2019年全国I卷文科数学高考真题
完整)2019年高考文科数学全国1卷(附答案)

完整)2019年高考文科数学全国1卷(附答案)12B-SX-xxxxxxx2019年普通高等学校招生全国统一考试文科数学全国I卷注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.设z=(3-i)/(1+2i),则z=(B)2.2.已知集合U={1,2,3,4,5,6,7},A={2,3,4,5},B={2,3,6,7},则A∩B={2,3,4,5},所以A'∩B'={1,6,7},故选项为(B){1,7}。
3.已知a=log0.2 2,b=2,c=0.20.3,则a<c<b,故选项为(D)b<c<a。
4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是黄金分割比例,即(5-1)/2≈0.618.最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是黄金分割比例。
设身高为x,则x/(5x/8)= (5-1)/2,解得x=1.85m,即(C)185cm。
5.函数f(x)=sinx+x/cosx+x^2在[-π,π]的图像大致为(C)。
注:文章中的格式错误已删除,明显有问题的段落已删除,每段话进行了小幅度的改写。
已删除明显有问题的段落。
6.某学校为了解1,000名新生的身体素质,采用系统抽样方法等距抽取100名学生进行体质测验。
如果46号学生被抽到,那么下面4名学生中被抽到的是哪个?解答:由于是等距抽取,因此每隔10个学生抽取一个,因此46号学生是第5组中的学生。
要求下面4名学生中被抽到的,就是在第5组中再选4个学生,因此答案是C.616号学生。
高考文科数学全国卷附答案

高考文科数学全国卷附答案标准化工作室编码[XX968T-XX89628-XJ668-XT689N]学校:____________________ _______年_______班 姓名:____________________ 学号:________绝密★启用前2019年普通高等学校招生全国统一考试文科数学 全国I 卷 本试卷共23小题,满分150分,考试用时120分钟(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建)注意事项:答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
考试结束后,将本试卷和答题卡一并交回。
一、 选择题:本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中, 只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2 B .3C .2 D .1 2.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7UA B ===,,,则UBA =A .{}1,6 B .{}1,7 C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .a b c <<B .a c b <<C .c a b <<D .b c a <<4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是512-(512-≈,称为黄金分割比例),着名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是51-.若某人满足 上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是 A. 165 cmB. 175cmC. 185 cmD.190cm 5. 函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A.B.C.D.6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是A.8号学生B.200号学生C.616号学生 D.815号学生7.tan255°=A.-2-B.-C.2- D.8.已知非零向量a,b满足a=2b,且(a–b)⊥b,则a与b的夹角为A.π6B.π3C.2π3D.5π69. 如图是求112122++的程序框图,图中空白框中应填入A. A=1 2A +B. A=1 2A +C. A=1 12A +D. A=1 12A +10.双曲线C:22221(0,0)x ya ba b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A.2sin40°B.2cos40°C.1sin50︒D.1cos50︒11.△ABC的内角A,B,C的对边分别为a,b,c,已知a sin A-b sin B=4c sin C,cos A=-14,则bc=A.6 B.5 C.4 D.312.已知椭圆C的焦点为12(1,0),(1,0)F F-,过F2的直线与C交于A,B两点.若22||2||AF F B=,1||||AB BF=,则C的方程为A.2212xy+=B.22132x y+=C.22143x y+=D.22154x y+=二、填空题:本题共4小题,每小题5分,共20分。
2019年全国卷Ⅰ文数高考真题及答案解析(word精编)

如果你喜欢这份文档,欢迎下载,另祝您成绩进步,学习愉快!绝密★启用前2019年普通高等学校招生全国统一考试全国Ⅰ卷文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则U B A =I ð A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之比是12(12≈0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是a b c <<a c b <<c a b <<b c a <<A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x ++在[—π,π]的图像大致为A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2B .-C .2D .8.已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
2019年高考文科数学全国1卷(附答案)

专业文档_ -__ - ___-__:-号-学-__-___ -___-____线__封__密___ - _:-名姓---班 - ___-___ - _年 -____线__封_密__-___ - ___-___ - ___-___ - ___ -:校-学-12B-SX-0000022绝密★启用前2019 年普通高等学校招生全国统一考试文科数学全国I卷本试卷共23 小题,满分150 分,考试用时120 分钟(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12 小题,每小题5 分,共 60 分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
1.设 z3i,则 z =12iA. 2 B .3C.2D. 12.已知集合 U1,2,3,4,5,6,7,A2,3,4,5,B2,3,6,7 ,则B e AUA. 1,6B. 1,7C. 6,7D. 1,6,73.已知 a log2 0.2,b 20.2, c0.20.3,则A. a b c B. a c bC. c a b D. b c a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之专业文档比是51( 5 1 ≈ 0.618,称为黄金分割比例 ),著名 22的 “断臂维纳斯 ”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是51 .若某人满足 2上述两个黄金分割比例,且腿长为 105cm ,头顶至脖子下 端的长度为 26 cm ,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm5. 函数 f(x)= sin x x 2 在 [—π, π]的图像大致为cos x xA. B.C. D.6.某学校为了解 1 000 名新生的身体素质,将这些学生编号为 1, 2, ⋯ , 1 000,从这些新生中用系统抽样方法等距抽取 100 名学生进行体质测验 .若 46 号学生被抽到,则下面 4 名学生中被抽到的是A .8 号学生B . 200 号学生C . 616 号学生D .815 号学生7.tan255 =° A .-2-3B .-2+ 3C .2- 3D .2+ 3-1--2-专业文档12B-SX-00000228.已知非零向量a, b 满足 a = 2b ,且( a–b)b,则 a 与 b 的夹角为ππ 2 π 5 πA .B.C. D .6336 19. 如图是求21的程序框图,图中空白框中应填入2121 A. A=A2B. A=21A1C. A=2 A1D. A=112 Ax2y21(a 0,b0) 的一条渐近线的倾斜角为130 °,则 C 的10.双曲线 C:b2a2离心率为A . 2sin40 °B . 2cos40 °C.11D.cos50 sin5011.△ABC 的内角 A, B, C 的对边分别为a, b,c,已知 asinA- bsinB=4csinC,cosA=-1,则b=4cA . 6B . 5C. 4D. 312.已知椭圆 C 的焦点为 F1( 1,0),F2(1,0),过 F2 的直线与 C 交于 A,B 两点 .若|AF |2|F B|, |AB| |BF|,则 C 的方程为221专业文档A. x2y21B. x2y21232x2y21x2y21C.3D .445二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
(word完整版)2019年高考文科数学全国1卷(附答案).docx

_ - __ - _ __-__:-号-学-__-___ - ___-______封__密___ - _:-名姓---班 - _ __-___ - _年 -______封_密__-___ - _ __-___ - ___-___ - ___ -:-12B-SX-0000022绝密★启用前2019 年普通高等学校招生全国统一考试文科数学全国I卷本卷共 23 小,分150 分,考用120 分(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、:本共12 小,每小 5 分,共 60 分。
在每个小出的四个中,只有一是符合目要求的。
1.z3i, z =12iA . 2B .3C.2 D .12.已知集合U1,2,3,4,5,6,7,A2,3,4,5,B2,3,6,7 ,BI e AUA .1,6B .1,7C.6,7D.1,6,7.已知 a0.20.3,3A . a b cB . a c bC. c a b D . b c a4.古希腊期,人最美人体的至肚的度与肚至足底的度之比是5 1(5 1≈0.618,称黄金分割比例),著名22的“断臂斯”便是如此.此外,最美人体的至咽喉的度与咽喉至肚的度之比也是5 1.若某人足2上述两个黄金分割比例,且腿105cm,至脖子下端的度26 cm,其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cm5.函数 f(x)=sin x x2在 [ —π,π]的像大致cos x xA. B.C. D.6.某学校了解 1 000 名新生的身体素,将些学生号1, 2,⋯, 1 000,从些新生中用系抽方法等距抽取100 名学生行体.若 46 号学生被抽到,下面 4 名学生中被抽到的是A .8 号学生B . 200 号学生C. 616 号学生 D .815 号学生7.tan255 =°12B-SX-00000228.已知非零向量a ,b 满足 a = 2b ,且( a –b )b ,则 a 与 b 的夹角为A .ππ 2 π5 π6B .C .D .33619. 如图是求 21的程序框图,图中空白框中应填入2 12A. A=12 AB. A= 21AC. A=11 2 AD. A= 112 Ax 2 y 2 1(a 0,b 0) 的一条渐近线的倾斜角为130 °,则 C 的10.双曲线 C :b 2a 2 离心率为A . 2sin40 °B . 2cos40 °C .1 1 D .cos50sin5011. △ABC 的内角 A , B , C 的对边分别为 a , b ,c ,已知 asinA - bsinB=4 csinC ,cosA=- 1 ,则 b=4 cA . 6B . 5C . 4D . 312.已知椭圆 C 的焦点为 F 1( 1,0),F 2(1,0),过 F 2 的直线与 C 交于 A ,B 两点 .若| AF | 2| F B|, | AB| | BF |,则 C 的方程为22 1A . x 2 y 21B. x 2 y 21232x 2 y 2 1x 2 y 2 1C .3D .445二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
2019年高考文科数学全国1卷(附答案)

12B-SX-0000022_ _ _ _ _ _ _ _ :----绝密★启用前2019年普通高等学校招生全国统一考试文科数学全国I 卷本试卷共23 小题,满分150 分,考试用时120 分钟比是 5 1( 5 1≈0.618 ),称为黄金分割比例,著名22的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉号学_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ :名姓-----线封密-----(适用地区:河北、河南、山西、山东、江西、安徽、湖北、湖南、广东、福建)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每个小题给出的四个选项中,只有一项是符合题目要求的。
3 i1.设z ,则z =1 2i的长度与咽喉至肚脐的长度之比也是 512上述两个黄金分割比例,且腿长为105cm,头顶至脖子下端的长度为26 cm,则其身高可能是A. 165 cmB. 175 cmC. 185 cmD. 190cmsin x x函数f(x)= 2cos x x.若某人满足在[—π,π的]图像大致为班_ _ _ _ _ _ _ 年_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ :校学----线封密---------A.2 B. 3 C. 2 D.12.已知集合U 1,2,3,4,5,6,7 ,A 2,3,4,5 ,B 2,3,6,7 ,则B e AUA.1,6 B.1,7 C.6,7 D.1,6,73.已知0.2 0.3a log 0.2,b 2 ,c0.2 ,则2A.a b c B.a c bC.c a b D.b c a4.古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度之A. B.C. D.6.某学校为了解1 000 名新生的身体素质,将这些学生编号为1,2,⋯,1 000,从这些新生中用系统抽样方法等距抽取100 名学生进行体质测验.若46 号学生被抽到,则下面4名学生中被抽到的是A .8 号学生B.200 号学生C.616 号学生D.815 号学生7.tan255 =°A .-2- 3 B.-2+ 3 C.2- 3 D.2+ 3- 1 - - 2 -12B-SX-00000228.已知非零向量 a ,b 满足 a =2 b ,且(a –b )b ,则 a 与 b 的夹角为A . π 6B . π 3C .2 π3 D .5 π 619. 如图是求2 2 1 12的程序框图,图中空白框中应填入222x y 3222x y 5 4x21yB .1D .A .C .2112 2x y4 3二、填空题:本题共4小题,每小题5分,共20分。
2019年全国卷Ⅰ文数高考试题(含答案),推荐文档
1
5 1 最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是 2 .若某人满足上述两
个黄金分割比例,且腿长为 105cm,头顶至脖子下端的长度为 26cm,则其身高可能是
A.165 cm
B.175 cm
C.185 cm
sin x x 5. 函数 f(x)= cos x x2 在[—π,π]的图像大致为
1
x2 2y 1 A. 2
x2 y2 1 B. 3 2
x2 y2 1 C. 4 3
x2 y2 1 D. 5 4
二、填空题:本题共 4 小题,每小题 5 分,共 20 分。
13. 曲线 y 3(x2 x)ex 在点 (0, 0) 处的切线方程为
.
a 1,S 3
1
14. 记 Sn 为等比数列{an}的前 n 项和.若
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共 12 小题,每小题 5 分,共 60 分。在每小题给出的四个选项中,只有一 项是符合题目要求的。
z
1.设
3i 1 2i
,
z
则=
A.2
B. 3
C. 2
D.1
2.已知集合U 1, 2,3, 4,5, 6, 7,, 2,3, 4,5 B 2,3, 6, 7,则 B ðU A
1
K2
n(ad bc)2
附:
(a b)(c d )(a c)(b d ) .
P(K2≥k )
0.050
0.010
0.001
k
3.841 6.635 10.828
18.(12 分)
记 Sn 为等差数列{an}的前 n 项和,已知 S9=-a5. (1) 若 a3=4,求{an}的通项公式; (2) 若 a1>0,求使得 Sn≥an 的 n 的取值范围.
2019年高考文科数学全国卷Ⅰ文数(附参考答案和详解)(可编辑修改word版)
所以其身高可能为 175 cm.故选 B.
【答案】B
5.(2019 全国卷Ⅰ·文)函数
f (x)
sinx x cosx x2
在[π, π] 的图象大致为(
)
第 2 页(共 12 页)
A.
B.
C.
D.
【解析】因为 f (x) sin( x) x sinx x f (x) ,所以 f (x) 为奇函数,排除选项 A. cos( x) ( x)2 cosx x2
比例,且腿长为105cm ,头顶至脖子下端的长度为 26cm ,则其身高可能是( )
A.165cm
B.175cm
C.185cm
D.190cm
【解析】设某人身高为 m cm,脖子下端至肚脐的长度为 n cm,
则由腿长为 105 cm,可得 m 105 5 1 0.618 ,解得 m 169.890 .
绝密★启用前
6 月 7 日 15:00-17:00
2019 年普通高等学校招生全国统一考试(全国卷Ⅰ)
数学(文史类)
总分:150 分 考试时间:120 分钟
★祝考试顺利★
注意事项:
1、本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分。答卷前,考生务必将自己的姓名、 准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。用 2B 铅笔将答题卡 上试卷类型 A 后的方框涂黑。
学生中被抽到的是( )
A. 8 号学生
B. 200 号学生 C. 616 号学生 D. 815 号学生
【解析】根据题意,系统抽样是等距抽样,所以抽样间隔为 1000 10 . 100
因为 46 除以 10 余 6,所以抽到的号码都是除以 10 余 6 的整数,结合选项知正确号码为 616.故选 C.
2019年高考文科数学全国卷Ⅰ文数(附参考答案和详解)
绝密★启用前 6月7日15:00-17:002019年普通高等学校招生全国统一考试(全国卷Ⅰ)数学(文史类)总分:150分 考试时间:120分钟★祝考试顺利★注意事项:1、本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证条形码粘贴在答题卡的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
2、选择题的作答:选出每小题答案后,用2B 铅笔将答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸、答题卡上的非答题区域均无效。
3、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内,写在试题卷、草稿纸、答题卡上的非答题区域均无效。
4、考试结束后,将本试卷和答题卡一并上交。
第I 卷一、选择题:本题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.(2019全国卷Ⅰ·文)设3i12iz -=+,则||z =( )A.2D.1【解析】因为3i (3i)(12i)17i12i (12i)(12i)5z ----===++-,所以||z =故选C.【答案】C2.(2019全国卷Ⅰ·文)已知集合{1,2,3,4,5,6,7}U =,{2,3,4,5}A =,{2,3,6,7}B =,则U B A =I ð( )A.{1,6}B.{1,7}C.{6,7}D.{1,6,7}【解析】因为{1,2,3,4,5,6,7}U =,{2,3,4,5}A =,所以{1,6,7}U A =ð. 又{2,3,6,7}B =,所以U B A =I ð{6,7}.故选C.【答案】C3.(2019全国卷Ⅰ·文)已知2log 0.2a =,0.22b =,0.30.2c =,则( )A.a b c <<B.a c b <<C.c a b <<D.b c a <<【解析】由对数函数的单调性可得22log 0.2log 10a =<=,由指数函数的单调性可得0.20221b =>=,0.300.2100.2c <==<,所以a c b <<.故选B.【答案】B4.(2019全国卷Ⅰ·文)古希腊时期,人们认为最美人体的头顶至肚脐的长度与肚脐至足底的长度0.618≈,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最.若某人满足上述两个黄金分割比例,且腿长为105cm ,头顶至脖子下端的长度为26cm ,则其身高可能是( )A.165cmB.175cmC.185cmD.190cm【解析】设某人身高为m cm ,脖子下端至肚脐的长度为n cm , 则由腿长为105 cm,可得1050.618105m ->≈,解得169.890m >. 由头顶至脖子下端的长度为26 cm,可得260.618n >≈,解得42.071n <. 所以头顶到肚脐的长度小于2642.07168.071+=.68.072110.1470.618≈≈. 所以此人身高68.071110.147178.218m <+=. 综上,此人身高m 满足169.890178.218m <<. 所以其身高可能为175 cm.故选B. 【答案】B5.(2019全国卷Ⅰ·文)函数2sin ()cos x xf x x x +=+在[π,π]-的图象大致为( )A. B.C. D.【解析】因为22sin()sin ()()cos()()cos x x x xf x f x x x x x --+-==-=--+-+,所以()f x 为奇函数,排除选项A.令πx =,则22sin ()0cos 1f πππππππ+==>+-+,排除选项B ,C.故选D.【答案】D6.(2019全国卷Ⅰ·文)某学校为了解1000名新生的身体素质,将这些学生编号为1,2,,1000L ,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是( ) A.8号学生 B.200号学生 C.616号学生 D.815号学生【解析】根据题意,系统抽样是等距抽样,所以抽样间隔为100010100=. 因为46除以10余6,所以抽到的号码都是除以10余6的整数,结合选项知正确号码为616.故选C. 【答案】C7.(2019全国卷Ⅰ·文)tan255=o ( )A.2--B.2-+C.2D.2【解析】1tan 45tan 3075tan(tan255tan(4530)2180)tan 71tan 45tan 305+++=+===+=-=ooo o o o o o o o .故选D. 【答案】D.8.(2019全国卷Ⅰ·文)已知非零向量a ,b 满足||2||=a b ,且()-⊥a b b ,则a 与b 的夹角为( )A.π6B.π3C.2π3 5π6【解析】设a ,b 的夹角为θ,因为()-⊥a b b ,所以()0-=g a b b ,即2||0-=g a b b .又||||cos ,||2||θ==g g a b a b a b , 所以222||cos ||0θ-=b b ,所以1cos 2θ=. 又因为0θπ≤≤,所以3πθ=.故选B.【答案】B9.(2019全国卷Ⅰ·文)如图是求112122++的程序框图,图中空白框中应填入( )A.12A A=+ B.12A A =+C.112A A=+ D.112A A=+【解析】对于选项A ,第一次循环,1122A =+;第二次循环,112122A =++,此时3k =,不满足2k ≤,输出112122A =++的值.故A 正确;经验证选项B ,C ,D 均不符合题意.故选A.【答案】A10.(2019全国卷Ⅰ·文)双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线的倾斜角为130o ,则C 的离心率为( )A.2sin40oB.2cos40oC.1sin50oD.1cos50o【解析】由题意可得tan130ba-=︒,所以11|cos130|cos50e ====︒︒.故选D.【答案】D11.(2019全国卷Ⅰ·文)ABC △的内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin a A b B c C -=,1cos 4A =-,则bc=( )A.6B.5C.4D.3【解析】因为sin sin 4sin a A b B c C -=,所以由正弦定理得2224a b c -=,即2224a c b =+.由余弦定理得222222222(4)31cos 2224b c a b c c b c A bc bc bc +-+-+-====-,所以6bc=.故选A. 【答案】A12.(2019全国卷Ⅰ·文)已知椭圆C 的焦点为()11,0F -,()21,0F ,过2F 的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为( )A.2212x y +=B.22132x y +=C.22143x y += D.22154x y += 【解析】设椭圆的标准方程为22221(0)bx y a b a +=>>,由椭圆定义可得11||||||4AF AB BF a ++=. 因为1||||AB BF =, 所以1||2||4AF AB a +=. 又22||2||AF F B =, 所以23||||2AB AF =,所以12||3||4AF AF a +=. 又因为12||||2AF AF a +=,所以2||AF a =. 所以A 为椭圆的短轴端点.如图,不妨设(0,)A b ,又2(1,0)F ,222AF F B =u u u u r u u u u r ,所以3,22b B ⎛⎫- ⎪⎝⎭.将B 点坐标代入椭圆方程22221(0)b x y a b a +=>>,得2229144b ba +=,所以22223,2a b a c ==-=.所以椭圆C 的方程为22132x y +=.故选B.【答案】B第Ⅱ卷二、填空题:本题共4小题,每小题5分。
2019年高考全国一卷文科数学真题卷(含答案)
的程序框图,图中空白框中应填入
2
D. 5π 6
A.A= 1 2 A
B.A= 2 1 A
C.A= 1 1 2A
D.A=1 1 2A
10.双曲线
C:
x2 a2
y2 b2
1(a
0, b
0) 的一条渐近线的倾斜角为 130°,则
C 的离心率为
A.2sin40°
B.2cos40°
C. 1 sin50
D. 1 cos50
11.△ABC 的内角 A,B,C 的对边分别为 a,b,c,已知 asinA-bsinB=4csinC,cosA=- 1 ,则 b = 4c
A.6
B.5
C.4
D.3
12. 已 知 椭 圆 C 的 焦 点 为 F1(1, 0), F2 (1, 0) , 过 F2 的 直 线 与 C 交 于 A, B 两 点 .若 | AF2 | 2 | F2B | ,
k
3.841 6.635 10.828
18.(12 分) 记 Sn 为等差数列{an}的前 n 项和,已知 S9=-a5. (1)若 a3=4,求{an}的通项公式; (2)若 a1>0,求使得 Sn≥an 的 n 的取值范围.
19.(12 分) 如图,直四棱柱 ABCD–A1B1C1D1 的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N 分别是 BC, BB1,A1D 的中点.
22.[选修 4−4:坐标系与参数方程](10 分)
在直角坐标系
xOy
中,曲线
C
的参数方程为
x
1 1
t2 t2
,
(t
为参数),以坐标原点
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年普通高等学校招生全国统一考试文科数学注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设3i12iz -=+,则z = A .2BCD .12.已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则A .{}1,6B .{}1,7C .{}6,7D .{}1,6,73.已知0.20.32log 0.2,2,0.2a b c ===,则A .B .C .D .4.古希腊时期,0.618,称为黄金分割比例),著名的“断臂维纳斯”便是如此.此外,最美人体的头顶至咽喉的长度与咽喉至肚脐的长度之比也是12.若某人满足上述两个黄金分割比例,且腿长为105 cm ,头顶至脖子下端的长度为26 cm ,则其身高可能是a b c <<a c b <<c a b <<b c a <<A .165 cmB .175 cmC .185 cmD .190 cm5.函数f (x )=2sin cos x xx x++在[-π,π]的图像大致为 A .B .C .D .6.某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验.若46号学生被抽到,则下面4名学生中被抽到的是 A .8号学生 B .200号学生C .616号学生D .815号学生7.tan255°= A .-2B .-C .2D .8.已知非零向量a ,b 满足a =2b ,且(a -b )⊥b ,则a 与b 的夹角为 A .π6B .π3C .2π3D .5π69.如图是求112122++的程序框图,图中空白框中应填入A .A =12A+ B .A =12A+C .A =112A+D .A =112A+10.双曲线C :22221(0,0)x y a b a b-=>>的一条渐近线的倾斜角为130°,则C 的离心率为A .2sin40°B .2cos40°C .1sin50︒D .1cos50︒11.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a sin A -b sin B =4c sin C ,cos A =-14,则b c=A .6B .5C .4D .312.已知椭圆C 的焦点为12(1,0),(1,0)F F -,过F 2的直线与C 交于A ,B 两点.若22||2||AF F B =,1||||AB BF =,则C 的方程为A .2212x y +=B .22132x y +=C .22143x y +=D .22154x y +=二、填空题:本题共4小题,每小题5分,共20分。
13.曲线2)3(e x y x x =+在点(0,0)处的切线方程为___________. 14.记S n 为等比数列{a n }的前n 项和.若13314a S ==,,则S 4=___________. 15.函数3π()sin(2)3cos 2f x x x =+-的最小值为___________.16.已知∠ACB=90°,P 为平面ABC 外一点,PC =2,点P 到∠ACB 两边AC ,BC ,那么P到平面ABC 的距离为___________.三、解答题:共70分。
解答应写出文字说明、证明过程或演算步骤。
第17~21题为必考题,每个试题考生都必须作答。
第22、23题为选考题,考生根据要求作答。
(一)必考题:60分。
17.(12分)某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:(1)分别估计男、女顾客对该商场服务满意的概率;(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?附:22()()()()()n ad bcKa b c d a c b d-=++++.18.(12分)记S n为等差数列{a n}的前n项和,已知S9=-a5.(1)若a3=4,求{a n}的通项公式;(2)若a1>0,求使得S n≥a n的n的取值范围.19.(12分)如图,直四棱柱ABCD–A1B1C1D1的底面是菱形,AA1=4,AB=2,∠BAD=60°,E,M,N分别是BC,BB1,A1D的中点.(1)证明:MN∥平面C1DE;(2)求点C到平面C1DE的距离.20.(12分)已知函数f(x)=2sin x-x cos x-x,f ′(x)为f(x)的导数.(1)证明:f ′(x)在区间(0,π)存在唯一零点;(2)若x∈[0,π]时,f(x)≥ax,求a的取值范围.21.(12分)已知点A,B关于坐标原点O对称,│AB│ =4,⊙M过点A,B且与直线x+2=0相切.(1)若A在直线x+y=0上,求⊙M的半径;(2)是否存在定点P ,使得当A 运动时,│MA │-│MP │为定值?并说明理由.(二)选考题:共10分。
请考生在第22、23题中任选一题作答。
如果多做,则按所做的第一题计分。
22.[选修4−4:坐标系与参数方程](10分)在直角坐标系xOy 中,曲线C 的参数方程为2221141t x t t y t ⎧-=⎪⎪+⎨⎪=⎪+⎩,(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为2cos sin 110ρθθ++=. (1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值. 23.[选修4−5:不等式选讲](10分)已知a ,b ,c 为正数,且满足abc =1.证明: (1)222111a b c a b c++≤++; (2)333()()()24a b b c c a +++≥++.2019年普通高等学校招生全国统一考试文科数学·参考答案一、选择题 1.C 2.C 3.B 4.B 5.D 6.C 7.D8.B9.A10.D11.A12.B二、填空题13.y =3x 14.5815.−416三、解答题 17.解:(1)由调查数据,男顾客中对该商场服务满意的比率为400.850=,因此男顾客对该商场服务满意的概率的估计值为0.8.女顾客中对该商场服务满意的比率为300.650=,因此女顾客对该商场服务满意的概率的估计值为0.6.(2)22100(40203010) 4.76250507030K ⨯⨯-⨯=≈⨯⨯⨯. 由于4.762 3.841>,故有95%的把握认为男、女顾客对该商场服务的评价有差异. 18.解:(1)设{}n a 的公差为d . 由95S a =-得140a d +=. 由a 3=4得124a d +=. 于是18,2a d ==-.因此{}n a 的通项公式为102n a n =-.(2)由(1)得14a d =-,故(9)(5),2n n n n da n d S -=-=. 由10a >知0d <,故n n S a 等价于211100n n -+,解得1≤n ≤10. 所以n 的取值范围是{|110,}n n n ∈N . 19.解:(1)连结1,B C ME .因为M ,E 分别为1,BB BC 的中点,所以1 ME B C ∥,且112ME B C =.又因为N 为1A D 的中点,所以112ND A D =. 由题设知11=A B DC ∥,可得11=BC A D ∥,故=ME ND ∥,因此四边形MNDE 为平行四边形,MN ED ∥.又MN ⊄平面1C DE ,所以MN ∥平面1C DE . (2)过C 作C 1E 的垂线,垂足为H .由已知可得DE BC ⊥,1DE C C ⊥,所以DE ⊥平面1C CE ,故DE ⊥CH. 从而CH ⊥平面1C DE ,故CH 的长即为C 到平面1C DE 的距离,由已知可得CE =1,C 1C =4,所以1C E =,故17CH =.从而点C 到平面1C DE .20.解:(1)设()()g x f x '=,则()cos sin 1,()cos g x x x x g x x x '=+-=. 当π(0,)2x ∈时,()0g x '>;当π,π2x ⎛⎫∈ ⎪⎝⎭时,()0g x '<,所以()g x 在π(0,)2单调递增,在π,π2⎛⎫⎪⎝⎭单调递减.又π(0)0,0,(π)22g g g ⎛⎫=>=-⎪⎝⎭,故()g x 在(0,π)存在唯一零点. 所以()f x '在(0,π)存在唯一零点.(2)由题设知(π)π,(π)0f a f =,可得a ≤0.由(1)知,()f x '在(0,π)只有一个零点,设为0x ,且当()00,x x ∈时,()0f x '>;当()0,πx x ∈时,()0f x '<,所以()f x 在()00,x 单调递增,在()0,πx 单调递减.又(0)0,(π)0f f ==,所以,当[0,π]x ∈时,()0f x . 又当0,[0,π]a x ∈时,ax ≤0,故()f x ax . 因此,a 的取值范围是(,0]-∞. 21.解:(1)因为M 过点,A B ,所以圆心M 在AB 的垂直平分线上.由已知A 在直线+=0x y 上,且,A B关于坐标原点O 对称,所以M 在直线y x =上,故可设(, )M a a . 因为M 与直线x +2=0相切,所以M 的半径为|2|r a =+.由已知得||=2AO ,又MO AO ⊥,故可得2224(2)a a +=+,解得=0a 或=4a . 故M 的半径=2r 或=6r .(2)存在定点(1,0)P ,使得||||MA MP -为定值. 理由如下:设(, )M x y ,由已知得M 的半径为=|+2|,||=2r x AO .由于MO AO ⊥,故可得2224(2)x y x ++=+,化简得M 的轨迹方程为24y x =.因为曲线2:4C y x =是以点(1,0)P 为焦点,以直线1x =-为准线的抛物线,所以||=+1MP x . 因为||||=||=+2(+1)=1MA MP r MP x x ---,所以存在满足条件的定点P .22.解:(1)因为221111t t --<≤+,且()22222222141211y t t x t t ⎛⎫-⎛⎫+=+= ⎪ ⎪+⎝⎭⎝⎭+,所以C 的直角坐标方程为221(1)4y x x +=≠-.l的直角坐标方程为2110x +=.(2)由(1)可设C 的参数方程为cos ,2sin x y αα=⎧⎨=⎩(α为参数,ππα-<<).C 上的点到lπ4cos 11α⎛⎫-+ ⎪=.当2π3α=-时,π4cos 113α⎛⎫-+ ⎪⎝⎭取得最小值7,故C 上的点到l.23.解:(1)因为2222222,2,2a b ab b c bc c a ac +≥+≥+≥,又1abc =,故有222111ab bc ca a b c ab bc ca abc a b c++++≥++==++.所以222111a b c a b c++≤++. (2)因为, , a b c 为正数且1abc =,故有333()()()a b b c c a +++++≥=3(+)(+)(+)a b b c a c3≥⨯⨯⨯=24.所以333()()()24a b b c c a +++++≥.。