物理化学第三章
《物理化学》第三章 热力学第二定律PPT课件

例一:理想气体自由膨胀
原过程:Q=0,W=0,U=0, H=0
p2,V2
体系从T1,p1,V1 T2, 气体
真空
复原过程:
复原体系,恒温可逆压缩
WR
RT1
ln
V2 ,m V1,m
环境对体系做功
保持U=0,体系给环境放热,而且 QR=-WR
表明当体系复原时,在环境中有W的功变为Q的热,因 此环境能否复原,即理想气体自由膨胀能否成为可逆 过程,取决于热能否全部转化为功,而不引起任何其 他变化。
它们的逆过程都不能自动进行。当借助外力,系统 恢复原状后,会给环境留下不可磨灭的影响。
•化学反应 Zn+H2SO4等?
如图是一个典型的自发过程
小球
小球能量的变化:
热能
重力势能转变为动能,动能转化为热能,热传递给地面和小球。
最后,小球失去势能, 静止地停留在地面。此过程是不可逆转的。 或逆转的几率几乎为零。
能量转化守恒定律(热力学第一定律)的提出,根本上宣布 第一类永动机是不能造出的,它只说明了能量的守恒与转化及 在转化过程中各种能量之间的相互关系, 但不违背热力学第一 定律的过程是否就能发生呢?(同学们可以举很多实例)
热力学第一定律(热化学)告诉我们,在一定温度 下,化学反应H2和O2变成H2O的过程的能量变化可用U(或H) 来表示。
热力学第二定律(the second law of thermodynamics)将解答:
化学变化及自然界发生的一切过程进行 的方向及其限度
第二定律是决定自然界发展方向的根本 规律
学习思路
基本路线与讨论热力学第一定律相似, 先从人们在大量实验中的经验得出热力学第 二定律,建立几个热力学函数S、G、A,再 用其改变量判断过程的方向与限度。
大学物理化学 第三章 多组分系统热力学习指导及习题解答

RT Vm p A Bp
积分区间为 0 到 p,
RT
p
d ln
f=
(p RT
A Bp)dp
0
0p
RT p d ln( f )= (p A Bp)dp Ap 1 Bp2
0
p0
2
因为
lim ln( f ) 0 p0 p
则有
RT ln( f )=Ap 1 Bp2
为两相中物质的量浓度,K 为分配系数。
萃取量
W萃取
=W
1
KV1 KV2 V2
n
二、 疑难解析
1. 证明在很稀的稀溶液中,物质的量分数 xB 、质量摩尔浓度 mB 、物质的量浓度 cB 、质量分数 wB
之间的关系: xB
mBM A
MA
cB
MA MB
wB 。
证明:
xB
nA
nB nB
nB nA
)pdT
-S
l A,m
dT
RT xA
dxA
-S(mg A)dT
-
RT xA
dxA =
S(mg A)-S
l A,m
dT
Δvap Hm (A) T
dT
-
xA 1
dxA = xA
Tb Tb*
Δvap Hm (A) R
dT T2
若温度变化不大, ΔvapHm 可视为常数
- ln
xA =
Δvap Hm (A) R
真实溶液中溶剂的化学势 μA μ*A(T, p) RT ln γx xA =μ*A(T, p) RT ln aA,x
真实溶液中溶质 B μB μB* (T, p) RT ln γx xB =μ*A(T, p) RT ln aB,x
物理化学第三章(简)

(10)
有简并度时定域体系的微态数
S 定位=kN ln ∑ g i e
i
− ε i / kT
U + T
− ε i / kT
A定位= − NkT ln ∑ g i e
i
有简并度时离域体系的微态数
同样采用最概然分布的概念, 同样采用最概然分布的概念,用Stiring公 公 式和Lagrange乘因子法求条件极值,得到微态 乘因子法求条件极值, 式和 乘因子法求条件极值 数为极大值时的分布方式 N i* 离域子)为: (离域子)
)N
N!
U + T
A非定位= − kT ln
(∑ g i e −ε i / kT ) N
i
N!
Boltzmann公式的其它形式
能级上粒子数进行比较, 将 i 能级和 j 能级上粒子数进行比较,用最概然分布公式相 比,消去相同项,得: 消去相同项,
− ε i / kT
N gi e = − ε j / kT N g je
简并度增加,将使粒子在同一能级上的微态数增加。 简并度增加,将使粒子在同一能级上的微态数增加。
有简并度时定域体系的微态数
个粒子的某定位体系的一种分布为: 设有 N 个粒子的某定位体系的一种分布为:
能级 各能级简并度 一种分配方式
ε1 , ε 2 , ⋅ ⋅⋅, ε i
g1 , g 2 , ⋅ ⋅⋅, gi N1 , N 2 , ⋅ ⋅⋅, N i
等概率假定
对于U, 确定的某一宏观体系, 对于 V 和 N 确定的某一宏观体系,任何一个可能出 现的微观状态, 有相同的数学概率, 现的微观状态 , 都 有相同的数学概率 , 所以这假定又称为 等概率原理。 等概率原理。 等概率原理是统计力学中最基本的假设之一 , 它与求 等概率原理 是统计力学中最基本的假设之一, 是统计力学中最基本的假设之一 平均值一样,是平衡态统计力学理论的主要依据。 平均值一样,是平衡态统计力学理论的主要依据。 例如,某宏观体系的总微态数为 Ω ,则每一种微观状态 P 例如, 出现的数学概率都相等, 出现的数学概率都相等,即:
《物理化学》第三章(化学平衡)知识点汇总

第三章:化学平衡
第三章 化学平衡
化学反应的平衡条件
aA dD
dG SdT Vdp B dnB
B
gG hH
等温等压条件下:
AdnA DdnD GdnG HdnH
dG BdnB
B
35
根据反应进度的定义:
d
$
化学反应的等温方程式
40
平衡常数表示法
一、理想气体反应标准平衡常数
K$
pG pH p$ p$ eq eq p A pD p$ p$ eq eq
a d
g
h
K $ (1)
pNH3 $ p
g h nG nH a d nA nD
项减小,温度不变时, K
$
为一常数,则
项增大,平衡向右移动。
谢谢观看!!!
p Kn K p nB B
Kn
与温度、压力及配料比有关
45
复相化学反应 在有气体、液体及固体参与的多相体系中,如果凝聚相 (固相及液相)处于纯态而不形成固溶体或溶液,则在常 压下,压力对凝聚相的容量性质的影响可以忽略不计,凝 p p CaCO (s) CaO(s) CO ( g ) K p p 聚相都认为处于标准态。因此,在计算平衡常数时只考虑 气相成分。
$
$ ln K $ r H m 0, 0 T $ d ln K $ 0 r H m 0, dT
$ ln K $ r H m T RT 2 p
K $ 随温度的升高而增加 K
$
随温度的升高而降低
物理化学第三章课后答案完整版

第三章热力学第二定律3.1 卡诺热机在的高温热源和的低温热源间工作。
求(1)热机效率;(2)当向环境作功时,系统从高温热源吸收的热及向低温热源放出的热。
解:卡诺热机的效率为根据定义3.2 卡诺热机在的高温热源和的低温热源间工作,求:(1)热机效率;(2)当从高温热源吸热时,系统对环境作的功及向低温热源放出的热解:(1) 由卡诺循环的热机效率得出(2)3.3 卡诺热机在的高温热源和的低温热源间工作,求(1)热机效率;(2)当向低温热源放热时,系统从高温热源吸热及对环境所作的功。
解:(1)(2)3.4 试说明:在高温热源和低温热源间工作的不可逆热机与卡诺机联合操作时,若令卡诺热机得到的功r W 等于不可逆热机作出的功-W 。
假设不可逆热机的热机效率大于卡诺热机效率,其结果必然是有热量从低温热源流向高温热源,而违反势热力学第二定律的克劳修斯说法。
证: (反证法) 设 r ir ηη>不可逆热机从高温热源吸热,向低温热源放热,对环境作功则逆向卡诺热机从环境得功从低温热源吸热向高温热源放热则若使逆向卡诺热机向高温热源放出的热不可逆热机从高温热源吸收的热相等,即总的结果是:得自单一低温热源的热,变成了环境作功,违背了热力学第二定律的开尔文说法,同样也就违背了克劳修斯说法。
3.5 高温热源温度,低温热源温度,今有120KJ的热直接从高温热源传给低温热源,求此过程。
解:将热源看作无限大,因此,传热过程对热源来说是可逆过程3.6 不同的热机中作于的高温热源及的低温热源之间。
求下列三种情况下,当热机从高温热源吸热时,两热源的总熵变。
(1)可逆热机效率。
(2)不可逆热机效率。
(3)不可逆热机效率。
解:设热机向低温热源放热,根据热机效率的定义因此,上面三种过程的总熵变分别为。
3.7 已知水的比定压热容。
今有1 kg,10℃的水经下列三种不同过程加热成100 ℃的水,求过程的。
(1)系统与100℃的热源接触。
(2)系统先与55℃的热源接触至热平衡,再与100℃的热源接触。
物理化学 第三章 多组分系统热力学

B
B
<0 自发 =0 可逆
结论:如果B组分在 相中的化学势比在 相 中的化学势低,那么,B物质由 相向 相迁
移是自发过程。如果B组分在两相中的化学势相 等,则B组分在两相中达平衡。宏观上迁移停止。
,V m乙醇
58 35cm3
mol 1
那么两种液体以任意比例混合
时,总体积值不等。如0.5mol的水和 0.5mol
的乙醇混合.
总体积 :
V 051809 055835 38 22cm3
V=37.2cm3
乙醇的 质量分数
V乙醇 cm3
0.10 12.67
0.20 25.34
0.30 38.01
变化为多少?已知25℃时甲醇和水的密度分别
为 甲醇 07911g cm3 水 09971g cm3
解:混合 Vm,CH3OH 3901cm3 mol1
Vm,H2O 1735cm3 mol1
V混 n1V1 n2V2 0 617 35 0 439 01 26 01cm3
混合前
V未
n1VH2 O
dGT、P=∑μBdnB≤0 判据应用举例:
<0 自发 =0 可逆
1.相变过程
假如系统中有 、 两相,其中都有B组分,在恒温
恒压下处于某种状态,设B组分在 、 相的化学势为
B
和
B
,有dnB物质从
向 相 迁移则
dG
B
dnB
dG B dnB
dGTp dG dG (B B )dnB
dnB 0
0.40 50.68
0.50 63.35
0.60 76.02
0.70 88.69
0.80 101.36
物理化学第三章化学平衡

恒压下两边对T求导得
rG m / T T
R
d ln K dT
rH T
2
m
即
d ln K dT
rH m RT
2
――等压方程微分式
3-5 化学反应等压方程―K 与温度的关系
二、积分式 设ΔrHm 不随温度变化,前式积分得:
ln K T
为比较金属与氧的亲和力,不是用氧化物的ΔfGm 而
是用金属与1mol氧气作用生成氧化物时的ΔGm :
2x y
M (s) O 2 ( g )
2 y
M xO
y
常见氧化物的 G m T 参见下图。
Gm T
3-8
0 -100 -200 -300 -400
图及其应
Fe3O4 Co K Zn Cr Na Mn V C CO Al Ni
3-2 复相化学平衡
(1)ΔrGm (298)==178-298×160.5×10-3=130.2(kJ/mol)
p(CO2)/p = K = exp(-
130 . 2 1000 8 . 314 298
)=1.5x10-23
p(CO2)= 1.5×10-18(Pa)
(2) ΔrGm (1110)=178-1110×160.5×10-3=0
3-7 平衡组成的计算
二、已知平衡组成计算平衡常数
例题:在721℃、101325Pa时,以H2 还原氧化钴(CoO) ,测得平衡气相中H2的体积分数为0.025;若以CO还原 ,测得平衡气相中CO的体积分数0.0192。求此温度下 反应 CO(g)+H2O(g)=CO2(g)+H2(g) 的平衡常数。 分析:乍一看所求反应与题给条件无关,但将两个还 原反应写出来,可以找到他们之间的关系。
物理化学 第三章 热力学第二定律

“>” 号为不可逆过程 “=” 号为可逆过程
克劳修斯不等式引进的不等号,在热力学上可以作 为变化方向与限度的判据。
dS Q T
dSiso 0
“>” 号为不可逆过程 “=” 号为可逆过程
“>” 号为自发过程 “=” 号为处于平衡状态
因为隔离体系中一旦发生一个不可逆过程,则一定 是自发过程,不可逆过程的方向就是自发过程的方 向。可逆过程则是处于平衡态的过程。
二、规定熵和标准熵
1. 规定熵 : 在第三定律基础上相对于SB* (0K,完美晶体)= 0 , 求得纯物质B要某一状态的熵.
S(T ) S(0K ) T,Qr
0K T
Sm (B,T )
T Qr
0K T
2. 标准熵: 在标准状态下温度T 的规定熵又叫 标准熵Sm ⊖(B,相态,T) 。
则:
i
Q1 Q2 Q1
1
Q2 Q1
r
T1 T2 T1
1 T2 T1
根据卡诺定理:
i
r
不可逆 可逆
则
Q1 Q2 0 不可逆
T1 T2
可逆
对于微小循环,有 Q1 Q2 0 不可逆
T1 T2
可逆
推广为与多个热源接触的任意循环过程得:
Q 0
T
不可逆 可逆
自发过程的逆过程都不能自动进行。当借助 外力,体系恢复原状后,会给环境留下不可磨灭 的影响。自发过程是不可逆过程。
自发过程逆过程进行必须环境对系统作功。
例:
1. 传热过程:低温 传冷热冻方机向高温 2. 气体扩散过程: 低压 传压质缩方机向高压 3. 溶质传质过程: 低浓度 浓差传电质池方通向电高浓度 4. 化学反应: Cu ZnSO4 原反电应池方电向解 Zn CuSO4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§3.2 化学势
定义:
B
GB
G (
nB
)T , p,nC (CB)
保持温度、压力和除B以外的其它组分不变, 体系的Gibbs函数随 n 的变化率称为化学势,所以 化学势就是偏摩尔Gibbs函数。
B
等于零时:平衡 小于零时:自发
在恒温恒压下如任一物质在两相中具有相同
的分子形式,但化学势不等,则相变化自发进行
的方向必然是朝着化学势减少的方向进行;如化
学势相等,则两相处于相平衡状态。
( ) ( )
现考察一个系统,有α和β两相, 在定温定压下,有dni的i物质从α 相自发转移到β相:
dG dG( ) dG( ) [i ( ) i ( )]dni p 0
4、偏摩尔量的集合公式
如果系统由A和B两种组分组成,它们的物质的量分别为nA 和nB,在定温定压下往系统中加入dnA和dnB的A和B时,系 统的某个容量性质X的变化可表示为:
dX X AdnA X BdnB
如果连续不断地向系统中加入dnA和dnB,且保持初始比例, 则上式可积分为:
X
dX
B
dG SdT Vdp BdnB
B
适用于组成可变的多组分单相系统
化学势的其他表示法
B
( U nB
) S ,V ,nC (CB)
H ( nB
)S , p,nC (CB)
(
A nB
)T
,V
,nC
(CB
)
(
G nB
)T
,
p , nC
(CB
)
这四个偏导数中只有最后一个才是偏摩尔
量,其余三个均不是偏摩尔量。
以体积为例
2.偏摩尔量的定义与物理意义
对容量性质X, 根据状态函数的基本假定
X X (T , p, nB , nC , nD )
X
X
X
dX
T
p,nB ,nC
dT
p
T ,nB ,nC
dp
B
nB
T , p,nC
dnB
偏摩尔量
X B def
X nB
T , p,nC
2.多组分多相系统的热力学公式
dU TdS pdV B ( )dnB ( ) B
dH TdS Vdp B ( )dnB ( ) B
dA SdT pdV B ( )dnB ( ) B
dG SdT Vdp B ( )dnB ( ) B
适用于只做体积功时的任何可逆或不可逆过程
H nB HB B
A nB AB B
S nB SB B
G nBGB B
U
UB
( nB
)T , p,nC (CB )
H
HB
( nB
)T , p,nC (CB)
A
AB
( nB
)T , p,nC (CB )
S
SB
( nB
)T , p,nC (CB )
= G
GB
( nB
)T , p,nC (CB)
0
XA
nA 0
dnA
X
B
nB 0
dnB
X X AnA X BnB
如果以X=V,上式即为:
V VAnA VBnB
当系统由多种物质组成时,则:
k
X n1X1 n2 X 2 ni X i i 1
上式称为多组分均相系统中偏摩尔量的集合公式。
5.同一组分的各种偏摩尔量之间的函数关系 HB UB pVB , AB UB TSB ,GB HB TSB
3.化学势判据及应用举例
dG SdT Vdp B ( )dnB ( )
B
适用于封闭系统
只做体积功时相
B ( )dnB ( ) 0
B
变化和化学变化 的平衡判据
dU S ,V
dH S, p dAT ,V
B ( )dnB ( ) 0
B
dGT , p
化学势判据
B ( )dnB ( ) 0
物理化学
第三章 化学势
Chemical Potential
第三章 化学势
§3.1 偏摩尔量 §3.2 化学势 §3.3 气体物质的化学势 §3.4 理想溶液中物质的化学势 §3.5 稀溶液中物质的化学势 §3.6 不挥发性溶质稀溶液的依数性
引言
§31 偏摩尔量
1.问题的提出
无论什么体系,体系质量总是等于构成该体 系各物质的质量的总和。其它广度性质(如体积、 内能等)在纯物质体系具有与质量相同的这种性质; 等温等压下将多种纯物质混合形成多组分体系,往 往伴随有广度性质的变化。
B
3.偏摩尔量的测定法举例
以二组分体系的偏摩尔体积为例,说明 测定偏摩尔量的方法原理
Vm
V n1 n2
n1V1,m n2V2,m n1 n2
ห้องสมุดไป่ตู้
X1V1,m
X V2 2,m
偏摩尔量的实验测定
◆图解法 切线法
只有系统的容量性质才有偏摩尔量,系统的 强度性质是没有偏摩尔量。
只有在定温定压条件下才称为偏摩尔量,其 它条件下的不是。
1.多组分单相系统的热力学公式
U U (S, V , nB , nC , nD )
其全微分dU
( U S
)V ,nB
dS
( U V
)S ,nB dV
B
U ( nB )S ,V ,nC (CB) dnB
即:
dU TdS pdV BdnB
B
dH TdS Vdp BdnB
B
dA SdT pdV BdnB
X
X
dX
T
p,nB
dT
p
T ,nB
dp
B
X BdnB
偏摩尔量的性质
偏摩尔量是在系统恒定T,p和其它物质的量不变 时,改变1mol物质B引起的系统容量性质X的变化。
X X (T , p, nB , nC , nD )
对纯组分系统 来说偏摩尔量就是它的摩尔量。
一般式有
U nBUB B
i ( ) f i ( )
§3.3 气体物质的化学势
化学势是T,p的函数。 温度为T,压力 为标准压力时理想气体的状态,这个状态就 是气体的标准态。该状态下的化学势称为标 准化学势,以 (g)表示。
1.纯理想气体的化学势
B(pg, p ) B(pg, p)
(g)
* (pg )
*
p
d p Vmdp
p p
RT dp p
*(pg) (g) RT ln p
p
μ总是T、p的函数。μ是标准压力p、
温度为T时理想气体的化学势。
2.理想气体混合物中任一组分的化学势
气体混合物中某一种气体B的化学势
p
pB pyB
B(pg)
B(g)
RT
ln
pB p
式中标准态的化学势,它与温度有关,与压
力、组成无关。此标准态是该气体单独存在处于