全国统一高考数学试卷(文科)(全国一卷)复习课程
(完整word版)2019年高考数学试卷全国卷1文科真题附答案解析

2019年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设312iz i-=+,则||(z = ) A .2B .3C .2D .12.(5分)已知集合{1U =,2,3,4,5,6,7},{2A =,3,4,5},{2B =,3,6,7},则(UBA = )A .{1,6}B .{1,7}C .{6,7}D .{1,6,7}3.(5分)已知2log 0.2a =,0.22b =,0.30.2c =,则( ) A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5151(0.61822--≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm5.(5分)函数2sin ()cos x xf x x x+=+的图象在[π-,]π的大致为( ) A .B .C .D .6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,⋯,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A .8号学生B .200号学生C .616号学生D .815号学生7.(5分)tan 255(︒= ) A .23-B .23-+C .23D .23+8.(5分)已知非零向量a ,b 满足||2||a b =,且()a b b -⊥,则a 与b 的夹角为( ) A .6πB .3π C .23π D .56π 9.(5分)如图是求112122++的程序框图,图中空白框中应填入( )A .12A A=+ B .12A A=+C .112A A=+ D .112A A=+10.(5分)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130︒,则C 的离心率为( ) A .2sin40︒B .2cos40︒C .1sin50︒D .1cos50︒11.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则(bc= )A .6B .5C .4D .312.(5分)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2023年全国统一高考数学试卷(文科)(甲卷)含答案解析

绝密★启用前2023年全国统一高考数学试卷(文科)(甲卷)学校:___________姓名:___________班级:___________考号:___________注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上,写在试卷上无效。
3.考试结束后,本试卷和答题卡一并交回。
第I卷(选择题)一、单选题:本题共12小题,每小题5分,共60分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.设全集U={1,2,3,4,5},集合M={1,4},N={2,5},则N∪∁U M=( )A. {2,3,5}B. {1,3,4}C. {1,2,4,5}D. {2,3,4,5}2.5(1+i 3)(2+i)(2−i)=( )A. −1B. 1C. 1−iD. 1+i3.已知向量a⃗=(3,1),b⃗⃗=(2,2),则cos〈a⃗⃗+b⃗⃗,a⃗⃗−b⃗⃗〉=( )A. 117B. √ 1717C. √ 55D. 2√ 554.某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A. 16B. 13C. 12D. 235.记S n为等差数列{a n}的前n项和.若a2+a6=10,a4a8=45,则S5=( )A. 25B. 22C. 20D. 156.执行下边的程序框图,则输出的B =( )A. 21B. 34C. 55D. 897.设F 1,F 2为椭圆C :x 25+y 2=1的两个焦点,点P 在C 上,若PF 1⃗⃗⃗⃗⃗⃗⃗⃗⋅PF 2⃗⃗⃗⃗⃗⃗⃗⃗=0,则|PF 1|⋅|PF 2|=( ) A. 1 B. 2C. 4D. 58.曲线y =e xx+1在点(1,e 2)处的切线方程为( ) A. y =e4xB. y =e2xC. y =e 4x +e4D. y =e 2x +3e49.已知双曲线C :x 2a2−y 2b2=1(a >0,b >0)的离心率为√ 5,C 的一条渐近线与圆(x −2)2+(y −3)2=1交于A ,B 两点,则|AB|=( ) A. √ 55B. 2√ 55C. 3√ 55D. 4√ 5510.在三棱锥P −ABC 中,△ABC 是边长为2的等边三角形,PA =PB =2,PC =√ 6,则该棱锥的体积为( ) A. 1B. √ 3C. 2D. 311.已知函数f(x)=e −(x−1)2.记a =f(√ 22),b =f(√ 32),c =f(√ 62),则( )A. b >c >aB. b >a >cC. c >b >aD. c >a >b12.函数y =f(x)的图象由y =cos(2x +π6)的图象向左平移π6个单位长度得到,则y =f(x)的图象与直线y =12x −12的交点个数为( ) A. 1 B. 2 C. 3 D. 4第II 卷(非选择题)二、填空题:本题共4小题,每小题5分,共20分。
2003年全国统一高考文科数学试卷(全国新课程卷)

2003年普通高等学校招生全国统一考试(全国新课程卷)数学(文史类)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. (2003x <的解集是A.(0,2)B.(2,)+∞C.(2,4]D.(-∞,0)(2,)+∞2. (2003•全国新课程•文)抛物线2y a x =的准线方程是2y =,则a 的值为A.81B.18-C.8D.-83. (2003•全国新课程•文)=+-2)3(31i iA.i 4341+B.i 4341--C.i 2321+D.i 2321--4. (2003•全国新课程•文)已知(2x π∈-,0),54cos =x ,则tan 2x =A.247 B.724-C.724 D.247-5. (2003•全国新课程•文)等差数列{}n a 中,已知113a =,254a a +=,33n a =,则n 为 A.48 B.49 C.50 D.516. (2003•全国新课程•文)双曲线虚轴的一个端点为M ,两个焦点为1F 、2F,12F M F ∠120=︒,则双曲线的离心率为B.2C.3D.37. (2003•全国新课程•文)设函数12210()0xx f x xx -⎧-≤⎪=⎨⎪>⎩,若0()1f x >,则0x 的取值范围是A.(1-,1)B.(1-,)+∞C.(-∞,2)(0-,)+∞D.(-∞,1)(1-,)+∞8.(2003•全国新课程•文)O 是平面上一定点,A 、B 、C 是平面上不共线的三点,动点P 满足O P O A =+()([0||||A B A C A B A C λλ+∈,))∞+,则P 的轨迹一定通过A B C ∆的A.外心B.内心C.重心D.垂心9. (2003•全国新课程•文)函数1ln1x y x +=-,1(∈x ,)∞+的反函数为 A.11xx e y e -=+,0(∈x ,)∞+ B.11xx e y e +=-,0(∈x ,)∞+ C.11x x e y e -=+,-∞∈(x ,)0D.11x x e y e +=-,-∞∈(x ,)010. (2003•全国新课程•文)棱长为a 的正方体中,连结相邻面的中心,以这些线段为棱的八面体的体积为A.33aB.43aC.63aD.123a11. (2003•全国新课程•文)已知长方形的四个项点(0A ,0),(2B ,0),(2C ,1)和(0D ,1).一质点从A B 的中点0P 沿与A B 夹角为θ的方向射到B C 上的点1P 后,依次反射到C D ,D A 和A B 上的点2P ,3P 和4P (入射角等于反射角),设4P 与0P 重合,则tan θ= A.13B.25C.12D.112. (2003则此球的表面积为A.3πB.4πC.D.6π 二、填空题:本大题共4小题,每小题4分,共16分.答案填在题中横线上. 13. (2003•全国新课程•文)291()2x x-展开式中9x 的系数是_____________.14. (2003•全国新课程•文)某公司生产三种型号的轿车,产量分别为1200辆,6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取______、_________、__________辆. 15. (2003•全国新课程•文)在平面几何里,有勾股定理:“设A B C ∆的两边A B 、A C 互相垂直,则22A B A C +2B C =.”拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥A B C D -的三个侧面A B C 、A C D 、A D B 两两相互垂直,则_______________________________.” 16. (2003•全国新课程•文)将3种作物种植在如图5块试验田里,每块种植一种作物,种.(以数字作答)演算步骤.17. (2003•全国新课程•文)已知正四棱柱1111A B C D A B C D -,1A B =,12A A =,点E 为1C C 中点,点F 为1B D 中点.⑴证明:E F 为1B D 与1C C 的公垂线; ⑵求点1D 到面B D E 的距离.18. (2003•全国新课程•文)已知抛物线1C :22y x x =+和2C :2y x a =-+,如果直线l 同时是1C 和2C 的切线,称l 是1C 和2C 的公切线,公切线上两个切点之间的线段,称为公切线段.⑴a 取什么值时,1C 和2C 有且仅有一条公切线?写出此公切线的方程; ⑵若1C 和2C 有两条公切线,证明相应的两条公切线段互相平分.19. (2003•全国新课程•文)已知数列{}n a 满足11a =,113(2)n n n a a n --=+≥.⑴求2a ,3a ; ⑵证明:312nn a -=.20. (2003•全国新课程•文)有三种产品,合格率分别是0.90,0.95和0.95,现从三种产品中各抽取一件进行检验. ⑴求恰有一件不合格的概率;⑵求至少有两件不合格的概率.(精确到0.001)21. (2003•全国新课程•文)已知函数()sin ()(0f x x ωϕω=+>,0)ϕπ≤≤是R 上的偶函数,其图象关于点3(4M π,0)对称,且在区间[0,]2π上是单调函数.求ϕ和ω的值.22. (2003•全国新课程•文)已知常数0a >,向量(0c =,)a ,(1i =,0),经过原点O 以c i λ+为方向向量的直线与经过定点(0A ,)a 以2i c λ-为方向向量的直线相交于点P ,其中R λ∈.试问:是否存在两个定点E 、F ,使得||||P E P F +为定值.若存在,求出E 、F 的坐标;若不存在,说明理由.2003年天津市高考数学试卷(文科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1. (2003x <的解集是A.(0,2)B.(2,)+∞C.(2,4]D.(-∞,0)(2,)+∞【分析】由题意0x ≥且240x x -≥,可两边平方去根号,解可得答案. 【解答】解:由题意0x ≥且240x x -≥,解可得04x ≤≤,x <两边同时平方可得:224x x x -<,即2240x x ->, 解可得2x >或0x <,又由04x ≤≤,故其解集为24x <≤,即(2,4];故选:C .【点评】本题主要考查无理不等式的求解,解无理不等式关键是平方去根号,注意等价变形.还要注意选择题的特殊做法.2. (2003•全国新课程•文)抛物线2y a x =的准线方程是2y =,则a 的值为A.81 B.18-C.8D.-8【分析】首先把抛物线方程转化为标准方程2x m y =的形式,再根据其准线方程为4m y =-即可求之.【解答】解:抛物线2y a x =的标准方程是21x y a=,则其准线方程为124y a=-=,所以18a =-.故选:B .【点评】本题考查抛物线在标准方程下的准线方程形式. 3. (2003•全国新课程•文)=+-2)3(31i iA.i 4341+B.i 4341--C.i 2321+D.i 2321--【分析】化简复数的分母,然后复数的分子、分母同乘分母的共轭复数,即可求得结果.212122444--==⨯==--⨯,故选B .【点评】复数代数形式的混合运算,是基础题. 4. (2003•全国新课程•文)已知(2x π∈-,0),54cos =x ,则tan 2x =A.247B.724-C.724D.247-【分析】先根据c o s x ,求得sin x ,进而得到tan x 的值,最后根据二倍角公式求得tan 2x .【解答】解:∵4c o s 5x =,(2x π∈-,0),∴3sin 5x ==-∴s in 3ta n c o s 4x x x==-,∴232ta n 316242ta n 291ta n277116x x x -===-⨯=---. 故选D .【点评】本题主要考查了三角函数中的二倍角公式.属基础题. 5. (2003•全国新课程•文)等差数列{}n a 中,已知113a =,254a a +=,33n a =,则n 为 A.48 B.49 C.50 D.51【分析】先由等差数列的通项公式和已知条件解出d ,进而写出n a 的表达式,然后令33n a =,解方程即可.【解答】解:设{}n a 的公差为d . ∵113a =,254a a +=,∴114433d d +++=,即2543d +=,解得23d =.∴1221(1)3333n a n n =+-=-,令33n a =,即213333n -=,解得50n =.故选:C .【点评】本题主要考查了等差数列的通项公式1(1)n a a n d =+-,注意方程思想的应用. 6. (2003•全国新课程•文)双曲线虚轴的一个端点为M ,两个焦点为1F 、2F ,12F M F ∠120=︒,则双曲线的离心率为233【分析】根据双曲线对称性可知260O M F ∠=︒,在直角三角形2M O F 中可得22ta n O F c O M F O Mb∠==,进而可得b 和c的关系式,进而根据a =a 和b的关系式,最后代入离心率公式即可求得答案.【解答】解:根据双曲线对称性可知260O M F ∠=︒,∴22ta n O F c O M F O Mb ∠===c =,∴a ==,∴2c e a ===,故选:B .【点评】本题主要考查了双曲线的简单性质.本题利用了双曲线的对称性.7.(5分)设函数若f(x0)>1,则x0的取值范围是()A.(﹣1,1)B.(﹣1,+∞)C.(﹣∞,﹣2)∪(0,+∞) D.(﹣∞,﹣1)∪(1,+∞)【分析】将变量x0按分段函数的范围分成两种情形,在此条件下分别进行求解,最后将满足的条件进行合并.【解答】解:当x0≤0时,,则x0<﹣1,当x0>0时,则x0>1,故x0的取值范围是(﹣∞,﹣1)∪(1,+∞),故选:D.【点评】本题考查了分段函数已知函数值求自变量的范围问题,以及指数不等式与对数不等式的解法,属于常规题.8.(5分)O是平面上一定点,A、B、C是平面上不共线的三个点,动点P满足,λ∈[0,+∞),则P的轨迹一定通过△ABC的()A.外心 B.内心 C.重心 D.垂心【分析】先根据、分别表示向量、方向上的单位向量,确定+的方向与∠BAC的角平分线一致,再由可得到=λ(+),可得答案.【解答】解:∵、分别表示向量、方向上的单位向量∴+的方向与∠BAC的角平分线一致又∵,∴=λ(+)∴向量的方向与∠BAC的角平分线一致∴一定通过△ABC的内心故选:B.【点评】本题主要考查向量的线性运算和几何意义.属中档题.9.(5分)函数,x∈(1,+∞)的反函数为()A.,x∈(0,+∞)B.,x∈(0,+∞)C.,x∈(﹣∞,0)D.,x∈(﹣∞,0)【分析】本题考查反函数的概念、求反函数的方法、指数式与对数式的互化,求函数的值域等函数知识和方法;将,看做方程解出x,然后根据原函数的定义域x∈(1,+∞)求出原函数的值域,即为反函数的定义域.【解答】解:由已知,解x得,令,当x∈(1,+∞)时,m∈(1,+∞),则,∴函数,x∈(1,+∞)的反函数为,x∈(0,+∞)故选:B.【点评】这是一个基础性题,解题思路清晰,求解方向明确,所以容易解答;解答时注意两点,一是借助指数式和对数式的互化求x,二是函数,x∈(1,+∞)值域的确定,这里利用”常数分离法“和对数函数的性质推得.10.(5分)棱长为a的正方体中,连接相邻面的中心,以这些线段为棱的八面体的体积为()A.B.C.D.【分析】画出图形,根据题意求出八面体的中间平面面积,然后求出其体积.【解答】解:画出图就可以了,这个八面体是有两个四棱锥底面合在一起组成的.一个四棱锥的底面面积是正方体的一个面的一半,就是,高为,所以八面体的体积为:.故选:C.【点评】本题考查学生空间想象能力,逻辑思维能力,体积的计算公式,考查转化思想,是基础题.11.(5分)已知长方形的四个顶点A(0,0),B(2,0),C(2,1)和D(0,1),一质点从AB的中点P0沿与AB夹角为θ的方向射到BC上的点P1后,依次反射到CD、DA和AB上的点P2、P3和P4(入射角等于反射角)若P4与P0重合,则tgθ=()A.B.C.D.1【分析】可以画草图帮助理解,由于若P4与P0重合,故P2、P3也都是所在边的中点,根据对称性可知P0P1的斜率是,得到结果.【解答】解:由于若P4与P0重合,故P2、P3也都是所在边的中点,因为ABCD是长方形,根据对称性可知P0P1的斜率是,则tgθ=.故选:C.【点评】本题考查直线的斜率和对称性知识,由于ABCD是长方形,降低了题目难度,可以采用观察法求得结论.是基本方法的训练题目.12.(5分)棱长都为的四面体的四个顶点在同一球面上,则此球的表面积为()A.3πB.4πC.3D.6π【分析】本题考查的知识点是球的体积和表面积公式,由棱长都为的四面体的四个顶点在同一球面上,可求出内接该四面体的正方体棱长为1,又因为正方体的对角线即为球的直径,即球的半径R=,代入球的表面积公式,S球=4πR2,即可得到答案.【解答】解:借助立体几何的两个熟知的结论:(1)一个正方体可以内接一个正四面体;(2)若正方体的顶点都在一个球面上,则正方体的体对角线就是球的直径.则球的半径R=,∴球的表面积为3π,故选:A.【点评】棱长为a的正方体,内接正四面体的棱长为a,外接球直径等于长方体的对角线长a.二、填空题(共4小题,每小题4分,满分16分)13.(4分)在的展开式中,x3的系数是﹣(用数字作答)【分析】首先根据题意,写出的二项展开式,可得9﹣2r=3,解可得r=3,将其代入二项展开式,计算可得答案.【解答】解:根据题意,对于,有Tr+1=C99﹣r•x9﹣r•(﹣)r=(﹣)r•C99﹣r•x9﹣2r,令9﹣2r=3,可得r=3,当r=3时,有T4=﹣x3,故答案﹣.【点评】本题考查二项式定理的应用,注意系数与二项式系数的区别.14.(4分)某公司生产三种型号的轿车,产量分别为1200辆、6000辆和2000辆,为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这三种型号的轿车依次应抽取 6 辆、30 辆、10 辆.【分析】由题意先求出抽样比例即为,再由此比例计算出在三种型号的轿车抽取的数目.【解答】解:因总轿车数为9200辆,而抽取46辆进行检验,抽样比例为=,而三种型号的轿车有显著区别,根据分层抽样分为三层按比例,故分别从这三种型号的轿车依次应抽取6辆、30辆、10辆.故答案为:6,30,10.【点评】本题的考点是分层抽样,即保证样本的结构和总体的结构保持一致,按照一定的比例样本容量和总体容量的比值,在各层中进行抽取.15.(4分)在平面几何里,有勾股定理“设△ABC的两边AB,AC互相垂直,则AB2+AC2=BC2”,拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出正确的结论是:“设三棱锥A﹣BCD的三个侧面ABC、ACD、ADB两两互相垂直,则S△ABC2+S△ACD2+S△ADB2=S△BCD2 .”【分析】从平面图形到空间图形的类比【解答】解:建立从平面图形到空间图形的类比,于是作出猜想:S △ABC2+S △ACD2+S △ADB2=S △BCD2.故答案为:S △ABC2+S △ACD2+S △ADB2=S △BCD2.【点评】本题主要考查学生的知识量和知识的迁移类比等基本能力.7. (2003•全国新课程•文)将3种作物种植在如图5块试验田里,每块种植一种作物且相邻的试验田不能种植同一作物,不同的种植方法共有______种.(以数字作答)【分析】将3种作物种植在5块试验田里,且相邻的试验田不能种同一种作物,就是第一块可以种3种不同的植物,第二块与第一块不同,只能种2种,余下的几块都只能种2种,减去不合题意的,得到结果.【解答】解:将3种作物种植在5块试验田里每块种一种作物,且相邻的试验田不能种同一种作物,就是第一块可以种3种不同的植物,第二块与第一块不同,就只能种2种不同的植物,余下的几块都只能种2种不同的植物.这样会造成5块田只种2种植物的情况,∴共有3×2×2×2×2﹣22332222242C ⨯⨯⨯⨯-=故答案为:42【点评】本题考查排列组合的实际应用问题,这种问题在2003年的高考中考查过,是一个出现几率比较大的问题,注意题目条件中的限制条件. 三、解答题(共6小题,满分74分) 17.(12分)已知正四棱柱ABCD ﹣A1B1C1D1.AB=1,AA1=2,点E 为CC1中点,点F 为BD1中点.(1)证明EF 为BD1与CC1的公垂线; (2)求点D1到面BDE 的距离.【分析】(1)欲证明EF 为BD1与CC1的公垂线,只须证明EF 分别与为BD1与CC1垂直即可,可由四边形EFMC 是矩形→EF ⊥CC1.由EF ⊥面DBD1→EF ⊥BD1. (2)欲求点D1到面BDE 的距离,将距离看成是三棱锥的高,利用等体积法:VE ﹣DBD1=VD1﹣DBE .求解即得. 【解答】解:(1)取BD 中点M . 连接MC ,FM . ∵F 为BD1中点, ∴FM ∥D1D 且FM=D1D .又EC CC1且EC ⊥MC , ∴四边形EFMC 是矩形∴EF ⊥CC1.又FM ⊥面DBD1. ∴EF ⊥面DBD1.∵BD1⊂面DBD1.∴EF ⊥BD1. 故EF 为BD1与CC1的公垂线.(Ⅱ)解:连接ED1,有VE ﹣DBD1=VD1﹣DBE . 由(Ⅰ)知EF ⊥面DBD1, 设点D1到面BDE 的距离为d . 则.∵AA1=2,AB=1. ∴,, ∴.∴故点D1到平面DBE 的距离为.【点评】本小题主要考查线面关系和四棱柱等基础知识,考查空间想象能力和推理能力.8. (2003•全国新课标•文)已知抛物线1C :22y x x =+和2C :2y x a =-+,如果直线l 同时是1C 和2C 的切线,称l 是1C 和2C 的公切线,公切线上两个切点之间的线段,称为公切线段.⑴a 取什么值时,1C 和2C 有且仅有一条公切线?写出此公切线的方程; ⑵若1C 和2C 有两条公切线,证明相应的两条公切线段互相平分.【分析】⑴先分别求出各自在某点处的切线,然后根据是公切线建立等量关系,要使1C 和2C 有且仅有一条公切线,可利用判别式进行判定;⑵分别求出1C 和2C 有两条公切线段的中点坐标,发现两者相等,从而证明了相应的两条公切线段互相平分. 【解答】解:⑴函数22y x x =+的导数为22y x '=+,则曲线1C 在点1(P x ,2112)x x +的切线方程是:21111(2)(22)()y x x x x x -+=+- 即211(22)y x x x =+-①函数2y x a =-+的导数为2y x '=-,则曲线2C 在点2(Q x ,22)x a -+的切线方程是2222()2()y x a x x x --+=-- 即2222y x x x a =-++②如果直线l 是过P 和Q 的公切线, 则①式和②式都是l 的方程,故121x x +=-,2212x x a -=+.消去2x 得方程2112210x x a +++=.当判别式442(1)0a ∆=-⨯+=,即12a =-时解得112x =-,此时点P 与Q 重合.即当12a =-时1C 和2C 有且仅有一条公切线,由①得公切线方程为14y x =-.⑵证明:由⑴可知. 当0∆>即12a <-时1C 和2C 有两条公切线.设一条公切线上切点为:1(P x ,1)y ,2(Q x ,2)y . 其中P 在1C 上,Q 在2C 上,则有121x x +=-,2222121121112()2(1)1y y x x x a x x x a a +=++-+=+-++=-+线段P Q 的中点为1(2-,1)2a -+.同理,另一条公切线段P Q ''的中点也是1(2-,1)2a -+.所以公切线段P Q 和互相P Q ''平分.【点评】本小题主要考查导数、切线等知识及综合运用数学知识解决问题的能力,属于中档题.9. (2003•全国新课标•文)已知数列{}n a 满足11a =,113(2)n n n a a n --=+≥.⑴求2a ,3a ; ⑵证明:312nn a -=.【分析】⑴由11a =,113(2)n n n a a n --=+≥,当2n =时可求2a ,3n =时求得3a .⑵利用递推式构造113n n n a a ---=,然后通过累加可求出n a .【解答】解:⑴∵11a =,∴2314a =+=,233413a =+=; ⑵证明:由已知113(2)n n n a a n ---=≥故112()()n n n n n a a a a a ---=-+-+…211()a a a +-+1233n n --=++ (31312)n-++=,2n ≥当1n =时,也满足上式. ∴312nn a -=.【点评】本题是个基础题,主要考查由递推式求数列的项和累加法求数列的通项,注意验证1n =. 20.(12分)在三种产品,合格率分别是0.90,0.95和0.95,各抽取一件进行检验. (Ⅰ)求恰有一件不合格的概率; (Ⅱ)求至少有两件不合格的概率.(精确到0.001) 【分析】(1)要求恰有一件不合格的概率,我们根据P=P (A •B •)+P (A ••C )+P (•B •C ),根据已知条件,算出式中各数据量的值,代入公式即可求解. (2)我们可以根据至少有两件不合格的概率公式P=P (A ••)+P (•B •)+P (••C )+P (••),根据已知条件,算出式中各数据量的值,代入公式即可求解.也可以从对立事件出发根据(1)的结论,利用P=1﹣P (A •B •C )+P (A •B •)+P (A ••C )+P (•B •C )进行求解.【解答】解:设三种产品各抽取一件, 抽到合格产品的事件分别为A 、B 和C .(Ⅰ)P (A )=0.90,P (B )=P (C )=0.95. P =0.10,P =P =0.05. 因为事件A ,B ,C 相互独立, 恰有一件不合格的概率为P (A •B •)+P (A ••C )+P (•B •C )=P (A )•P (B )•P ()+P (A )•P ()•P (C )+P ()•P (B )•P (C ) =2×0.90×0.95×0.05+0.10×0.95×0.95=0.176 答:恰有一件不合格的概率为0.176;(Ⅱ)解法一:至少有两件不合格的概率为P (A ••)+P (•B •)+P (••C )+P (••) =0.90×0.052+2×0.10×0.05×0.95+0.10×0.052 =0.012.答:至少有两件不合格的概率为0.012. 解法二:三件产品都合格的概率为 P (A •B •C )=P (A )•P (B )•P (C ) =0.90×0.952 =0.812.由(Ⅰ)知,恰有一件不合格的概率为0.176, 所以至少有两件不合格的概率为 1﹣P (A •B •C )+0.176 =1﹣(0.812+0.176) =0.012.答:至少有两件不合格的概率为0.012.【点评】本小题主要考查相互独立事件概率的计算,运用数学知识解决问题的能力,要想计算一个事件的概率,首先我们要分析这个事件是分类的(分几类)还是分步的(分几步),然后再利用加法原理和乘法原理进行求解.10. (2003•全国新课程•文)已知函数()sin ()(0f x x ωϕω=+>,0)ϕπ≤≤是R 上的偶函数,其图象关于点3(4M π,0)对称,且在区间[0,]2π上是单调函数.求ϕ和ω的值.【分析】由()f x 是偶函数可得ϕ的值,图象关于点3(4M π,0)对称可得34ωπϕ+=k π,k Z ∈,可得ω的可能取值,结合单调函数可确定ω的值.【解答】解:由()f x 是偶函数,得2k πϕπ=+,k Z ∈,由0ϕπ≤≤可得2πϕ=,从而()sin ()c o s 2f x x x πωω=+=由()f x 的图象关于点3(4M π,0)对称,得342k πωππ+=,k Z ∈又0ω>,∴2(21)3k ω=-,*k N ∈又函数()f x 在区间[0,]2π上是单调函数,则122T ππω≤=,即2ω≤∴2(21)23k -≤,解得2k ≤当1k =时,23ω=,2()c o s3f x x =在[0,]2π上是减函数,满足题意; 当2k =时,2ω=,()c o s 2f x x =在[0,]2π上是减函数,满足题意;所以,综合得23ω=或2.【点评】本题主要考查三角函数的图象、单调性、奇偶性等基本知识,以及分析问题和推理计算能力.22.(14分)已知常数a>0,向量=(0,a),=(1,0),经过原点O以+λ为方向向量的直线与经过定点A(0,a)以﹣2λ为方向向量的直线相交于点P,其中λ∈R.试问:是否存在两个定点E、F,使得|PE|+|PF|为定值.若存在,求出E、F的坐标;若不存在,说明理由.【分析】根据和,求得+λ和﹣2λ进而可得直线OP和AP的方程,消去参数λ,得点P(x,y)的坐标满足方程,进而整理可得关于x和y的方程,进而看当时,方程为圆不符合题意;当时和当时,P的轨迹为椭圆符合两定点.【解答】解:∵=(0,a),=(1,0),∴+λ=(λ,a),﹣2λ=(1,﹣2λa).因此,直线OP和AP的方程分别为λy=ax和y﹣a=﹣2λax.消去参数λ,得点P(x,y)的坐标满足方程y(y﹣a)=﹣2a2x2.整理得.①因为a>0,所以得:(i)当时,方程①是圆方程,故不存在合乎题意的定点E和F;(ii)当时,方程①表示椭圆,焦点和为合乎题意的两个定点;(iii)当时,方程①也表示椭圆,焦点和为合乎题意的两个定点.【点评】本题主要考查平面向量的概念和计算,求轨迹的方法,椭圆的方程和性质,利用方程判定曲线的性质,曲线与方程的关系等解析几何的基本思想和综合解题能力.。
2022-2021年全国统一高考数学试卷(文科)(全国一卷)

全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的1.(5分)已知集合M={x|﹣1<x<3},N={x|﹣2<x<1},则M∩N=()A.(﹣2,1)B.(﹣1,1)C.(1,3)D.(﹣2,3)2.(5分)若tanα>0,则()A.sinα>0B.cosα>0C.sin2α>0D.cos2α>0 3.(5分)设z=+i,则|z|=()A.B.C.D.24.(5分)已知双曲线﹣=1(a>0)的离心率为2,则实数a=()A.2B.C.D.15.(5分)设函数f(x),g(x)的定义域都为R,且f(x)是奇函数,g(x)是偶函数,则下列结论正确的是()A.f(x)•g(x)是偶函数B.|f(x)|•g(x)是奇函数C.f(x)•|g(x)|是奇函数D.|f(x)•g(x)|是奇函数6.(5分)设D,E,F分别为△ABC的三边BC,CA,AB的中点,则+=()A.B.C.D.7.(5分)在函数①y=cos|2x|,②y=|cosx|,③y=cos(2x+),④y=tan(2x﹣)中,最小正周期为π的所有函数为()A.①②③B.①③④C.②④D.①③8.(5分)如图,网格纸的各小格都是正方形,粗实线画出的是一个几何体的三视图,则这个几何体是()A.三棱锥B.三棱柱C.四棱锥D.四棱柱9.(5分)执行如图的程序框图,若输入的a,b,k分别为1,2,3,则输出的M=()A.B.C.D.10.(5分)已知抛物线C:y2=x的焦点为F,A(x0,y0)是C上一点,AF=|x0|,则x0=()A.1B.2C.4D.811.(5分)设x,y满足约束条件且z=x+ay的最小值为7,则a=()A.﹣5B.3C.﹣5或3D.5或﹣3 12.(5分)已知函数f(x)=ax3﹣3x2+1,若f(x)存在唯一的零点x0,且x0>0,则实数a的取值范围是()A.(1,+∞)B.(2,+∞)C.(﹣∞,﹣1)D.(﹣∞,﹣2)二、填空题:本大题共4小题,每小题5分13.(5分)将2本不同的数学书和1本语文书在书架上随机排成一行,则2本数学书相邻的概率为.14.(5分)甲、乙、丙三位同学被问到是否去过A,B,C三个城市时,甲说:我去过的城市比乙多,但没去过B城市;乙说:我没去过C城市;丙说:我们三人去过同一城市;由此可判断乙去过的城市为.15.(5分)设函数f(x)=,则使得f(x)≤2成立的x的取值范围是.16.(5分)如图,为测量山高MN,选择A和另一座的山顶C为测量观测点,从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°,已知山高BC=100m,则山高MN=m.三、解答题:解答应写出文字说明.证明过程或演算步骤17.(12分)已知{a n}是递增的等差数列,a2,a4是方程x2﹣5x+6=0的根.(1)求{a n}的通项公式;(2)求数列{}的前n项和.18.(12分)从某企业生产的产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)在表格中作出这些数据的频率分布直方图;(2)估计这种产品质量指标的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?19.(12分)如图,三棱柱ABC﹣A1B1C1中,侧面BB1C1C为菱形,B1C的中点为O,且AO⊥平面BB1C1C.(1)证明:B1C⊥AB;(2)若AC⊥AB1,∠CBB1=60°,BC=1,求三棱柱ABC﹣A1B1C1的高.20.(12分)已知点P(2,2),圆C:x2+y2﹣8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.(1)求M的轨迹方程;(2)当|OP|=|OM|时,求l的方程及△POM的面积.21.(12分)设函数f(x)=alnx+x2﹣bx(a≠1),曲线y=f(x)在点(1,f (1))处的切线斜率为0,(1)求b;(2)若存在x0≥1,使得f(x0)<,求a的取值范围.请考生在第22,23,24题中任选一题作答,如果多做,则按所做的第一题记分。
2019年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2019年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设z=,则|z|=()A.2B.C.D.12.(5分)已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则B∩∁U A=()A.{1,6}B.{1,7}C.{6,7}D.{1,6,7} 3.(5分)已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是(≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是.若某人满足上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26cm,则其身高可能是()A.165cm B.175cm C.185cm D.190cm5.(5分)函数f(x)=在[﹣π,π]的图象大致为()A.B.C.D.6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是()A.8号学生B.200号学生C.616号学生D.815号学生7.(5分)tan255°=()A.﹣2﹣B.﹣2+C.2﹣D.2+8.(5分)已知非零向量,满足||=2||,且(﹣)⊥,则与的夹角为()A.B.C.D.9.(5分)如图是求的程序框图,图中空白框中应填入()A.A=B.A=2+C.A=D.A=1+10.(5分)双曲线C:﹣=1(a>0,b>0)的一条渐近线的倾斜角为130°,则C 的离心率为()A.2sin40°B.2cos40°C.D.11.(5分)△ABC的内角A,B,C的对边分别为a,b,c.已知a sin A﹣b sin B=4c sin C,cos A =﹣,则=()A.6B.5C.4D.312.(5分)已知椭圆C的焦点为F1(﹣1,0),F2(1,0),过F2的直线与C交于A,B两点.若|AF2|=2|F2B|,|AB|=|BF1|,则C的方程为()A.+y2=1B.+=1C.+=1D.+=1二、填空题:本题共4小题,每小题5分,共20分。
2021年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2021年普通高等学校招生全国统一考试(全国乙卷)数学(文)一、选择题1.已知全集{1,2,3,4,5}U =,集合{1,2}M =,{3,4}N =,则)(U C M N = ()A.{5}B.{1,2}C.{3,4}D.{1,2,3,4}2.设43iz i =+,则z =()A.34i --B.–34i +C.34i -D.34i+3.已知命题:,sin 1p x R x ∃∈<;命题||:,1x q x R e ∈∀≥,则下列命题中为真命题的是()A.p q ∧B.p q ⌝∧C.p q ∧⌝D.()p q ⌝∨答案:A 解析:根据正弦函数的值域sin [1,1]x ∈-,sin 1x <,故x R ∃∈,p 为真命题,而函数||x y e =为偶函数,且0x ≥时,1xy e =≥,故x R ∀∈,||1x y e =≥恒成立.则q 也为真命题,所以p q ∧为真,选A.4.函数()sin cos 33x xf x =+的最小正周期和最大值分别是()A.3π和B.3π和2C.6π和D.6π和2答案:C解析:())34x f x π=+max ()f x =,2613T ππ==.故选C.5.若,x y 满足约束条件2,3,4,y x y x y ≤≤+≥⎧⎪-⎨⎪⎩则3z x y =+的最小值为()A.18B.10C.6D.4答案:C 解析:根据约束条件可得图像如下,3z x y =+的最小值,即3y x z =-+,y 轴截距最小值.根据图像可知3y x z =-+过点(1,3)B 时满足题意,即min 336z =+=.6.225cos cos 1212ππ-=()A.12B.33C.22D.32答案:D 解析:2222223()sin cos 25cos cos cos cos cos 12121212121262ππππππππ-=-=--==∴选D.7.在区间1(0,)2随机取1个数,则取到的数小于13的概率为()A.34B.23C.13D.16答案:B解析:在区间1(0,2随机取1个数,可知总长度12d =,取到的数小于13,可知取到的长度范围13d '=,根据几何概型公式123132d p d '===,∴选B.8.下列函数中最小值为4的是()A.224y x x =++B.4|sin ||sin |y x x =+C.222x xy -=+D.4n ln l y x x=+答案:C 解析:对于A,22224213(1)33y x x x x x =++=+++=++≥.不符合,对于B,4|sin ||sin |y x x =+,令|sin |[0,1]t x =∈,∴4y t t =+,根据对勾函数min 145y =+=不符合,对于C,242222xxx x y -==++,令20xt =>,∴4224y t t =+≥=⨯=,当且仅当2t =时取等,符合,对于D,4n ln l y x x =+,令ln t x R =∈,4y t t=+.根据对勾函数(,4][4,)y ∈-∞-+∞ ,不符合.9.设函数1(1)xf x x-=+,则下列函数中为奇函数的是()A.1()1f x --B.1()1f x -+C.1()1f x +-D.1()1f x ++答案:B 解析:12()111x f x x x-==-+++,()f x 向右平移一个单位,向上平移一个单位得到2()g x x=为奇函数.所以选B.10.在正方体1111ABCD A B C D -中,P 为11B D 的中点,则直线PB 与1AD 所成的角为A.2πB.3πC.4πD.6π答案:D 解析:做出图形,11//AD BC ,所以1PBC ∠为异面直线所成角,设棱长为1.1BC =,122B P =,122PC =,62BP =.222111131222cos 22BC BP C P PBC BP BC +-+-∠==⋅,即16PBC π∠=,故选D.11.设B 是椭圆C :2215x y +=的上顶点,点P 在C 上,则PB 的最大值为A.5265D.2答案:A 解析:方法一:由22:15x C y +=,(0,1)B 则C 的参数方程:5sin x y θθ⎧=⎪⎨=⎪⎩.22||(sin 1)(5cos )PB θθ=-+24sin 2sin 6θθ=--+212554(sin )442θ=-++.∴max 5||2PB =,故选A.方法二:设00(,)P x y ,则220001([1,1])5x y y +=∈-①,(0,1)B .因此22200||(1)PB x y =+-②将①式代入②式化简得:22012525||4()444PB y =-++≥,当且仅当014y =-时||PB 的最大值为52,故选A.12.设0a ≠,若x a =为函数2()()()f x a x a x b =--的极大值点,则A.a b <B.a b >C.2ab a <D.2ab a >答案:D 解析:2()2()()()()(32)f x a x a x b a x a a x a x b a '=--+-=---当0a >时,原函数先增再减后增.原函数在()0f x '=的较小零点时取得极大值.即23a b a +<,即a b <,∴2a ab <.当0a <时,原函数先减再增后减.原函数在()0f x '=的较大零点时取得极大值.即23a b a +>,a b >,2a ab <,故选D.二、填空题13.已知向量(2,5)a = ,(,4)b λ= ,若//a b,则λ=.答案:85解析:由已知//a b 可得82455λλ⨯=⇒=.14.双曲线22145x y -=的右焦点到直线280x y +-=的距离为.答案:解析:22145x y -=的右焦点为(3,0),到直线280x y +-=的距离d ==.15.记ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,面积为,60B =︒,223a c ac +=,则b =.答案:解析:由面积公式1sin 2S ac B ==,且60B =︒,解得4ac =,又由余弦定理2222cos b a c ac B =+-,223a c ac +=,且0b >解得b =.16.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为(写出符合要求的一组答案即可).答案:②⑤或③④解析:由高度可知,侧视图只能为②或③.侧视图为②,如图(1),平面PAC ⊥平面ABC ,PA PC ==,BA BC =,2AC =,俯视图为⑤.俯视图为③,如图(2),PA ⊥平面ABC ,1PA =,AC AB =,2BC =,俯视图为④.17.某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:旧设备9.810.310.010.29.99.810.010.110.29.7新设备10.110.410.110.010.110.310.610.510.410.5旧设备和新设备生产产品的该项指标的样本平均数分别记为x 和y ,样本方差分别记为21s 和22s .(1)求x ,y ,21s ,22s ;(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果y x -≥,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).答案:见解析解析:9.810.31010.29.99.81010.110.29.71010x ++++++++==+;10.110.410.11010.110.310.610.510.410.510.310y ++++++++==+.211(0.040.090.040.010.040.010.040.09)10s =+++++++10.360.03610=⨯=221(0.040.010.040.090.040.090.040.010.04)10s =++++++++10.40.0410=⨯=.(2)10.3100.3y x -=-===∵则0.3=>=,所以可判断新设备生产产品的该项指标的均值较旧设备有显著提高;没有显著提高.18.如图,四棱锥P ABCD -的底面是矩形,PD ⊥底面ABCD ,M 为BC 的中点,且PB AM ⊥.(1)证明:平面PAM ⊥平面PBD ﹔(2)若1PD DC ==,求四棱锥P ABCD -的体积.答案:见解析解析:19.设{}n a 是首项为1的等比数列,数列{}n b 满足3n n na b =.已知1a ,23a ,39a ,成等差数列.(1)求{}n a 和{}n b 的通项公式;(2)记n S ,和n T 分别为{}n a 和{}n b 的前n 项和.证明:2n n S T <.答案:见解析解析:设{}n a 的公比为q ,则1n n a q -=,因为1a ,23a ,39a 成等差数列,所以21923q q +=⨯,解得13q =,故11()3n n a -=,11313(1)12313n n n S -==--.又3n n n b =,则1231123133333n n n n n T --=+++++ ,两边同乘13,则234111231333333n n n n n T +-=+++++ ,两式相减,得23412111113333333n n n n T +=+++++- ,即1111(1)1133(1)332333121n n n n n n n T ++-=-=---,整理得31323(14323423n n n n n n T +=--=-⨯⨯,323314322())04232323n n n n nn n T S ++-=---=-<⨯⨯,故2n n S T <.20.已知抛物线C :22(0)y px p =>的焦点F 到准线的距离为2.(1)求C 的方程,(2)已知O 为坐标原点,点P 在C 上,点Q 满足9PQ QF = ,求直线OQ 斜率的最大值.答案:见解析解析:(1)由焦点到准线的距离为p ,则2p =.抛物线c 的方程:24y x =.(2)设点200(,)4y P y ,(,)Q Q Q x y ,(1,0)F .∵9PQ QF = .∴2022000009499(,)9(1,)4104910Q Q Q Q Q Q Q Q Q Q y y x x x y x y y x y y y x y y ⎧+⎪⎧-=-=⎪⎪--=--⇒⇒⎨⎨⎪⎪-=-⎩=⎪⎩则020*********QOQ Q y y k y y x y ===≤++.∴直线OQ 斜率的最大值为13.21.已知函数32()1f x x x ax =-++.(1)讨论()f x 的单调性;(2)求曲线()y f x =过坐标原点的切线与曲线()y f x =的公共点的坐标.答案:见解析解析:(1)2()32f x x x a'=-+(i)当4120a ∆=-≤,即13a ≥时,()0f x '≥恒成立,即()f x 在()f x 在x ∈R 上单调递增.(ii)当4120∆=->,即13a <时,()0f x '=解得,11133x -=,21133x +=.∴()f x 在113(,)3a --∞,113()3a -+∞单调递增,在113113()33a a --++单调递减,综上所述:当13a ≥时,()f x 在R 上单调递增;当13a <时,()f x 在113113()33a a -++单调递减.(2)设可原点切线的切点为32(,1)t t t at -++,切线斜率2()32k f t t t a '==-+.又321t t at k t -++=,可得322132t t at t t a t-++=-+.化简得2(1)(21)0t t t -++=,即1t =.∴切点为(1,1)a +,斜率1k a =+,切线方程为(1)y a x =+,将(1)y a x =+,321y x x ax =-++联立可得321(1)x x ax a x -++=+,化简得2(1)(1)0x x -+=,解得11x =,21x =-.∴过原点的切线与()y f x =公共点坐标为(1,1)a +,(1,1)a ---.22.在直角坐标系xOy 中,C 的圆心为)(2,1C ,半径为1.(1)写出C 的一个参数方程;(2)过点)(4,1F 作C 的两条切线.以坐标原点为极点,x 轴正半轴为极轴建立坐标系,求这两条切线的极坐标方程.答案:见解析解析:(1)C 的参数方程为2cos 1sin x y θθ=+⎧⎨=+⎩(θ为参数)(2)C 的方程为22(2)(1)1x y -+-=①当直线斜率不存在时,直线方程为4x =,此时圆心到直线距离为2r >,舍去;②当直线斜率存在时,设直线方程为1(4)y k x -=-,化简为410kx y k --+=,此时圆心(2,1)C 到直线的距离为1d r ===,化简得2||k =,两边平方有2241k k =+,所以33k =±代入直线方程并化简得40x +=或40x +-=化为极坐标方程为5cos sin 4sin()46πρθθρθ-=-⇔+=-或cos sin 4sin()46πρθθρθ+=++=+.23.已知函数()|||3|f x x a x =-++.(1)当1a =时,求不等式()6f x ≥的解集;(2)若()f x a >-,求a 的取值范围.答案:见解析解析:当1a =时,()6|1||3|6f x x x ≥⇔-++≥,当3x ≤-时,不等式136x x ⇔---≥,解得4x ≤-;当31x -<<时,不等式136x x ⇔-++≥,解得x ∈∅;当1x ≥时,不等式136x x ⇔-++≥,解得2x ≥.综上,原不等式的解集为(,4][2,)-∞-+∞ .(2)若()f x a >-,即min ()f x a >-,因为()|||3||()(3)||3|f x x a x x a x a =-++≥--+=+(当且仅当()(3)0x a x -+≤时,等号成立),所以min ()|3|f x a =+,所以|3|a a +>-,即3a a +<或3a a +>-,解得3(,)2a ∈-+∞.。
2022年全国新高考1卷数学真题及答案解析

2022年全国新高考1卷数学真题及答案解析今年的高考数学试卷坚持思想性与科学性的统一,从中华优秀传统文化、社会经济发展、科技发展与进步等方面设置了真实情境。
下面是小编为大家收集的关于2022年全国新高考1卷数学真题及答案解析。
希望可以帮助大家。
2022年全国新高考1卷数学真题2022年全国新高考1卷数学答案解析高考数学备考六大复习建议01 函数与导数近几年高考中,函数类试题一般会出现2道选择题、2道填空题、1道解答题。
其中,选择题和填空题经常考的知识点更偏向反函数,函数的定义域和值域,函数的单调性、奇偶性、周期性,函数的图象、导数的概念和应用等,这些知识点要着重复习。
而在分值颇高的解答题中,通常会考查考生对于函数与导数、不等式运用等考点的掌握运用情况。
掌握题目背后的知识点,建立自己的答题思路是非常重要的。
值得考生们注意的是,函数和导数的考查,经常会与其他类型的题目交叉出现,所以需要重视交叉考点问题的训练。
02 三角函数、平面向量和解三角形三角函数是每年必考题,虽是重点但难度较小。
哪怕是基础一般的同学,经过二轮复习的千锤百炼,都可以掌握这部分内容。
所以,三角函数类题目争取一分都不要丢!从题型来看,会覆盖选择题、填空题、解答题三大类型。
大题会出现在二卷解答题的第一个,也证明此类型题目的难度比较小。
在三角函数的部分,高三考生需要熟练的知识点有不少。
(1)掌握三角变换的所有公式,理解公式的意义、应用场景、考查形式、使用方法等。
(2)熟悉三角变换常用的方法——化弦法、降幂法、角的变换法等。
应用以上方法进行三角函数式的求值、化简、证明。
(3)掌握三角变换公式在三角形中应用的特点,并能结合三角形的公式解决一些实际问题。
(4)熟练掌握正弦函数、余弦函数、正切函数、余切函数的性质,并能用它研究复合函数的性质。
同时,也要掌握这些函数图象的形状、特点。
(5)掌握三角函数不等式口诀:sinα上正下负;cosα右正左负;tanα奇正偶负。
2017年全国统一高考数学试卷(文科)(新课标ⅰ)(含解析版)

2017年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则( )A.A∩B={x|x<}B.A∩B=∅C.A∪B={x|x<}D.A∪B=R2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是( )A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数3.(5分)下列各式的运算结果为纯虚数的是( )A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是( )A.B.C.D.5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x 轴垂直,点A的坐标是(1,3),则△APF的面积为( )A.B.C.D.6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是( )A.B.C.D.7.(5分)设x,y满足约束条件,则z=x+y的最大值为( )A.0B.1C.2D.38.(5分)函数y=的部分图象大致为( )A.B.C.D.9.(5分)已知函数f(x)=lnx+ln(2﹣x),则( )A.f(x)在(0,2)单调递增B.f(x)在(0,2)单调递减C.y=f(x)的图象关于直线x=1对称D.y=f(x)的图象关于点(1,0)对称10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入( )A.A>1000和n=n+1B.A>1000和n=n+2C.A≤1000和n=n+1D.A≤1000和n=n+211.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c=,则C=( )A.B.C.D.12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M满足∠AMB=120°,则m的取值范围是( )A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞)C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年全国统一高考数学试卷(文科)(全
国一卷)
2017年全国统一高考数学试卷(文科)(新课标Ⅰ)
一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个
选项中,只有一项是符合题目要求的。
1.(5分)已知集合A={x|x<2},B={x|3﹣2x>0},则()A.A∩B={x|x<}B.A∩B=∅
C.A∪B={x|x<}D.A∪B=R
2.(5分)为评估一种农作物的种植效果,选了n块地作试验田.这n块地的亩产量(单位:kg)分别是x1,x2,…,x n,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是()
A.x1,x2,…,x n的平均数B.x1,x2,…,x n的标准差
C.x1,x2,…,x n的最大值D.x1,x2,…,x n的中位数
3.(5分)下列各式的运算结果为纯虚数的是()
A.i(1+i)2B.i2(1﹣i)C.(1+i)2D.i(1+i)4.(5分)如图,正方形ABCD内的图形来自中国古代的太极图.正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是()
A.B.C.D.
5.(5分)已知F是双曲线C:x2﹣=1的右焦点,P是C上一点,且PF与x轴垂直,点A的坐标是(1,3),则△APF的面积为()
A.B.C.D.
6.(5分)如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()
A.B.
C.D.
7.(5分)设x,y满足约束条件,则z=x+y的最大值为()A.0 B.1 C.2 D.3
8.(5分)函数y=的部分图象大致为()
A.B.
C.D.
9.(5分)已知函数f(x)=lnx+ln(2﹣x),则()
A.f(x)在(0,2)单调递增
B.f(x)在(0,2)单调递减
C.y=f(x)的图象关于直线x=1对称
D.y=f(x)的图象关于点(1,0)对称
10.(5分)如图程序框图是为了求出满足3n﹣2n>1000的最小偶数n,那么在和两个空白框中,可以分别填入()
A.A>1000和n=n+1 B.A>1000和n=n+2
C.A≤1000和n=n+1 D.A≤1000和n=n+2
11.(5分)△ABC的内角A,B,C的对边分别为a,b,c,已知sinB+sinA (sinC﹣cosC)=0,a=2,c=,则C=()
A.B.C.D.
12.(5分)设A,B是椭圆C:+=1长轴的两个端点,若C上存在点M 满足∠AMB=120°,则m的取值范围是()
A.(0,1]∪[9,+∞)B.(0,]∪[9,+∞) C.(0,1]∪[4,+∞)D.(0,]∪[4,+∞)
二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)已知向量=(﹣1,2),=(m,1),若向量+与垂直,则m=.
14.(5分)曲线y=x2+在点(1,2)处的切线方程为.
15.(5分)已知α∈(0,),tanα=2,则cos(α﹣)=.16.(5分)已知三棱锥S﹣ABC的所有顶点都在球O的球面上,SC是球O的直径.若平面SCA⊥平面SCB,SA=AC,SB=BC,三棱锥S﹣ABC的体积为9,则球O的表面积为.
三、解答题:共70分。
解答应写出文字说明、证明过程或演算过程.第17~
21题为必选题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:共60分。
17.(12分)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.
(1)求{a n}的通项公式;
(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.
18.(12分)如图,在四棱锥P﹣ABCD中,AB∥CD,且∠BAP=∠CDP=90°.
(1)证明:平面PAB⊥平面PAD;
(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P﹣ABCD的体积为,求该四棱锥的侧面积.
19.(12分)为了监控某种零件的一条生产线的生产过程,检验员每隔30min 从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:
抽取次序 1 2 3 4 5 6 7 8 零件尺寸9.95 10.12 9.96 9.96 10.01 9.92 9.98 10.04 抽取次序9 10 11 12 13 14 15 16 零件尺寸10.26 9.91 10.13 10.02 9.22 10.04 10.05 9.95
经计算得=x i=9.97,s==≈0.212,≈18.439,(x i﹣)(i﹣8.5)=﹣2.78,其中x i为抽取的第i个零件的尺寸,i=1,2, (16)
(1)求(x i,i)(i=1,2,…,16)的相关系数r,并回答是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(若|r|<0.25,则可以认为零件的尺寸不随生产过程的进行而系统地变大或变小).
(2)一天内抽检零件中,如果出现了尺寸在(﹣3s,+3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.
(ⅰ)从这一天抽检的结果看,是否需对当天的生产过程进行检查?
(ⅱ)在(﹣3s,+3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)
附:样本(x i,y i)(i=1,2,…,n)的相关系数
r=,≈0.09.
20.(12分)设A,B为曲线C:y=上两点,A与B的横坐标之和为4.(1)求直线AB的斜率;
(2)设M为曲线C上一点,C在M处的切线与直线AB平行,且AM⊥BM,求直线AB的方程.
21.(12分)已知函数f(x)=e x(e x﹣a)﹣a2x.
(1)讨论f(x)的单调性;
(2)若f(x)≥0,求a的取值范围.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
[选修4-4:坐标系与参数方程选讲](10分)22.(10分)在直角坐标系xOy中,曲线C的参数方程为,(θ为参数),直线l的参数方程为,(t为参数).
(1)若a=﹣1,求C与l的交点坐标;
(2)若C上的点到l距离的最大值为,求a.
[选修4-5:不等式选讲](10分)
23.已知函数f(x)=﹣x2+ax+4,g(x)=|x+1|+|x﹣1|.
(1)当a=1时,求不等式f(x)≥g(x)的解集;
(2)若不等式f(x)≥g(x)的解集包含[﹣1,1],求a的取值范围.。