2019年全国统一高考数学试卷(文科)(全国一卷)
(完整word版)2019年高考数学试卷全国卷1文科真题附答案解析

2019年全国统一高考数学试卷(文科)(新课标Ⅰ)一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(5分)设312iz i-=+,则||(z = ) A .2B .3C .2D .12.(5分)已知集合{1U =,2,3,4,5,6,7},{2A =,3,4,5},{2B =,3,6,7},则(UBA = )A .{1,6}B .{1,7}C .{6,7}D .{1,6,7}3.(5分)已知2log 0.2a =,0.22b =,0.30.2c =,则( ) A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.(5分)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是5151(0.61822--≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A .165cmB .175cmC .185cmD .190cm5.(5分)函数2sin ()cos x xf x x x+=+的图象在[π-,]π的大致为( ) A .B .C .D .6.(5分)某学校为了解1000名新生的身体素质,将这些学生编号1,2,⋯,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A .8号学生B .200号学生C .616号学生D .815号学生7.(5分)tan 255(︒= ) A .23-B .23-+C .23D .23+8.(5分)已知非零向量a ,b 满足||2||a b =,且()a b b -⊥,则a 与b 的夹角为( ) A .6πB .3π C .23π D .56π 9.(5分)如图是求112122++的程序框图,图中空白框中应填入( )A .12A A=+ B .12A A=+C .112A A=+ D .112A A=+10.(5分)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130︒,则C 的离心率为( ) A .2sin40︒B .2cos40︒C .1sin50︒D .1cos50︒11.(5分)ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则(bc= )A .6B .5C .4D .312.(5分)已知椭圆C 的焦点为1(1,0)F -,2(1,0)F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
(精校版)2019年全国卷Ⅰ文数高考试题文档版(含答案)_最新修正版

绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是a b c <<a c b <<c a b <<b c a <<A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x++在[-π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2-3B .-2+3C .2-3D .2+38.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
完整)2019年高考文科数学全国1卷(附答案)

完整)2019年高考文科数学全国1卷(附答案)12B-SX-xxxxxxx2019年普通高等学校招生全国统一考试文科数学全国I卷注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.设z=(3-i)/(1+2i),则z=(B)2.2.已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则A∩B={2,3,4,5},所以A'∩B'={1,6,7},故选项为(B){1,7}。
3.已知a=log0.2 2,b=2,c=0.20.3,则a<c<b,故选项为(D)b<c<a。
4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是黄金分割比例,即(5-1)/2≈0.618.最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是黄金分割比例。
设身高为x,则x/(5x/8)= (5-1)/2,解得x=1.85m,即(C)185cm。
5.函数f(x)=sinx+x/cosx+x^2在[-π,π]的图像大致为(C)。
注:文章中的格式错误已删除,明显有问题的段落已删除,每段话进行了小幅度的改写。
已删除明显有问题的段落。
6.某学校为了解1,000名新生的身体素质,采用系统抽样方法等距抽取100名学生进行体质测验。
如果46号学生被抽到,那么下面4名学生中被抽到的是哪个?解答:由于是等距抽取,因此每隔10个学生抽取一个,因此46号学生是第5组中的学生。
要求下面4名学生中被抽到的,就是在第5组中再选4个学生,因此答案是C.616号学生。
(精校版)2019年全国卷Ⅰ文数高考试题文档版(含答案)

绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =ðA .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x++在[—π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2-3B .-2+3C .2-3D .2+38.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
(word完整版)2019年高考文科数学全国1卷(附答案).docx

_ - __ - _ __-__:-号-学-__-___ - ___-______封__密___ - _:-名姓---班 - _ __-___ - _年 -______封_密__-___ - _ __-___ - ___-___ - ___ -:-12B-SX-0000022绝密★启用前2019 年普通高等学校招生全国统一考试文科数学全国I卷本卷共 23 小,分150 分,考用120 分(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、:本共12 小,每小 5 分,共 60 分。
在每个小出的四个中,只有一是符合目要求的。
1.z3i, z =12iA . 2B .3C.2 D .12.已知集合U1,2,3,4,5,6,7,A2,3,4,5,B2,3,6,7 ,BI e AUA .1,6B .1,7C.6,7D.1,6,7.已知 a0.20.3,3A . a b cB . a c bC. c a b D . b c a4.古希腊期,人最美人体的至肚的度与肚至足底的度之比是5 1(5 1≈0.618,称黄金分割比例),著名22的“断臂斯”便是如此.此外,最美人体的至咽喉的度与咽喉至肚的度之比也是5 1.若某人足2上述两个黄金分割比例,且腿105cm,至脖子下端的度26 cm,其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm5.函数 f(x)=sin x x2在 [ —π,π]的像大致cos x xA. B.C. D.6.某学校了解 1 000 名新生的身体素,将些学生号1, 2,⋯, 1 000,从些新生中用系抽方法等距抽取100 名学生行体.若 46 号学生被抽到,下面 4 名学生中被抽到的是A .8 号学生B . 200 号学生C. 616 号学生 D .815 号学生7.tan255 =°12B-SX-00000228.已知非零向量a ,b 满足 a = 2b ,且( a –b )b ,则 a 与 b 的夹角为A .ππ 2 π5 π6B .C .D .33619. 如图是求 21的程序框图,图中空白框中应填入2 12A. A=12 AB. A= 21AC. A=11 2 AD. A= 112 Ax 2 y 2 1(a 0,b 0) 的一条渐近线的倾斜角为130 °,则 C 的10.双曲线 C :b 2a 2 离心率为A . 2sin40 °B . 2cos40 °C .1 1 D .cos50sin5011. △ABC 的内角 A , B , C 的对边分别为 a , b ,c ,已知 asinA - bsinB=4 csinC ,cosA=- 1 ,则 b=4 cA . 6B . 5C . 4D . 312.已知椭圆 C 的焦点为 F 1( 1,0),F 2(1,0),过 F 2 的直线与 C 交于 A ,B 两点 .若| AF | 2| F B|, | AB| | BF |,则 C 的方程为22 1A . x 2 y 21B. x 2 y 21232x 2 y 2 1x 2 y 2 1C .3D .445二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2019年全国1卷文数高考试题(含答案)(可编辑修改word版)

A.
B.
C.
D.
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
13.曲线
在点
处的切线方程为___________.
14.记 Sn 为等比数列{an}的前 n 项和.若
,则 S4=___________.
15.函数
的最小值为___________.
16.已知∠ACB=90°,P 为平面 ABC 外一点,PC=2,点 P 到∠ACB 两边 AC,BC 的距离
记 Sn 为等差数列{an}的前 n 项和,已知 S9=-a5. (1)若 a3=4,求{an}的通项公式; (2)若 a1>0,求使得 Sn≥an 的 n 的取值范围. 19.(12 分)
如图,直四棱柱 ABCD–A1B1C1D1 的底面是菱形,AA1=4,AB=2,∠BAD=60°, E,M,N 分别是 BC,BB1,A1D 的中点.
绝密★启用前
2019 年普通高等学校招生全国统一考试
文科数学 1
注意事项: 1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。 2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。如
需改动,用橡皮擦干净后,再选涂其他答案标号。回答非选择题时,将答案写在答题卡上。 写在本试卷上无效。
5.函数 f(x)=
在[-π,π]的图像大致为( )
A.
B.
C.
D.
6.某学校为了解 1 000 名新生的身体素质,将这些学生编号为 1,2,…,1 000,从这些
新生中用系统抽样方法等距抽取 100 名学生进行体质测验.若 46 号学生被抽到,则下面
4 名学生中被抽到的是( )
A.8 号学生 B.200 号学生 C.616 号学生 D.815 号学生
(精校版)2019年全国卷Ⅰ文数高考真题文档版(含答案)

绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是a b c <<a c b <<c a b <<b c a <<A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x++在[-π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2-3B .-2+3C .2-3D .2+38.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
(精校版)2019年全国卷Ⅰ文数高考试题文档版(含答案)

绝密★启用前2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2B .3C .2D .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =ðA .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是512-.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是a b c <<a c b <<c a b <<b c a <<A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x++在[—π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2-3B .-2+3C .2-3D .2+38.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绝密★启用前
2019年全国统一高考数学试卷(文科)
(全国新课标I )
、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有 项是符合题目要求的。
5 1
(一-0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此•此外,最美人
2
体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是
5
1
.若某人满足上述两个黄金
2
分割比例,且腿长为 105cm ,头顶至脖子下端的长度为
26 cm ,则其身咼可能是
A . 165 cm
B . 175 cm sin x x
5.函数f(x )= ---------------- 在[—n n 的图像大致为
cosx x
A . 2
B . 3
C . p. 2
D . 1
2.已知集合
U 123,4,5,6,7
,A 2,3,4,5 ,B 2,3,6,7
,则 B [u A
A .
1,6
B .
1,7
C .
6,7 D .
1,6,7
3.已知a log 2 0.2,b 20.2
,c 0.3
0.2 , 则
A . a b
c
B . a c b
C . cab
D . b c a
古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是
2i ,则 Z =
设 z
-3 i
1
1.
4. C . 185 cm D . 190 cm
6.
7.
9.
A .1
—IF0T,
C .
I
■ ,
某学校为了解1 000名新生的身体素质,将这些学生编号为1, 2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验•若46号学生被抽到,则下面4名学生中被抽到的是
A. 8号学生 B . 200号学生C. 616号学生D. 815号学生
tan255
°
A . - 2- ,3
B . - 2+、32+ .3
已知非零向量a,
如图是求
1
A . A= —
2 A
2
X
10 .双曲线C: -7
a
b 满足a =2 b ,且(a - b)b,贝U a与b的夹角为
2
1的程序框图,图中空白框中应填入
B . A=2 —
A
b2
1
C . A=-
1 2A
A=1 —
2A
1(a 0,b 0)的一条渐近线的倾斜角为130 :则C的离心率为
12 .已知椭圆
C 的焦点为 片(1,0), F 2(1,0),过F 2的直线与 C 交于A , B 1 AF 2 1 2 1 F 2B 1
, 1 AB 1 1 BF 1 1,则 C 的方程为
2
f x D.— 5
{a n }的前n 项和若a 1 1, S 3 -,则S 4=
4
3 n
15.函数f(x) sin(2x
) 3cos x 的最小值为 2
16. 已知/ ACB=90°, P 为平面 ABC 外一点,PC=2,点P 到/ACB 两边AC , BC 的距离
均为.3,那么P 到平面ABC 的距离为
三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第
17~21题为必考题,
每个试题考生都必须作答。
第 22、23题为选考题,考生根据要求作答。
(一)必考题:60分。
17. ( 12 分)
某商场为提高服务质量, 随机调查了 50名男顾客和50名女顾客,每位顾客对该商场的 服务给出满意或不满意的评价,得到下面列联表:
1
分别估计男、女顾客对该商场服务满意的概率;
2
能否有95%的把握认为男、女顾客对该商场服务的评价有差异?
A . 2sin40
B . 2cos40
C .亠
sin50
11. △ ABC 的内角
A ,
B ,
C 的对边分别为
1 D . cos50
1 a , b , c, 已知 asinA —bsinB=4csinC , cosA= ------- ,
4
两点
二、填空题:本题共 4小题,每小题5分,共20分。
13.曲线 y 3(x 2
x
x)e 在点(0,0)处的切线方程为
14.记S n 为等比数列
2
附:K2n(ad be)
(a b)(e d)(a e)(b d)
P (K2冰) 0.0500.0100.001
k 3.841 6.63510.828
18. ( 12 分)
记S n为等差数列{a n}的前n项和,已知S9= —a5.
(1)若a3=4,求{a n}的通项公式;
(2)若a i>0,求使得S n^a n的n的取值范围.
19. ( 12 分)
如图,直四棱柱ABCD - A1BQ1D1 的底面是菱形,AA1=4, AB=2 , / BAD =60 ° , E, M , N分别是BC, BB1, A1D的中点.
(1)证明: MN // 平面C1DE ;
(2)求点C到平面C1DE的距离.
20. (12 分)
已知函数 f (x) =2sinx—xcosx—x, f ' (x)为 f (x)的导数.
(1)证明: f (X)在区间(0, n存在唯一零点;
(2)若x€ [0, n时,f (x) ^ax,求a的取值范围.
21. (12 分)
已知点A, B关于坐标原点O对称,|AB |=4 ,O M过点A, B且与直线x+2=0相切.
(1)若A在直线x+y=0上,求O M的半径;
(2)是否存在定点 P ,使得当A 运动时,|MA I- I MP I 为定值?并说明理由.
(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第 -题计分。
22. [选修4-4:坐标系与参数方程](10 分)
为极点,X 轴的正半轴为极轴建立极坐标系,直线I 的极坐标方程为
2 cos .
3 sin 11 0.
(1) 求C 和I 的直角坐标方程; (2) 求C 上的点到I 距离的最小值. 23. [选修4- 5:不等式选讲](10分) 已知a , b , c 为正数,且满足 abc=1 .证明:
(1) 1
a
1 1 2,
2 2 a b c ; b c
(2) (a 333
b) (b c) (c a) 24.
在直角坐标系xOy 中,曲线C 的参数方程为
1 t 2
1 t 2'
4t
1 t 2
(t 为参数), 以坐标原点。