因此,理论上只要确定该点的地磁场矢量即可实现全球定位。 于地球内部的磁场称为内源场,约占地球总磁场的95%。内源场主要来自地球的液态外核。外核是熔融的金属铁和镍,它们是电流的良导体,当地球旋转时,产生强大的电流,这些电流产生了地球磁场。地磁场总体像个沿地球旋转轴放置在地心的磁铁棒产生的磁场,它内源场的主要部分,也是地磁场的主要特征,占到总地磁场的80%~85%,称为偶极子场。内源场还有五个大尺度的非偶极子场,称为磁异常,分别为南大西洋磁异常,欧亚大陆磁异常,北非磁异常,大洋洲磁异常和北美磁异常,主要来源于地壳岩石产生的磁场。起源于地球外的磁场称为外源场,主要由太阳产生,它占了地球磁场的5%。 地磁场是个随时间变化的场,内源场引起的变化称为长期变化,有磁场倒转和地磁场向西飘移。地磁场每5000~50000年倒转一次,把与现在磁场方向相同的磁场称为正常磁场(磁场从南极附近出来,回到北极),把与现在磁场方向相反的称为倒转磁场,地质时期上出现了四个较大的倒转期,现在为布容正向期,往前有松山反向期,高斯正向期和吉尔伯特反向期。固体地球外部的各种电流体系引起的地磁场变化快,时间短,称为短期变化。短期变化又分为平静变化和扰动变化,其中平静变化包括太阳静日变化和太阴日变化,扰动变化包括磁暴、亚暴、钩扰、湾扰和地磁脉动。磁暴、钩扰、湾扰的发生与太阳活动有关,太阳活动高年,这些短期变化频繁发生,而且强度很大,变化剧烈。亚暴与极光有关。 地磁场能够反射粒子流,它把我们的地球包围起来,使我们免受高速太阳风的辐射和伤害,为我们提供了一个无形的屏障。 2、什么是地磁导航? 人们利用地磁场导航已经有四百年的历史了,现在发现鸽子,海滩,蝙蝠和乌龟等大量动物都用地球磁场来导航。

四轴飞行器电机控制模块设计

四轴飞行器电机控制模块设计

密级: NANCHANG UNIVERSITY 学士学位论文THESIS OF BACHELOR (2011—2015年) 题目四轴飞行器电机控制模块设计 学院:信息工程学院系自动化系专业班级:测控技术与仪器111班学生姓名:吕晴学号:5801211011 指导教师:张宇职称:讲师起讫日期:2015-3-5 ~ 2015-6-2

南昌大学 学士学位论文原创性申明 本人郑重申明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果。对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。本人完全意识到本申明的法律后果由本人承担。 作者签名:日期: 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权南昌大学可以将本论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 保密□,在年解密后适用本授权书。 本学位论文属于 不保密□。 (请在以上相应方框内打“√”) 作者签名:日期: 导师签名:日期:

摘要 四轴飞行器电机控制模块设计 专业: 测控技术与仪器学号: 58012110011 学生姓名:吕晴指导老师:张宇 摘要 本课题是针对四轴飞行器在已经获得传感器测得的精确数据的情况下,设计合理的电路和算法,实现四轴飞行器稳定飞行和各种姿态变换。本课题的主要内容是对四轴飞行器的电机控制模块进行软硬件设计。 四轴飞行器是智能机器人的一种,它是由四个旋翼旋转产生升力,通过协调各旋翼的转速来实现飞行器的姿态控制。与传统的无人机相比,四轴飞行器具有很强的机动灵活性和载荷能力,特别适合在理想稳态或者准稳态的飞行条件下进行全方位垂直起降,在军事和民用领域均拥有广阔的发展前景[2]。 本论文对四轴飞行器的电机控制模块进行了调研,并设计出了相关的硬件电路板以及软件控制算法。具体内容如下: 首先建立四轴飞行器的动力学模型,四轴飞行器的动力学建模分为力学建模和运动学建模两个部分,总体思想是将四轴飞行器看作一个刚体,选定当前的姿态角和目标姿态为输入量,在理想的条件下,推导出控制四轴飞行器所需的四个电机的控制量作为输出量的方程,即建立四轴飞行器受力与姿态之间的关系。 其次对四轴飞行器电机控制模块进行合理的硬件设计,硬件部分分为了电源模块、主控模块、电机驱动模块、检测模块、无线通讯模块五个模块。其中选择了STM32系列单片机作为主控模块的微处理器,选择了三相无刷直流电机作为动力源,无刷电调对其进行调速。 再次设计合理的控制算法,本课题采用了经典PID算法,临界比例度法对PID参数进行了初步整定,再在试验中对参数进行微调。 最后针对四轴飞行器电机控制模块设计了合理的软件流程。 关键词:四轴飞行器;动力学模型;电机;PID控制算法

全球四大卫星导航系统对比

简单对比全球四大卫星导航系统 2011年12月27日,对于中国的高精度测绘定位领域来说是一个不平凡的日子,中国北斗卫星导航系统(CNSS)正式向中国及周边地区提供连续的导航定位和授时服务,这是世界上第三个投入运行的卫星导航系统。 在此之前,美国的全球定位系统(GPS)和俄罗斯的格洛纳斯卫星导航系统(GLONASS)早在上世纪90年代就已经建成并投入运行。与此同时,欧盟也在打造自己的卫星导航系统——“伽利略”计划。 那么,这四大卫星导航系统之间到底有着怎么样的区别和联系呢?下面,就让我们来逐个分析一下,通过四大卫星导航系统的优劣分析,给大家一个较为明显的概念。 四大卫星导航系统各有优势,详情如下: GPS:成熟 GPS,作为大家最为熟悉的定位导航系统,她最大的特点就是技术方面最为成熟。 美国“全球定位系统”(GPS),是目前世界上应用最广泛、也是技术最成熟的导航定位系统。GPS空间部分目前共有30颗、4种型号的导航卫星。1994年3月,由24颗卫

星组成的导航“星座”部署完毕,标志着GPS正式建成。 中国北斗:互动开放 北斗卫星导航系统是中国正在实施的自主发展、独立运行的全球卫星导航系统。系统建设目标是:建成独立自主、开放兼容、技术先进、稳定可靠的覆盖全球的北斗卫星导航系统。北斗卫星导航系统由空间段、地面段和用户段三部分组成。目前市面上定位导航仪器公司如国外的天宝、拓普康,国内的华测导航等都已支持北斗卫星导航定位系统。 欧盟伽利略:精准 伽利略定位系统是欧盟一个正在建造中的卫星定位系统,有“欧洲版GPS”之称。伽利略定位系统总共发射30颗卫星,其中27颗卫星为工作卫星,3颗为候补卫星。该系统除了30颗中高度圆轨道卫星外,还有2个地面控制中心。 俄罗斯格洛纳斯:抗干扰能力强 早在美苏冷战时期,美国和苏联就各项技术特别是空间技术方面争锋相对,在美国GPS技术遍布全国的同时,苏联也没闲着,一直忙于研发自己的全球导航定位系统。俄罗斯的这套格洛纳斯系统便是其不断努力的结果。格洛纳斯由24颗卫星组成,也是由军方负责研制和控制的军民两用导航定

四轴飞行器原理、设计与控制

四轴飞行器原理、设计与控制 四轴飞行器设计与用途 学院:广东白云技师学院 专业:电子信息工程与电气技术(技师本科) 制作学生:邹剑平 指导老师:廖高灵 四轴飞行器简介 配置: 单片机AVRATMEGA168PA 三轴数字陀螺仪MPU—3050电机(无刷)XXD22121000KV电子调速器(无刷)好盈天行者40A螺旋桨1045 电池格氏2200mAh11.1V25C机架DIY 机架材料玻璃纤维铝合金 四轴飞行器飞行原理 重心的距离相等,当对角两个轴产生的升力相同时能够保证力矩的平衡,四轴不会向任何一个四轴飞行器有四个电机呈十字形排列,驱动四片桨旋转产生推力;四个电机轴距几何中方 向倾转;而四个电机一对正转,一对反转的方式使得绕竖直轴方向旋转的反扭矩平衡,保证了四轴航向的稳定. 此飞行控制板规定四轴电机的排布方式如图所示:前(1号),后(4号),右(3号),左(2号). 1,4号电机顺时针方向旋转,2,3号电机逆时针方向旋转.四个电机的转速做相应的变化即可实现四轴横向、纵向、竖直方向和偏航方向上的运动:

当四轴需要向前方运动时,2,3号电机保持转速不变,1号电机转速下降,4号电机转速上升,此时4号电机产生的升力大于1号电机的升力,四轴就会沿几何中心向前倾转,桨叶升力沿纵向的分力驱动四轴向前运动. 当四轴要转向左转向时,1,4号电机转速上升,2,3号电机转速下降,使向左的反扭距大于向右的反扭矩,四轴在反扭距的作用下向左旋转. 四个桨产生的推力,超过或者低于四轴本身重力的时候能够实现竖直方向上升与下降的运动,当桨的升力与四轴本身的重力相等的时候即实现悬停. 其他方式的运动原理与以上过程类似.四轴飞行原理虽然简单,但实现起来还需很多工作要做. 四轴飞行器控制流程图 四轴飞行器的优点 四轴飞行器与其他飞机比较相对稳定性高;四轴飞行器与其他飞机比较相对抗风能力强;载重量大(本机最大安全载重1100g);姿态灵活,反应速度快;可超低空飞行; 四轴飞行器主要用途 可做无人侦察机,空中航拍(FPV),可作为新型微型机器人。娱乐飞行表演 四轴飞行器的特点及魅力除了深受DIY爱好者的青睐之外,还有几点供大家品味: 1、是它的相对简单地机械构造。正因为简单,安全指数大大提高。 无论是作为航空模型还是作为遥控平台,安全永远是第一位的。 2、是它的相对稳定性。飞行姿态平滑稳定,机械振动被仅可能地减小是四轴的又一魅力,装载图像设备再好不过了。 3、是它的相对成本低廉,花尽可能少的钱获取最大的性价比是我们追求的境界,为工业开发其商业用途奠定了必要的基础。

全球卫星导航系统测量报告

全球卫星导航系统测量报告摘要: 全球卫星导航系统可以以高精度、全天候、快速地测定地面点的三位坐标,点间无需通视,不用建标,比常规测量方法的成本低,而且具有仪器轻巧,操作方便等优点,对传统测量的理论与方法产生了革命性的影响,促进了测绘科学技术的现代化,在军事、民用及其他领域都得到了广泛的应用。在工程测量的各个领域,从一般的控制测量到精密工程测量,都显出极大的优势。这种技术还可以应用在桥梁工程、隧道与管道工程、海峡贯通与连接工程、精密设备安装工程等。 全球卫星导航系统无疑极大地改变了以往需要巨大人力与精力来进行测量的局面,促进了生产力与各种工程领域的发展。因此,研究这一系统是有极大的必要性的。 正文: 一.全球卫星导航系统的发展 为了实现全球性、全天候、高精度地连续导航定位,美国国防部从1973年开始,进过二十多年的发展,号子三百亿美元,于1993年成功建立了第二代卫星导航系统——GPS卫星全球定位系统。GPS 是利用卫星发射的无线电信号进行导航定位,它有着良好的保密性与抗干扰性,同时也满足了人们对于开发这一系统的初衷。这是美国导航技术现代化的重要标志。 目前全球卫星导航系统除了美国的GPS系统外,还主要有俄罗斯的GLONASS、中国的北斗、欧盟的GALILEO等。

GLONASS系统开发于苏联时期,后来由俄罗斯建立了本国的全球卫星导航系统,1995年建成了由24颗卫星组成的卫星星座。这一系统至少需要18颗卫星来提供对俄罗斯全境的卫星定位与导航服务,如果要对全球来提供服务则需要24颗卫星。主要服务内容为确定陆地、海洋、空中目标的坐标与运动速度等信息。但由于各种因素的影响,该系统很长一段时间内不能进行正常的工作。目前该系统正在进行全面更新。 伽利略定位系统是由欧盟主导的一个正在建造的卫星定位系统。是继GPS和GLONASS之后第三个可供民用的定位系统。该系统由30颗卫星组成,于2005年发射了第一颗卫星,由于技术问题,完成目标由2008年延长到了2014年左右。 伽利略卫星导航系统是民用定位系统,不存在军用和民用冲突的问题。此外,其卫星运行高度高于GPS系统的卫星,因此覆盖率较高,定位精度将优于GPS全球定位系统。 北斗卫星导航系统是我国目前正在实施的自主开发、独立运行的主动式卫星导航系统。2000年发射了第一颗北斗卫星,到2003年,组成了第一代由三颗地球同步卫星组成的实验星座,可用于我国境内和周边地区的导航定位。 我国正在建设的北斗卫星导航系统空间段将有五颗静止轨道卫星和三十颗非静止轨道卫星组成。截止2012年,我国已经发射了16颗卫星。目前的开放服务对服务区内免费提供定位、测速和授时服务。授权服务将对授权用户提供更加安全的定位、测速、授时、通信和系

基于SLAM的停车场定位导航算法实现-开题报告

肖家彪开题报告 一、课题任务与目的 任务:基于SLAM的停车场定位导航算法实现。 目的:研究基于扩展卡尔曼滤波的SLAM算法,根据最近邻法进行数据关联,融合激 光测距仪等外部传感器的感知信息,修改内部惯性传感器的积累误差,克月艮SLAM过 程中由于单一传感器带来的不确定性问题。 二、调研资料情况 1国内外研究背景 从工业革命后世界上出现第一辆汽车以来到现在,随着科技的快速发展,近年来,汽车 的数量一直显直线快速,并且汽车在不断的向人工智能化方向发展。如今社会,智能汽 车己经成为人们研究的热点和发展的方向,很多发达国家甚至发展中国家都将智能汽车 视为重点研究对象。我国在智能汽车这方面的研究取得很不错的成果,我校研究的"无 人驾驶智能汽车"曾获得了全国无人驾驶智能汽车竞赛第三名。 1能汽车应用了计算机、人工智能和自动控制等技术,智能汽车是一个对环境感知、辅助驾驶等其他功能融合在一起的汽车,是现在社会科技发展的综合体现。随着社会的不断发展变化,随着汽车快速的发展,以后必将迎来更多无人驾驶智能汽车走进我们的生活。所以停车场[1]将面临一个很大的挑战,最重要的挑战就是停车场的导航定位。

目前有很多种导航定位方式,其中最常用的主要有:卫星全球定位系统GPS导航、利 用地球磁场导航以及汽车的惯性导航[2]。而卫星全球定位系统GPS导航的应用最为广泛,并且也相对准确, GPS导航是现在在定位中比较准确可靠的导航,但它并不是完美的,GPS导航同时也 存在很多因素影响导航。例如GPS全球定位系统会受到高楼大厦或者大树的影响,使 链接卫星的通信线路被阻挡,从而GPS全球定位系统会失去准确性。同理,地 下停车场的导航定位也不能使用GPS全球定位系统,并且现在的停车场也基本设在地 下。在真正战争时候GPS导航系统是不能够使用的,因为在战争中不管是哪个国家都 不可能依赖于其他国家的导航系统。正因为这样,我国一直在研究开发北斗导航定位系统,这对于我国军事方面具有重大的意义,但是北斗导航和GPS导航一样都会受到敌 方的反卫星导弹威胁。该问题是以后停车场所面临的重要挑战,研究基于其他定位和定 向传感器融合的导航定位算法势在必行。 2 SLAM导航算法 同步构图定位(simultaneous localization and mapping , SLAM )算法的雏形是由Smith、Self和Cheeseman于20世纪80年代提出的,最先用于陆上机器人的导航。 该算法主要是在运载体运动时预测自身位置,并依靠对周围环境的感知即对位置保持不变的"特征"或称"路标"的测量,通过滤波估计来修正运载体和特征的位置估 计,在实现对运载体导航的同时,构造用这些特征表不同的精确的环境地图。目前,算法

飞行器姿态控制法综述

飞行器姿态控制方法综述 一.引言 经过一个世纪的发展,各种飞行器如雨后春笋般出现,从飞机、导弹到火箭、卫星,从宇宙飞船、航天飞机、空间站到月球探测器、火星探测器。这些飞行器能在空中按预定的轨迹运动总离不开它的姿态控制系统,飞行器在空间的运动是十分复杂的。为使问题简单化,总是将一飞行器的空间运动分解为铅锤平面的纵向运动和水平面内的侧向运动,将飞行器在空间的角运动分解成俯仰、偏航和滚动三个角运动。由于角运.动使飞行器的姿态发生变化,所以对角运动的控制就是对飞行器姿态的控制。对于飞行器姿态的控制,不同的飞行器需要不同的策略,本文主要就飞行器姿态控制方法的应用与发展作一一论述。 二.姿态控制的数学模型 要控制飞行器的姿态,就是要控制使飞行器三个姿态角发生变化的力矩大小。飞行器的姿态模型可以认为是一类不确定MIMO 仿射非线性系统,如式(1)所示: ()//()//()//(cos sin )/cos cos sin sin tan cos tan x y z y x x x x x z x x x y y y x x y x y z z z x x x z x y z I I I M I I I I M I I I I M I ωωωωωωωωωψ ωθωθ??ωθωθ θωθ?ωωθ?=-+??=-+??=-+??=-??=+?=+-?? (1) 式中,x 、y 、z 下标表示空间飞行器的三个主轴方向;I 表示相对于飞行器质心的惯量矩,设飞行器是主轴对称的,则惯量积可以忽略;ω表示飞行器相对于惯性空间的角速度;M 表示控制力矩;,,ψ?θ分别是飞行器的欧拉角。控制了M 的大小,就可以控制飞行器按我们期望的轨迹运动。M 由飞行器上的执行机构产生,常见的有空气舵、推力矢量发动机、反作用飞轮、喷气执行机构或由其它环境力执行机构。 三.飞行器姿态控制方法 3.1空气动力控制 根据运动的相对性原理和气体流动时的基本定律,当飞行器在大气中以一定

四轴飞行器说明书

四轴飞行器 作品名称:四轴飞行器 工作原理:四轴飞行器主机采用了意法半导体公司的STM32F103CBT6处理器,该芯片采用ARM32位Cortex-M3内核。具有128K的Flash与20K的SRAM,内部具有锁相环模块,最高频率可达到72MHZ。板载MPU6050,该芯片整合了3轴陀螺仪与3轴加速器的6轴运动处理组件,与处理器采用I2C通信进行数据传送。主机与遥控之间采用的是NRF24L01+模块,该模块工作在2.4~2.5GHz全球免申请ISM工作频段。支持125个通讯频率。使用增强型的Enhanced ShockBurst传输模式,支持6个数据通道(共用FIFO)。通过SPI与MCU连接,速率0~8Mbps。理论传输距离可达到2KM。 飞行器遥控器亦采用STM32F103CBT6处理器,通过摇杆的X,Y轴输出为两个电位器,再通过AD转换读出扭动角度,从而在程序内部定义其所读取角度信息的动作映射。遥控器具有三组微调旋钮,可以调整到其水平位置。遥控器也使用NRF24L01+芯片与飞行器主机进行数据传输。遥控器板载TP4057芯片,可以直接给电池充电。并且使用蜂鸣器,对主机状态(例如:无法连接,低电压,连接断开等)进行报警。 制作材料: 1.STM32F103CBT6:该芯片由意法半导体生产,采用ARM32位Cortex-M3内核。 具有128K的Flash与20K的SRAM,芯片集成丰富的外设,例如:定时器,CAN,ADC,SPI,I2C,USB,UART,PWM等。内部具有锁相环模块,最高频率可达到72MHZ。 2. MPU6050,全球首例整合性6轴运动处理组件,整合了3轴陀螺仪、3轴加速器, 并含可藉由第二个I2C端口连接其他厂牌的加速器、磁力传感器、或其他传感器的数位运动处理(DMP: Digital Motion Processor)硬件加速引擎,由主要I2C端口以单一数据流的形式,向应用端输出完整的9轴融合演算技术InvenSense的运动处理资料库,可处理运动感测的复杂数据,降低了运动处理运算对操作系统的负荷,并为应用开发提供架构化的API。 3. NRF24L01+:一款新型单片射频收发器件,工作于2.4 GHz~2.5 GHz ISM频段。 内置频率合成器、功率放大器、晶体振荡器、调制器等功能模块,并融合了增强型ShockBurst技术,其中输出功率和通信频道可通过程序进行配置。nRF24L01功耗低,在以-6 dBm的功率发射时,工作电流也只有9 mA;接收时,工作电流只有12.3 mA,

全球四大导航系统

全球四大卫星定位系统 目前,世界上只有少数几个国家能够自主研制生产卫星导航系统。当前全球有四大卫星定位系统,分别是美国的全球卫星导航定位系统GPS、俄罗斯的格罗纳斯GLONASS系统、欧洲在建的"伽利略"系统、和中国的北斗卫星导航系统。 一、美国GPS长期垄断 美国国防部从1973年开始实施的GPS系统,这是世界上第一个全球卫星导航系统,在相当长的一段时间内垄断了全球军用和民用卫星导航市场。GPS全球定位系统计划自1973年至今,先后共发射了41颗卫星,总共耗资190亿美元。GPS原来是专门用于为洲际导弹导航的秘密军事系统,在1991年的海湾战争中首次得到实战应用。随后,在科索沃战争、阿富汗战争和伊拉克战争中大显身手。从克林顿时代起,该系统开始应用在了民用方面。现运行的GPS系统由24颗工作卫星和4颗备用卫星组成。美国利用GPS获得了巨大的经济利益,多年来在出售信号接收设备方面赚取了巨额利润。以1986年为例,当时一台一般精度的GPS定位仪价格5万美元,高精度的则达到10万美元。现在价格虽然有所下降,但也可推算出20年来GPS"收获颇丰"。以GPS为代表的卫星导航定位应用产业,已成为八大无线产业之一。据美国国家公共管理研究院进行的调查评估表明,GPS的全球销售额将以每年38%的速度增长,2005年全球GPS市场已达到310亿美元。长期以来,美国对本国军方提供的是精确定位信号,对其他用户提供的则是加了干扰的低精度信号--也就是说,地球上任何一个目标的准确位置,只有美国人掌握,其他国家只知道个"大概"。在海湾战争时,美国还曾置欧盟各国利益不顾,一度关闭对欧洲GPS服务。 2003年3月20日,伊拉克战争爆发。大批轰炸机、战斗机猛扑向伊拉克首都巴格达,用炸弹准确地将一座建筑彻底摧毁,行动代号:"斩首行动";4月,一架B-1B"枪骑兵"轰炸机临时接到任务,用炸弹摧毁了另一座建筑。他们的目标都是一个人:萨达姆侯赛因,他们所使用的炸弹都是一种:联合攻击炸弹(JDAM),这些炸弹之所以都能够精确的打击目标,是因为他们都是通过卫星定位来实现定位,提供这种定位服务的正是由24颗美国卫星组成的全球定位系统--GPS。 由于GPS技术所具有的全天候、高精度和自动测量的特点,作为先进的测量手段和新的生产力,已经融入了国民经济建设、国防建设和社会发展的各个应用领域。 随着冷战结束和全球经济的蓬勃发展,美国政府宣布,在保证美国国家安全不受威胁的前提下,取消SA政策,GPS民用信号精度在全球范围内得到改善,利用C/A码进行单点定位的精度由100米提高到10米,这将进一步推动GPS技术的应用,提高生产力、作业效率、科学水平以及人们的生活质量,刺激GPS市场的增长。 二、俄罗斯GLONASS(格洛纳斯)系统 "格洛纳斯GLONASS"是俄语中"全球卫星导航系统GLOBAL NAVIGATION SATELLITE SYSTE"的缩写。作用类似于美国的GPS、欧洲的伽利略卫星定位系统。最早开发于苏联时期,后由俄罗斯继续该计划。俄罗斯1993年开始独自建立本国的全球卫星导航系统。1995年俄罗斯耗资30多亿美元,完成了GLONASS导航卫星星座的组网工作。它也由24颗卫星组成,原理和方案都与GPS类似,不过,其24颗卫星分布在3个轨道平面上,这3个轨道平面两两相隔120°,同平面内的卫星之间相隔45°。每颗卫星都在19100千米高、64.8°倾角的轨道上运行,轨道周期为11小时15分钟。地面控制部分全部都在俄罗斯领土境内。俄罗斯自称,多功能的GLONASS系统定位精度可达1米,速度误差仅为15厘米/秒。如果必要,该

导航中道路匹配算法的设计与实现(第一次)

导航中道路匹配算法的设计与实现(第一次) 首先,道路匹配(地图匹配)的定义是:在不同条件下获取的同一物景的地图之间的配准,同一传感器在不同时间,或不同类型传感器在同一时间,或不同类型传感器在不同时间所获取的两幅地图中的同一地面点所对应像素之间的配准。 其作用我们小组经过网上的查找认为有3个要点:使空间数据实现更加有效的融合,实现地图的变化检测和自动更新,实现空间数据的质量评估和位置校正。 地图匹配是一种基于软件技术的定位修正方法,其基本思想是将车辆定位轨迹与数字地图中的道路网信息联系起来,并由此相对于地图确定车辆的位置。地图匹配应用是基于以下2个假设条件:(1)车辆总是行驶在道路上;(2)采用的道路数据精度要高于车载定位导航系统的定位精度。当上述条件满足时,就可以把定位数据和车辆运行轨迹同数字化地图所提供的道路位置信息相比较,通过适当的匹配过程确定出车辆最可能的行驶路段以及车辆在该路段中的最大可能位置。如果上述假设不成立,则地图匹配将产生错误的位置输出,并可能导致系统性能的严重下降。一般认为用于匹配的数字地图误差不应超过巧米(真实地面距离)。由于陆地车辆在除进入停车场等之外的绝大多数时间内都位于公路网络中,因此使用地图匹配技术的条件是满足的。 地图匹配的算法是曲线匹配原理和地理空间接近性分析方法的融合。曲线匹配算法的基本思想是:如果对一条曲线做任意数量、任意比例的分割,分割点都落在另一条曲线上,则两条曲线严格匹配。实际应用中,就是计算一条曲线上相对均匀的某一数量分割点到参考曲线的距离的平均值,将其作为到参考曲线的平均距离,并将此平均距离的倒数作为匹配优劣的度量。空间接近性分析方法就是

四轴飞行器姿态控制算法

姿态解算 姿态解算(attitude algorithm),是指把陀螺仪,加速度计, 罗盘等的数据融合在一起,得出飞行器的空中姿态,飞行器从陀螺仪器的三轴角速度通过四元数法得到俯仰,航偏,滚转角,这是快速解算,结合三轴地磁和三周加速度得到漂移补偿和深度解算。 姿态的数学模型坐标系 姿态解算需要解决的是四轴飞行器和地球的相对姿态问题。地理坐标系是固定不变的,正北,正东,正上构成了坐标系的X,Y,Z轴用坐标系R表示,飞行器上固定一个坐标系用r表示,那么我们就可以适用欧拉角,四元数等来描述r和R的角位置关系。 姿态的数学表示 姿态有多种数学表示方式,常见的是四元数,欧拉角,矩阵和轴角。在四轴飞行器中使用到了四元数和欧拉角,姿态解算的核心在于旋转。姿态解算中使用四元数来保存飞行器的姿态,包括旋转和方位。在获得四元数之后,会将其转化为欧拉角,然后输入到姿态控制算法中。姿态控制

算法的输入参数必须要是欧拉角。AD值是指MPU6050的陀螺仪和加速度值,3个维度的陀螺仪值和3个维度的加速度值,每个值为16位精度。AD值必须先转化为四元数,然后通过四元数转化为欧拉角。在四轴上控制流程如下图: 下面是用四元数表示飞行姿态的数学公式,从MPU6050中采集的数据经过下面的公式计算就可以转换成欧拉角,传给姿态PID控制器中进行姿态控制.

PID控制算法 先简单说明下四轴飞行器是如何飞行的,四轴飞行器的螺旋桨与空气发生相对运动,产生了向上的升力,当升力大于四轴的重力时四轴就可以起飞了。四轴飞行器飞行过程中如何保持水平:我们先假设一种理想状况:四个电机的转速是完全相同的是不是我们控制四轴飞行器的四个电机保持同样的转速,当转速超过一个临界点时(升力刚好抵消重力)四轴就可以平稳的飞起来了呢?答案是否定的,由于四个电机转向相同,四轴会发生旋转。我们控制四轴电机1和电机3同向,电机2电机4反向,刚好抵消反扭矩,巧妙的实现了平衡, 但是实际上由于电机和螺旋

相关文档
最新文档