机械工程测试技术基础实验指导书
机械工程测试技术实验指导书(终稿)

机械工程测试技术实验指导书(终稿)机械工程测试技术实验指导书主编:朱红瑜河南工业大学机电工程学院学生实验须知 1 每次实验之前必须仔细阅读实验指导书中相应部分的内容。
2 必须遵守实验室各项规章制度,并按预先编组在规定实验台位进行实验,未经许可不准擅自调换台位。
3 同学们应爱护国家财产,认真按照操作规程和指导教师指导进行各项实验操作。
4 不准随意拆装仪器,随意玩弄各操作按钮,开关等。
凡违返规定者视情节轻重作严肃处理,造成仪器设备损坏者一律照价赔偿。
5 同一台位的同学对本台位仪器设备、工具、材料共同负责,实验结束时应报告实验老师检查。
如有丢失、损坏情况发生,在同一台位同学无自动承担责任时该台位实验同学共同承担赔偿。
2目录实验一电阻应变片及电桥特性实验实验三电容传感器特性及相敏电路特性实验实验四滤波器滤波特性实验实验五*虚拟仪器振动测试实验注:带*的实验项目为综合性实验 4 3 10 12 15 实验一电阻应变片及电桥特性实验一、实验目的1、了解电阻应变片的结构。
2、观察应变效应,掌握应变片的作用。
3、熟悉应变片电桥的各种接法及其输出特性。
二、实验仪器及设备SET-N传感器实验仪所需单元及部件:直流稳压电源、电桥、差动放大器、双孔悬臂梁称重传感器、砝码、应变片、F/V表、主、副电源。
三、有关旋钮的初始位置直流稳压电源打到±2V档,F/V表打到2V档,差动放大增益最大。
四、实验原理应变片是最常用的测力传感元件。
当用应变片测试时,应变片要牢固地粘贴在测试体表面,当测件受力发生形变,应变片的敏感栅随同变形,其电阻也随之发生相应的变化,通过测量电路,转换成电信号输出显示。
电桥电路是最常用的非电量电测电路中的一种,当电桥平衡时,桥路对臂电阻乘积相等,电桥输出为零,在桥臂四个电阻R1、R2、R3、R4中,电阻的相对变化率分别为ΔR1/R1、ΔR2/R2、ΔR3/R3、ΔR4/R4,当使用一个应变片时,ΣR=R=?R;当二个应变片组成差动状态工作,则有ΣR2?R;用四个应变片组成二个差对工作,且R1=R2=R3=R4=R,R4?RR= 。
机械工程测试技术实验指导书

机械工程测试技术实验指导书实验目的本实验旨在通过对机械工程中常见测试技术的实际操作,培养学生的工程实践能力和实验操作技能,加深学生对机械工程测试技术的理解和应用。
实验器材与材料•万能试验机•温度计•流量计•压力传感器•液压泵•结构件样品实验内容实验一:静态力测试1.使用万能试验机进行静态力测试时,首先要保证试验机的稳定性和安全性,检查是否有异常噪声或松动部件。
2.将结构件样品放置在试验机的夹具上,注意调整夹具的夹紧程度,使其紧固结构件样品,但不会损坏样品。
3.开启试验机,并设置合适的试验速度和加载方式,开始静态力测试。
4.记录下结构件样品在不同加载条件下的变形数据和加载力数据。
实验二:温度测试1.使用温度计进行温度测试时,先进行校准操作,确保温度计的准确性。
2.将温度计放置于待测物体附近,确保不会受到其他外来热源的影响。
3.等待一段时间,让温度计的读数稳定下来,记录下稳定时的温度数据。
4.如有需要,可重复上述步骤,记录不同时间点的温度数据,以进行温度变化分析。
实验三:流量测试1.连接流量计与待测管道,确保连接紧固,并检查流量计的通电和工作状态。
2.开启流量计,并调整合适的流量范围和测量单位。
3.通过调节管道流速或水泵转速,使流量计读数稳定在设定范围内,并记录下实际流量数据。
4.如有需要,可重复上述步骤,记录不同操作条件下的流量数据,以进行流量变化分析。
实验四:压力测试1.将待测液体接入压力传感器的输入端,确保连接管道紧固,并检查传感器的通电和工作状态。
2.开启液压泵,调整液压泵的工作压力,并观察压力传感器的读数。
3.记录不同压力值下的压力传感器读数,并考虑压力值与读数的关系。
实验注意事项1.所有实验前都要检查实验器材的完整性和安全性。
2.在进行力测试时,要注意保护试验机夹具和结构件样品不受损坏。
3.在进行温度测试时,要避免热源和其他干扰因素的影响。
4.在进行流量测试时,要确保流量计的正常工作和精确度。
机械工程材料实验指导书实验一硬度试验

机械工程材料实验指导书实验一硬度实验【实验目的】1.进一步加深对硬度概念的理解。
2.了解布氏、洛氏硬度计的构造和作用原理。
3.熟悉布氏硬度、洛氏硬度的测定方法和操作步骤。
【实验设备及材料】布氏硬度计、洛氏硬度计、读数显微镜、试样(钢、铸铁或有色金属)一组。
【实验原理】硬度计的原理是:将一定直径球体压入试样表面,保持一定的时间后卸除试验力,测量试样表面的压痕直径,用试验力压出一压痕表面面积计算硬度。
1.布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2) ,布氏硬度计适用于铸铁等晶粒粗大的金属材料的测定。
2.洛氏硬度(HR)当HB大于450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计。
它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。
根据试验材料硬度的不同,分三种不同的硬度标尺HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。
HRB:是采用100kg 载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。
HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。
一、布氏硬度实验【布氏硬度计】THBS-3000DA采用电子自动加荷,计算机软件编程,高倍率光学测量,采用自动数字式编码器直接测量,测试结果LCD显示。
图1 THBS-3000DA型布氏硬度试验机【试样的技术条件】1.试样的试验面,应制成光滑平面,不应有氧化皮及污物。
试验面应能保证压痕直径能精确测量,试样表面粗糙度Ra值一般不应大于0.8μm。
2.在试样制备过程中,应尽量避免由于受热及冷加工对试样表面硬度的影响。
【精品】《机械工程测试技术》实验指导书

《机械工程测试技术》实验指导书机械工程测试技术实验指导书主编文成副主编彭浩,周传德重庆科技学院机械电子工程实验室2008年6月20日实验目录实验一电桥和差特性实验 (3)实验二电子称定标实验 (7)实验三电容式传感器的位移特性实验 (10)实验四测速实验 (13)实验五电涡流传感器的位移特性实验 (19)实验六光纤传感器位移特性实验 (21)实验七用“李萨如图形法”测量简谐振动的频率 (24)实验八机械振动系统固有频率的测量 (28)实验九单自由度系统强迫振动的幅频特性 (33)实验十单自由度系统自由衰减振动及 (37)实验十一主动隔振实验 (41)实验十二被动隔振实验 (45)实验十三振动信号分析实验 (49)实验十四用“双踪示波法”测量传感器的灵敏度 (53)实验十五两自由度系统固有频率测试 (57)实验十六变时基锤击法简支梁模态测试 (62)实验十七转子临界转速测量 (75)实验十八滑动轴承油膜涡动和油膜振荡 (79)实验十九转子启停机三维彩色谱阵分析 (85)实验二十转子动平衡实验 (88)实验二十一转子启停机转速谱阵 (100)实验二十二转子阶次谱阵分析 (104)实验二十三轴承故障诊断分析 (109)实验二十四齿轮故障诊断分析 (113)THSRZ-1型传感器系统综合实验装置简介 (117)ZK-4VIC型虚拟测试振动与控制实验装置简介 (120)INV1601T 型振动与控制实验装置简介 (124)INV1612型多功能柔性转子实验系统简介 (131)DH3817动静态应变测试系统简介 (138)DH5920动态信号分析仪简介 (139)虚拟仪器LabVIEW及振动噪音数据采集系统简介 (141)QPZZ-II旋转机械振动分析及故障模拟试验平台系统简介··143实验一电桥和差特性实验一、实验目的1、了解金属箔式应变片的应变效应。
2、比较单臂电桥、半桥与全桥测量电路的工作原理和性能,从而验证电桥的和差特性。
机械设计基础实验指导书(最新)

①“左、静、右”钮置“左”,记录μA表值,若指针指过满度,置合适的衰减档,记录灯下刻度,得1测点振动量S11。
②“左、静、右”钮置“右”,重复①的操作,得2测点振动量S21。
1#面加试重完毕关闭闪光灯,锁紧支撑,停车取下试重。
7、2#校正面加试重,测量两支撑振动量S12,S22。
电测部分的解算电路,又称面的分解电路,它的作用是保证每次μA表的示值及闪光灯下定出的角度。每次只反映某一个校正面不平衡量的大小和位置,并不包含另一个校正面不平衡量的影响。校正面的选择,即面的分离电路控制,由“左、静、右”旋钮切换。
另外,μA表的示值是“格数”,是不平衡的相对值。因为理论上可以证明软支撑动平衡机不平衡与支撑振动量之间成正比,且相位相反。因此,μA表的示值也是振动量的相对值,根据振动量的相对值(幅值)和闪光灯下的角度(相位),就可以确定出转子平衡量的大小和位置。
确定转子平衡量大小和位置的方法有:试凑法,几何作图法和计算法。本实验用影响系数法进行转子动平衡,提倡用计算机程序化计算。
图1DS—30型动平衡机工作原理图
五、实验步骤
实验的主要过程是:测量试验转子支撑处的初始振动幅值及相位;对左、右校正面加试重,并分别测量支撑振动幅值及相位。
1、接通电测箱电源,指示灯亮,仪器预热20分钟。
东北电力大学自编教材
机械设计基础实验指导书
(附实验报告表)
赵成军编写
机械工程学院机械基础实验室
实验守则
1、实验课前必须认真阅读实验指导书。熟悉实验目的、要求、步骤以及有关注意事项,做好实验前的各项准备工作。
2、实验前必须完成“实验预习报告”,否则,不允许参加本次试验,不计成绩。
《机械制造技术基础A、B、C、D》实验指导书-龚文、蔡兰兰

机械制造技术基础A、B、C、D实验指导书(*************系)武汉理工大学机电工程学院实验中心年月日目录实验一刀具认识及刀具角度三维测量 (1)实验二车床及滚齿机传动分析 (7)实验三加工误差综合分析 (10)实验一、刀具认识及刀具角度三维测量一、实验目的1. 熟悉外圆车刀刀头部分的构造,掌握刀具参考系及参考平面的确定方法;2. 了解万能角度尺的结构,并掌握其使用方法;3. 一般了解生产中常用各种金属切削刀具的形状、结构、切削加工原理及用途。
二、实验设备外圆车刀、外圆车刀模型、万能角度尺;生产中常用的各种金属切削刀具实物。
三、实验原理及方法㈠一般了解生产中常用各种金属切削刀具由实验指导教师向学生展示生产中常用各种金属切削刀具,并讲授刀具的形状、结构、切削加工原理及用途。
㈡外圆车刀几何角度的测量1. 测量原理根据刀具几何角度的定义利用量具进行测量。
2.测量方法将量具的测量平面置于刀具代测角度所在的平面上,调整量具的测量边,使其与相应平面重合,读数即可。
(用万能角度尺测量外圆车刀的具体方法见附录二)四、实验步骤1.实验准备(预习)复习有关刀具参考系、参考平面的知识:掌握刀具角度的标注方法;熟悉刀具基本角度(γ0、α、λs、κr、κr’)的定义;阅读本实验指导书,重点了解万能角度尺的使用方法及刀具角度的测量方法。
2.实验①测量刀具角度并作记录;②认真考察各种常用金属切削刀具的外形、刀具结构和切削原理,了解各类刀具的生产用途。
3.完成实验报告五、思考题1、主剖面参考系中,参考平面:基面、切削平面和主剖面的定义是什么?2、车刀的刃倾角在哪个参考平面中测量?刃倾角在切削中起什么作用?3、车刀的前刀面的型面有哪几种?各起何种作用?附录一万能角度尺的使用方法万能角度尺是在实际生产中常用的角度测量量具,其测量范围0~320°,测量精度为2′。
它由基尺、直尺、直角尺及夹持件组成,见图1-2所示。
《机械工程测试技术基础》实验指导书

《机械工程测试技术基础》实验指导书实验一观测50Hz非正弦周期信号的分解与合成一、实验目的1、用同时分析法观测50Hz非正弦周期信号的频谱,并与其傅立叶级数各项的频率与系数作比较。
2、观测基波和其谐波的合成二、实验设备1、信号与系统实验箱:TKSS-A型或TKSS-B型或TKSS-C型:2、双综示波器。
三、实验原理1、一个非正弦周期函数可以用一系列频谱成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的2、3、4、。
、n等倍数分别称二次、三次、四次、。
、n次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。
2、不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。
3、一个非正弦周期函数可用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式如下,方波频谱图如图2-1表示图2-1方波频谱图11 1 sin sin 3 t sin 5 t sin 7 t 3 5 72、三角波81J f 1 1u(t )=—2^ sin 国t 一一sin 3・t +——sin 5灼t +…i 兀2I 9 25 丿兀1 1si nt cos t cos 4 t J 4 3 155、矩形波m 1 兀 1 3THsin ——cos t sin cos2 t sin cos3 t T 2 T 3 TLPF 为低通滤波器,可分解出非正弦周期函数的直流分量。
BPF 〜BPF 6为调谐在基波和各次谐波上的带通滤波器,加法器用于信号的合成。
四、 预习要求在做实验前必须认真复习教材中关于周期性信号傅立叶级数分解的有关内容。
五、 实验内容及步骤1、调节函数信号发生器, 使其输出50Hz 的方波信号,并将其接至信号分解实验模块 BPF的输入端,然后细调函数信号发生器的输出频率,使该模块的基波50Hz 成分BPF 的输出Um方波0Um三角波0Um 正弦 整流全波门Um矩形波-正弦 整流半波 Um1、方波4U m JI 1 cos 3cos4 t - 151 cos 6 t35 U mu亘2Uu3、半波4、全波2心■ d 珀 fePFSrtfo {BPF4|~O 5foEresl —o6fojgPF6]~O图2-2实验装置的结构2、 将各带通滤波器的输出分别接至示波器, 观测各次谐波的频率和幅制值,并列表记录之。
机械工程材料实验指导书-江洁实验一硬度试验

机械工程材料实验指导书红河学院机械系实验一硬度实验【实验目的】1.进一步加深对硬度概念的理解。
2.了解布氏、洛氏硬度计的构造和作用原理。
3.熟悉布氏硬度、洛氏硬度的测定方法和操作步骤。
【实验设备及材料】布氏硬度计、洛氏硬度计、读数显微镜、试样(钢、铸铁或有色金属)一组。
【实验原理】硬度计的原理是:将一定直径球体压入试样表面,保持一定的时间后卸除试验力,测量试样表面的压痕直径,用试验力压出一压痕表面面积计算硬度。
1.布氏硬度(HB)以一定的载荷(一般3000kg)把一定大小(直径一般为10mm)的淬硬钢球压入材料表面,保持一段时间,去载后,负荷与其压痕面积之比值,即为布氏硬度值(HB),单位为公斤力/mm2 (N/mm2) ,布氏硬度计适用于铸铁等晶粒粗大的金属材料的测定。
2.洛氏硬度(HR)当HB大于450或者试样过小时,不能采用布氏硬度试验而改用洛氏硬度计。
它是用一个顶角120°的金刚石圆锥体或直径为1.59、3.18mm的钢球,在一定载荷下压入被测材料表面,由压痕的深度求出材料的硬度。
根据试验材料硬度的不同,分三种不同的硬度标尺HRA:是采用60kg载荷和钻石锥压入器求得的硬度,用于硬度极高的材料(如硬质合金等)。
HRB:是采用100kg 载荷和直径1.58mm淬硬的钢球,求得的硬度,用于硬度较低的材料(如退火钢、铸铁等)。
HRC:是采用150kg载荷和钻石锥压入器求得的硬度,用于硬度很高的材料(如淬火钢等)。
一、布氏硬度实验【布氏硬度计】THBS-3000DA采用电子自动加荷,计算机软件编程,高倍率光学测量,采用自动数字式编码器直接测量,测试结果LCD显示。
图1 THBS-3000DA型布氏硬度试验机【试样的技术条件】1.试样的试验面,应制成光滑平面,不应有氧化皮及污物。
试验面应能保证压痕直径能精确测量,试样表面粗糙度Ra值一般不应大于0.8μm。
2.在试样制备过程中,应尽量避免由于受热及冷加工对试样表面硬度的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《机械工程测试技术基础》实验指导书实验一观测50Hz非正弦周期信号的分解与合成一、实验目的1、用同时分析法观测50Hz非正弦周期信号的频谱,并与其傅立叶级数各项的频率与系数作比较。
2、观测基波和其谐波的合成二、实验设备1、信号与系统实验箱:TKSS-A型或TKSS-B型或TKSS-C型:2、双综示波器。
三、实验原理1、一个非正弦周期函数可以用一系列频谱成整数倍的正弦函数来表示,其中与非正弦具有相同频率的成分称为基波或一次谐波,其它成分则根据其频率为基波频率的2、3、4、。
、n等倍数分别称二次、三次、四次、。
、n次谐波,其幅度将随谐波次数的增加而减小,直至无穷小。
2、不同频率的谐波可以合成一个非正弦周期波,反过来,一个非正弦周期波也可以分解为无限个不同频率的谐波成分。
3、一个非正弦周期函数可用傅立叶级数来表示,级数各项系数之间的关系可用一个频谱来表示,不同的非正弦周期函数具有不同的频谱图,各种不同波形及其傅氏级数表达式如下,方波频谱图如图2-1表示图2-1方波频谱图1、方波()⎪⎭⎫ ⎝⎛++++=K t t t t u t u m ωωωωπ7sin 715sin 513sin 31sin 4 2、三角波()⎪⎭⎫ ⎝⎛++-=Λt t t U t u m ωωωπ5sin 2513sin 91sin 82 3、半波()⎪⎭⎫ ⎝⎛+--+=Λt t t U t u m ωωωππ4cos 151cos 31sin 4212 4、全波()⎪⎭⎫ ⎝⎛+---=Λt t t U t u m ωωωπ6cos 3514cos 1512cos 31214 5、矩形波()⎪⎭⎫ ⎝⎛++++=Λt T t T t T U T U t u m mωτπωτπωτππτ3cos 3sin 312cos 2sin 21cos sin 2图中LPF 为低通滤波器,可分解出非正弦周期函数的直流分量。
BPF 1~BPF 6为调谐在基波和各次谐波上的带通滤波器,加法器用于信号的合成。
四、预习要求在做实验前必须认真复习教材中关于周期性信号傅立叶级数分解的有关内容。
五、实验内容及步骤1、调节函数信号发生器,使其输出50Hz 的方波信号,并将其接至信号分解实验模块BPF 的输入端,然后细调函数信号发生器的输出频率,使该模块的基波50Hz 成分BPF的输出幅度为最大。
图2-2 实验装置的结构2、将各带通滤波器的输出分别接至示波器,观测各次谐波的频率和幅制值,并列表记录之。
3、将方波分解所得的基波和三次谐波分量接至加法器的相应输入端,观测加法器的输出波形,并记录之。
4、在3的基础上,再按五次谐波分量加到加法器的输入端,观测相加后的波形,记录之。
5、分别将50Hz单相正弦半波、全波、矩形波和三角波的输出信号接至50Hz电信号分解与合成模块输入端、观测基波及各次谐波的频率和幅度,记录之。
6、将50Hz单相正弦半波、全波、矩形波和三角波的基波和谐波分量分别接至加法器的相应的输入端,观测求和器的输出波形,并记录之。
六、思考题1、什么样的周期性函数没有直流分量和余弦量。
2、分析理论合成的波形与实验观测的合成波形之间误差产生的原因。
七、实验报告1、根据实验测量所得的数据,在同一坐标纸上绘制方波及其分解后所得的基波和各次谐波的波形,画出其频谱图。
2、将所得的基波和三次谐波及其合成波形一同绘制在同一坐标纸,并且把实验3中观察到的合成波形也绘制在同一坐标纸上,便于比较。
4、回答思考题实验二金属箔式应变片――单臂电桥性能实验一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。
二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中:ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=ΔL/L为电阻丝长度相对变化。
金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化。
电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。
对单臂电桥输出电压U o1= EKε/4。
三、需用器件与单元:主机箱(±4V、±15V、电压表)、应变式传感器实验模板、1位数显万用表(自备)。
托盘、砝码、42图1 应变片单臂电桥性能实验安装、接线示意图四、实验步骤:应变传感器实验模板说明:实验模板中的R1、R2、R3、R4为应变片,没有文字标记的5个电阻符号下面是空的,其中4个组成电桥模型是为实验者组成电桥方便而设,图中的粗黑曲线表示连接线。
1、根据图1〔应变式传感器(电子秤传感器)已装于应变传感器模板上。
传感器中4片应变片和加热电阻已连接在实验模板左上方的R1、R2、R3、R4和加热器上。
传感器左下角应变片为R1;右下角为R2;右上角为R3;左上角为R4。
当传感器托盘支点受压时,R1、R3阻值增加,R2、R4阻值减小,可用四位半数显万用进行测量判别。
常态时应变片阻值为350Ω,加热丝电阻值为50Ω左右。
〕安装接线。
2、放大器输出调零:将图1实验模板上放大器的两输入端口引线暂时脱开,再用导线将两输入端短接(V i=0);调节放大器的增益电位器R W3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器R W4,使电压表显示为零。
3、应变片单臂电桥实验:拆去放大器输入端口的短接线,将暂时脱开的引线复原(见图1接线图)。
调节实验模板上的桥路平衡电位器R W1,使主机箱电压表显示为零;在应变传感器的托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g(或500 g)砝码加完。
记下实验结果填入表1画出实验曲线。
4、根据表1计算系统灵敏度S=ΔU/ΔW(ΔU输出电压变化量,ΔW重量变化量)和非线性误差δ,δ=Δm/y FS×100%式中Δm为输出值(多次测量时为平均值)与拟合直线的最大偏差:y FS 满量程输出平均值,此处为200g(或500g)。
实验完毕,关闭电源。
五、思考题:单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可以。
实验三金属箔式应变片—半桥性能实验一、实验目的:比较半桥与单臂电桥的不同性能、了解其特点。
二、基本原理:不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。
当应变片阻值和应变量相同时,其桥路输出电压U O2=EKε/2。
三、需用器件与单元:主机箱、应变式传感器实验模板、托盘、砝码。
四、实验步骤:1、将托盘安装到应变传感器的托盘支点上。
将实验模板差动放大器调零:用导线将实验模板上的±15v、⊥插口与主机箱电源±15v、⊥分别相连,再将实验模板中的放大器的两输入口短接(V i=0);调节放大器的增益电位器R W3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器R W4,使电压表显示为零。
图2 应变式传感器半桥接线图2、拆去放大器输入端口的短接线,根据图2接线。
注意R2应和R3受力状态相反,即将传感器中两片受力相反(一片受拉、一片受压)的电阻应变片作为电桥的相邻边。
调节实验模板上的桥路平衡电位器R W1,使主机箱电压表显示为零;在应变传感器的托盘上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到200g(或500 g)砝码加完。
记下实验数据填入表2画出实验曲线,计算灵敏度S2=U/W,非线性误差δ。
实验完毕,关闭电源。
表2重量电压三、思考题:1、半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在:(1)对边(2)邻边。
2、桥路(差动电桥)测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线性(2)应变片应变效应是非线性的(3)调零值不是真正为零。
实验四金属箔式应变片—全桥性能实验一、实验目的:了解全桥测量电路的优点。
二、基本原理:全桥测量电路中,将受力方向相同的两应变片接入电桥对边,相反的应变片接入电桥邻边。
当应变片初始阻值:R1=R2=R3=R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U03=KEε。
其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。
三、需用器件和单元:同实验二。
四、实验步骤:1、将托盘安装到应变传感器的托盘支点上。
将实验模板差动放大器调零:用导线将实验模板上的±15v、⊥插口与主机箱电源±15v、⊥分别相连,再将实验模板中的放大器的两输入口短接(V i=0);调节放大器的增益电位器R W3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器R W4,使电压表显示为零。
图3—1 全桥性能实验接线图2、拆去放大器输入端口的短接线,根据图3—1接线。
实验方法与实验二相同,将实验数据填入表3画出实验曲线;进行灵敏度和非线性误差计算。
实验完毕,关闭电源。
重量电压五、思考题:1、测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1=R3,R2=R4,而R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。
2某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如图3—2,如何利用这四片应变片组成电桥,是否需要外加电阻。
实验五直流全桥的应用—电子秤实验一、实验目的:了解应变直流全桥的应用及电路的标定。
二、基本原理:数字电子秤实验原理如图5,全桥测量原理。
本实验只做放大器输出UO 实验,通过对电路调节使电路输出的电压值为重量对应值,电压量纲(V)改为重量量纲(g)即成为一台原始电子秤。
图5 数字电子称原理框图三、需用器件与单元:主机箱、应变式传感器实验模板、砝码。
四、实验步骤:1、实验模板差动放大器调零:将实验模板上的±15v、⊥插口与主机箱电源±15v、⊥分别相连。
用导线将实验模板中的放大器两输入口短接(V i=0);调节放大器的增益电位器R W3大约到中间位置(先逆时针旋到底,再顺时针旋转2圈);将主机箱电压表的量程切换开关打到2V档,合上主机箱电源开关;调节实验模板放大器的调零电位器R W4,使电压表显示为零。
按图3-1直流全桥接线,合上主机箱电源开关,调节电桥平衡电位R W1,使数显表显示0.00V。
2、将10只砝码全部置于传感器的托盘上,调节电位器R W3(增益即满量程调节)使数显表显示为0.200V(2V档测量)或-0.200V。