PCB阻抗控制解决方案

合集下载

PCB阻抗设计与阻抗设计软件Polar的使用

PCB阻抗设计与阻抗设计软件Polar的使用

PCB阻抗设计与阻抗设计软件Polar的使用 随着 PCB 信号切换速度不断增长,当今的 PCB 设计厂商需要理解和控制 PCB 迹线的阻抗。

相应于现代数字电路较短的信号传输时间和较高的时钟速率,PCB 迹线不再是简单的连接,而是传输线。

在实际情况中,需要在数字边际速度高于1ns 或模拟频率超过300Mhz时控制迹线阻抗。

PCB 迹线的关键参数之一是其特性阻抗(即波沿信号传输线路传送时电压与电流的比值)。

印制电路板上导线的特性阻抗是电路板设计的一个重要指标,特别是在高频电路的PCB设计中,必须考虑导线的特性阻抗和器件或信号所要求的特性阻抗是否一致,是否匹配。

这就涉及到两个概念:阻抗控制与阻抗匹配,本文重点讨论阻抗控制和叠层设计的问题。

阻抗控制阻抗控制(eImpedance Controling),线路板中的导体中会有各种信号的传递,为提高其传输速率而必须提高其频率,线路本身若因蚀刻,叠层厚度,导线宽度等不同因素,将会造成阻抗值得变化,使其信号失真。

故在高速线路板上的导体,其阻抗值应控制在某一范围之内,称为―阻抗控制‖。

PCB 迹线的阻抗将由其感应和电容性电感、电阻和电导系数确定。

影响PCB走线的阻抗的因素主要有: 铜线的宽度、铜线的厚度、介质的介电常数、介质的厚度、焊盘的厚度、地线的路径、走线周边的走线等。

PCB 阻抗的范围是 25 至120 欧姆。

在实际情况下,PCB 传输线路通常由一个导线迹线、一个或多个参考层和绝缘材质组成。

迹线和板层构成了控制阻抗。

PCB 将常常采用多层结构,并且控制阻抗也可以采用各种方式来构建。

但是,无论使用什么方式,阻抗值都将由其物理结构和绝缘材料的电子特性决定:●信号迹线的宽度和厚度●迹线两侧的内核或预填材质的高度●迹线和板层的配置●内核和预填材质的绝缘常数PCB传输线主要有两种形式:微带线(Microstrip)与带状线(Stripline)。

微带线(Microstrip):微带线是一根带状导线,指只有一边存在参考平面的传输线,顶部和侧边都曝置于空气中(也可上敷涂覆层),位于绝缘常数 Er 线路板的表面之上,以电源或接地层为参考。

两层板(双面板)如何控制50欧特性阻抗的设计技巧

两层板(双面板)如何控制50欧特性阻抗的设计技巧

两层板(双面板)如何控制50欧特性阻抗的设计技巧我们都知道,在射频电路的设计过程中,走线保持50欧姆的特性阻抗是一件很重要的事情,尤其是在Wi-Fi产品的射频电路设计过程中,由于工作频率很高(2.4GHz或者5.8GHz),特性阻抗的控制就显得更加重要了。

如果特性阻抗没有很好的控制在50欧姆,那么将会给射频工程师的工作带来很大的麻烦。

什么是特性阻抗?是指当导体中有电子”讯号”波形之传播时,其电压对电流的比值称为”阻抗Impedance”。

由于交流电路中或在高频情况下,原已混杂有其它因素(如容抗、感抗等)的”Resistance”,已不再只是简单直流电的”欧姆电阻”(OhmicResistance),故在电路中不宜再称为”电阻”,而应改称为”阻抗”。

不过到了真正用到”Impedance阻抗”的交流电情况时,免不了会造成混淆,为了有所区别起见,只好将电子讯号者称为”特性阻抗”。

电路板线路中的讯号传播时,影响其”特性阻抗”的因素有线路的截面积,线路与接地层之间绝绿材质的厚度,以及其介质常数等三项。

目前已有许多高频高传输速度的板子,已要求”特性阻抗”须控制在某一范围之内,则板子在制造过程中,必须认真考虑上述三项重要的参数以及其它配合的条件。

两层板如何有效的控制特性阻抗?在四层板或者六层板的时候,我们一般会在顶层(top)走射频的线,然后再第二层会是完整的地平面,这样顶层和第二层的之间的电介质是很薄的,顶层的线不用很宽就可以满足50欧姆的特性阻抗(在其他情况相同的情况下,走线越宽,特性阻抗越小)。

但是,在两层板的情况下,就不一样了。

两层板时,为了保证电路板的强度,我们不可能用很薄的电路板去做,这时,顶层和底层(参考面)之间的间距就会很大,如果还是用原来的办法控制50欧姆的特性阻抗,那么顶层的走线必须很宽。

例如我们假设板子的厚度是39.6mil(1mm),按照常规的做法,在Polar中设计,如下图线宽70mil,这是一个近乎荒谬的结论,简直令人抓狂。

PCB阻抗控制

PCB阻抗控制

PCB阻抗PCB阻抗控制,在PCB设计中经常遇到阻抗计算,但是我不明白阻抗计算是计算整板PCB的阻抗还是几个部分的阻抗PCB阻抗,在PCB设计中经常遇到阻抗计算,但是我不明白阻抗计算是计算整板PCB的阻抗还是几个部分的阻抗:如我有差分阻抗,单线阻抗。

那到底该采用哪些数值呢?可能几个部分的阻抗都不一样在同一PCB板上?这样的话该计算哪个阻抗来作为PCB的阻抗呢!完整性最佳。

是不是每个地方阻抗不一样,我得告诉PCB厂商,这个地方阻抗做多少,哪个地方阻抗做多少啊,比如:USB2.0差分做成90欧姆,DDR与DSP连接线做成多少欧姆,和时钟线做成多少欧姆等等啊?这样的话是不是要详细说明多处的阻抗要求。

关键布线部分是要给出详细的设计要求的,设计时的阻抗大小,是通过仿真软件,使信号完整性达到最好状态下,得到的。

根据仿真结果,可以得到该信号线的线长,线宽,线间距,在那层布线,串接多大的匹配电阻等要求,然后仿真设计人员将此仿真结果交给PCB LAUOUT设计人员,PCB LAUOUT设计人员会根据此要求进行PCB布线设计,设计完毕后的PCB文件生成为GERBER文件,送给PCB制造厂商即可制造出相应的PCB。

1.阻抗控制是控制信号线的阻抗,不是整板PCB的阻抗2.差分阻抗是两条差分信号的阻抗,单线阻抗是单一信号的阻抗。

如USB 2.0要做差分90欧姆,射频信号线一般做单线50欧姆等等。

哪些线要做阻抗控制,控制为多少,一般每个硬件平台都有自己的要求。

3.没有PCB阻抗这种说法,只有信号的阻抗。

电路设计中,差分信号的两条差分线能不能交换顺序?题目说的有些笼统,主要是想知道哪些是可以交换的,为什么,哪些是不可以交换的,又是为什么?还有差分线之间跨加100ohm或12 0ohm的电阻的作用是什么,是阻抗匹配还是将电流转换为电压?各位大牛,ths了会变小。

差分信号实际传输是电压还是电流,什么差分信号,说的通俗一点,差分信号时属于数字信号吗进一步看是以电压为的标准的能量信号,若内阻小,就可以带多个负载(电流大)。

高速数字电路PCB设计中的阻抗控制

高速数字电路PCB设计中的阻抗控制

环测威官网:/阻抗控制技术在高速数字电路设计中非常重要,其中必须采用有效的方法来确保高速PCB 的优异性能。

PCB上高速电路传输线的阻抗计算及阻抗控制•传输线上的等效模型图1显示了传输线对PCB的等效影响,这是一种包括串联和多电容,电阻和电感(RLGC 模型)的结构。

串联电阻的典型值在0.25至0.55欧姆/英尺的范围内,并且多个电阻器的电阻值通常保持相当高。

随着PCB传输线中增加的寄生电阻,电容和电感,传输线上的总阻抗被称为特征阻抗(Z 0)。

在线直径大,线接近电源/接地或介电常数高的条件下,特征阻抗值相对较小。

图3示出了具有长度dz的传输线的等效模型,基于该模型,传输线的特征阻抗可以推导为公式:。

在这个公式中,L“传感线”是指传输线上每个单位长度的电感,而C是指传输线上每个单位长度的电容。

环测威官网:/在上面的公式中,Z 0表示阻抗(欧姆),W表示线的宽度(英寸),T表示线的粗细(英寸),H表示到地面的距离(英寸),是指衬底的相对介电常数,t PD是指延迟时间(ps / inch)。

•传输线的阻抗控制布局规则基于上述分析,阻抗和信号的单位延迟与信号频率无关,但与电路板结构,电路板材料的相对介电常数和布线的物理属性有关。

这一结论对于理解高速PCB和高速PCB设计非常重要。

而且,外层信号传输线的传输速度比内层传输速度快得多,因此关键线布局的排列必须考虑这些因素。

阻抗控制是实现信号传输的重要前提。

但是,根据传输线的电路板结构和阻抗计算公式,阻抗仅取决于PCB材料和PCB层结构,同一线路的线宽和布线特性不变。

因此,线路的阻抗在PCB的不同层上不会改变,这在高速电路设计中是不允许的。

本文设计了一种高密度高速PCB,板上大多数信号都有阻抗要求。

例如,CPCI信号线的阻抗应为650欧姆,差分信号为100欧姆,其他信号均为50欧姆。

根据PCB布线空间,必须使用至少十层布线,并确定16层PCB设计方案。

由于电路板的整体厚度不能超过2mm,因此在堆叠方面存在一些困难,需要考虑以下问题:1)。

PCB的阻抗设计

PCB的阻抗设计

PCB的阻抗设计PCB(Printed Circuit Board,印刷电路板)是电子产品中最重要的组成部分之一,其设计和制造质量直接影响产品的性能和可靠性。

阻抗设计是PCB设计的一个重要方面,它涉及到电路板的层间耦合、反射和传播延迟等参数。

在本文中,我将详细介绍PCB阻抗设计的原理、方法和注意事项。

首先,我们需要了解阻抗的定义。

在电学中,阻抗是指电流和电压之间的比率。

对于PCB来说,阻抗特指信号的电流和电压在PCB导线上的传播特性。

设计阻抗是为了确保信号在PCB上以期望的速度传播,并减少信号的反射和干扰。

阻抗设计的首要目标是匹配信号源和负载的阻抗。

信号源的输出阻抗和负载的输入阻抗应该与PCB设计的阻抗相匹配。

这样,信号能够完全传输到负载端,减少信号的反射和失真。

PCB阻抗设计的方法主要包括以下几个方面:1.选择合适的PCB材料:PCB材料对阻抗有很大的影响。

不同的材料具有不同的介电常数和介电损耗因子,会导致不同的信号传播速度和阻抗特性。

因此,在PCB阻抗设计中,应选择合适的材料以满足要求的阻抗。

2.控制PCB线宽和线间距:PCB线宽和线间距的选择也会影响阻抗。

一般来说,线宽越宽,阻抗越低,线间距越宽,阻抗越高。

因此,在设计PCB时,需要根据要求的阻抗选择合适的线宽和线间距。

3.添加阻抗控制结构:为了实现特定的阻抗,可以在PCB设计中添加阻抗控制结构,如阻抗微带线、差分线和阻抗转换器等。

这些结构可以在特定位置和距离上调整阻抗。

4.使用阻抗计算工具:在PCB阻抗设计中,可以使用专门的阻抗计算工具来计算和模拟阻抗。

这些工具可以帮助设计师根据所选材料和几何参数来优化阻抗。

此外,在进行PCB阻抗设计时,还需要注意以下几个方面:1.阻抗的一致性:在整个PCB中,同一条信号线的阻抗应保持一致,以避免信号的干扰和失真。

这要求PCB上的线宽和线间距要一致,并且要控制好线的长度。

2.制造工艺影响:PCB阻抗设计并不仅仅是在设计阶段进行的,而且还需要考虑到制造工艺对阻抗的影响。

PCB结构加工流程线路阻抗控制线路阻抗计算介绍forupdate

PCB结构加工流程线路阻抗控制线路阻抗计算介绍forupdate
性来决定,其Dk 值可由下列公式估算: Dk=6.01-3.34RC% RC%: 树脂含量 %
在估算阻抗时所使用的Dk 值,可依据胶片RC%作推算。
PCB线路阻抗控制
3、PCB加工过程层压带来的流胶率的偏差
PP填胶后的实际厚度计算如下: PP压合后厚度= 单张PP理论厚度 – 填胶损失 填胶损失 = (1-A面内层铜箔残铜率)x内层铜箔厚度 + (1-B面内层铜箔残铜率)x内层
PCB结构加工流程线路阻抗控制线 路阻抗计算介绍forupdate
PCB 结构
Summary
PCB 加工流程
PCB 线路阻抗控制
PCB 线路阻抗计算方法
PCB结构
PCB的板材
覆铜板(copper clad laminate,简写为CCL)是由木浆纸或玻纤布等作为增强材料, 浸以树脂,单面或双面覆以铜箔,经热压而成的一种板状材料。覆铜板的结构包 括了基板、铜箔、覆铜板粘合剂等。当它用于多层板生产时,也叫芯板(CORE) 。
PCB加工流程
PCB加工流程介绍
内层蚀刻(DES流程):显影→蚀刻→退膜 外层蚀刻(SES流程):显影→镀铜镀锡→退膜→蚀刻→退锡 为什么PCB内外层蚀刻方法不一样? 内层一般线宽线距较大,故有足够的孔环间距; 外层一般线路较密,空间不够,所以这个时候就需要想办法在不够的空间内达到做
出线路的目的。碱性蚀刻的能力可以达到1~2mil的孔环,但是酸性蚀刻则需要 5mil左右,所以就必须使用锡将需要的线路先保护起来。 内层蚀刻用干膜作为抗蚀层,而这种感光材料相对而言耐酸不耐碱的特性,故内层 用酸性蚀刻。
蚀刻因子=蚀刻线厚/[(抗蚀层宽度-最窄线宽)/2] 蚀刻过程的三种状态是:过度蚀刻、正常蚀刻和蚀刻不足。

PCB及电路抗干扰措施

PCB及电路抗干扰措施

PCB及电路抗干扰措施PCB(Printed Circuit Board,印刷电路板)是电子产品中常见的一种基础组件,用于支撑和连接电子元器件。

在设计和制造PCB时,为了保证电路的稳定性和可靠性,需要采取一系列的抗干扰措施。

首先,对于信号线的定位和布线需要谨慎考虑。

对于高频信号线和低频信号线,应尽量避免在布线过程中产生交叉和平行,同时应尽量使信号线和地线、电源线保持一定的间距,减小相互之间的干扰。

其次,对于电源线的设计,应采取合适的滤波措施。

通过设置电源滤波器,可以有效地滤除电源线上的高频噪声,保证电路的稳定供电。

此外,应尽量避免共地和共电源现象的产生,即将高频和低频电源线分开布局,减少相互之间的相互干扰。

另外,在PCB的设计中,需要合理规划和设置地面层。

地面层在PCB上起到了很重要的作用,可以提供稳定的工作参考电平,同时还可以起到屏蔽和散热的作用。

在地面层设计中,可以采取大面积连接的方式,将地面层与信号层、电源层等连接起来,形成一个完整的电流环路,减少干扰的产生。

此外,在PCB的布局和连接中,还可以采取差分信号传输技术。

差分信号传输是一种通过两个相反但幅度相等的信号进行数据传输的方式,可以有效抵消传输过程中的共模干扰和噪声。

对于差分信号线,需要尽量保持两条信号线的长度、间距和走线方式一致,减小差分信号线之间的不平衡和失配。

此外,在PCB的设计过程中,还可以采用屏蔽罩和屏蔽设备来进行电磁屏蔽。

屏蔽罩通常由导电材料制成,可以用于保护敏感的设备和信号线不受来自外部的电磁干扰。

同时,在PCB上的敏感电路和元器件周围,可以设置合适的屏蔽罩或屏蔽设备,进一步提高电路的抗干扰性能。

最后,还可以通过设计适当的接地和继电器等控制装置来提高PCB的抗干扰能力。

良好的接地设计可以减少接地回路的阻抗,提供稳定的接地参考电平。

通过合理选择和设计继电器,可以实现对敏感电路的切断和隔离,避免干扰源对电路的影响。

综上所述,PCB及电路的抗干扰措施涉及信号线的布线定位、电源线的滤波设计、地面层的设置、差分信号传输、屏蔽设备的应用、接地设计和继电器等。

PCB差分走线的阻抗控制技术(一)

PCB差分走线的阻抗控制技术(一)

PCB差分⾛线的阻抗控制技术(⼀)⼀、引⾔为了提⾼传输速率和传输距离,计算机⾏业和通信⾏业越来越多的采⽤⾼速串⾏总线。

在芯⽚之间、板卡之间、背板和业务板之间实现⾼速互联。

这些⾼速串⾏总线的速率从以往USB2.0、LVDS以及FireWire1394的⼏百Mbps到今天的PCI-Express G1/G2、SATA G1/G2 、XAUI/2XAUI、XFI的⼏个Gbps乃⾄10Gbps。

计算机以及通信⾏业的PCB客户对差分⾛线的阻抗控制要求越来越⾼。

这使PCB⽣产商以及⾼速PCB设计⼈员所⾯临的前所未有的挑战。

本⽂结合PCB⾏业公认的测试标准IPCTM-650⼿册,重点讨论真差分TDR测试⽅法的原理以及特点。

⼆、IPC-TM-650⼿册以及PCB特征阻抗测试背景IPC-TM-650测试⼿册是⼀套⾮常全⾯的PCB⾏业测试规范,从PCB的机械特性、化学特性、物理特性、电⽓特性、环境特性等各⽅⾯给出了⾮常详尽的测试⽅法以及测试要求。

其中PCB板电⽓特性要求在第2.5节中描述,⽽其中的2.5.5.7a,则全⾯的介绍了PCB特征阻抗测试⽅法和对相应的测试仪器要求,重点包括单端⾛线和差分⾛线的阻抗测试。

三、TDR的基本原理及IPC-TM-650对TDR设备的基本要求3.1 TDR的基本原理图1是⼀个阶跃信号在传输线(如PCB的⾛线)上传输时的⽰意图。

⽽传输线是通过电介质与GND分隔的,就像⽆数个微⼩的电容的并联。

电信号到达某个位置时,就会令该位置上的电压产⽣变化,就像是给电容充电。

因此,传输线在此位置上是有对地的电流回路的,因此就有阻抗的存在。

但是该阻抗只有阶跃信号⾃⾝才能“感觉到”,这就是我们所说的特征阻抗。

当传输线上出现阻抗不连续的现象时,在阻抗变化的地⽅阶跃信号就会产⽣反射的现象,如果将反射信号进⾏取样并显⽰在⽰波器的屏幕上,就会得出如图2所⽰的波形,从波形中我们可以看出⼀条被测试的传输线在不同位置上的阻抗变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

PCB阻抗控制解决方案
随着PCB 信号切换速度不断增长,当今的PCB 设计厂商需要理解和控制PCB 迹线的阻抗。

相应于现代数字电路较短的信号传输时间和较高的时钟速率,PCB 迹线不再是简单的连接,而是传输线。

在实际情况中,需要在数字边际速度高于1ns或模拟频率超过300Mhz时控制迹线阻抗。

PCB 迹线的关键参数之一是其特性阻抗(即波沿信号传输线路传送时电压与电流的比值)。

印制电路板上导线的特性阻抗是电路板设计的一个重要指标,特别是在高频电路的PCB设计中,必须考虑导线的特性阻抗和器件或信号所要求的特性阻抗是否一致,是否匹配。

这就涉及到两个概念:阻抗控制与阻抗匹配,本文重点讨论阻抗控制和叠层设计的问题。

阻抗控制
阻抗控制(eImpedance Controling),线路板中的导体中会有各种信号的传递,为提高其传输速率而必须提高其频率,线路本身若因蚀刻,叠层厚度,导线宽度等不同因素,将会造成阻抗值得变化,使其信号失真。

故在高速线路板上的导体,其阻抗值应控制在某一范围之内,称为阻抗控制。

PCB 迹线的阻抗将由其感应和电容性电感、电阻和电导系数确定。

影响PCB走线的阻抗的因素主要有:铜线的宽度、铜线的厚度、介质的介电常数、介质的厚度、焊盘的厚度、地线的路径、走线周边的走线等。

PCB 阻抗的范围是25 至120 欧姆。

在实际情况下,PCB 传输线路通常由一个导线迹线、一个或多个参考层和绝缘材质组成。

迹线和板层构成了控制阻抗。

PCB 将常常采用多层结构,并且控制阻抗也可以采用各种方式来构建。

但是,无论使用什么方式,阻抗值都将由其物理结构和绝缘材料的电子特性决定:
信号迹线的宽度和厚度
迹线两侧的内核或预填材质的高度。

相关文档
最新文档