2012年高考真题(全国新课标卷)——文数
2012年高考真题——文综(新课标卷)历史部分参考答案及评分标准

1.2011新课标全国卷(15分)【近代社会的民主思想与实践】材料一“予之定名‘中华民国’者,盖欲于革命之际,在破坏时则行军政,在建设时则行训政,所谓训政者,即训练清朝之遗民,而成为民国之主人翁,以行此直接民权也。
有训政为过渡时期,则人民无程度不足之忧也。
”“除宪法上规定五权分立外,最要的就是县治,先生直接民权。
”材料二1928年10月3日,中国国民党中央执行委员会常务会议通过《训政纲领》,内容包括:“依照总理建国大纲所定选举、罢免、创制、复决四种政权,应训练国民逐渐行使,以立宪政之基础。
……治权之行政、立法、司法、考试、监察五项,付托于国民政府总揽而执行之,以立宪政时期民选政府之基础。
”----摘编自《中华民国法规辑要》等(1)根据材料一并结合所学知识,指出孙中山的民权主义与英美宪政的异同。
(7分)(2)根据材料并结合所学知识,简评孙中山的训政思想与南京国民政府的“训政”。
(8分)2.2011新课标全国卷(15分)【中外历史人物评说】材料一一九○六年秋天,我到日本去留学……我以为保存国粹的目的,不但要光复旧物;光复之功告成以后,当将满清的政制仪丈一一推翻而复于古。
不仅复于明,且将复于汉唐;不仅复于汉唐,且将复于三代。
总而言之,一切文物制度,凡非汉族的都是要不得的,凡是汉族的都是好的,非与政权同时恢复不可;而同是汉族的之中,则愈古愈好。
——钱玄同:《三十年来我对于满清的态度的变迁》材料二我将此文看了一遍,更恍然于共和与孔经是绝对不能并存的东西,如其要保全中华民国,惟有将自来的什么三纲五伦、礼乐、政刑、历史、文字,“弃如土苴”。
如其要保全自来的什么,三纲五伦、礼乐、政刑、历史、文字,惟有请爱新觉罗·溥仪复辟或请袁世凯……称帝。
——钱玄同:《姚叔节之孔经谈》(1919年2月12日)(1)根据材料并结合所学知识,评价钱玄同对待传统文化的不同态度。
(8分)(2)钱玄同对待传统文化的态度变化在清末民初颇具代表性,简要说明这种变化的历史背景。
2012年全国高考试题(新课标)含答案

2012年普通高等学校招生全国统一考试语文本试题卷分第I卷(阅读题)和第11卷(表达题)两部分。
考生作答时,将答案答在答题卡上(答题注意事项见答题卡),在本试题卷上答题无效。
考试结束后,将本试题卷和答题卡一并交回。
第I卷阅读题甲必考题一、现代文阅读((9分,每小题3分)阅读下面的文字,完成1-3题。
“黑箱,是控制论中的概念,意为在认识上主体对其内部情况全然不知的对象.“科技黑箱”的含义与此有所不同,它是一种特殊的存贮知识、运行知识的设施或过程,使用者如同面对黑箱,不必打开,也不必理解和掌握其中的知识,只需按规则操作即可得到预期的结果.例如电脑、手机、摄像机、芯片,以及药品等,可以说,几乎技术的全部中间和最终成果都是科技黑箱.在科技黑箱的生产过程中,科学知识是通泌出,价值观和伦理道德则对科学知识进行选择。
除此以外,科技黑箱中还整合了大童人文的、社会的知识,并且或多或少渗透了企业文化和理念。
这样,在电脑或手机中就集成了物理学、计葬机科学、管理学、经济学、美学,以及对市场的调研和政府的相关政策等知识.科技黑箱是特殊的传播与共享知识的媒体,具有三大特点。
首先,它使得每一个使用者—不仅牛顿,都能直接“站在巨人的肩上”继续前进.试想,如果要全世界的电脑使用者都透彻掌握电脑的工作原理,掌握芯片上的电子理论,那需要多少时间?知识正是通过科技黑箱这一途径而达到最大限度的共享。
如今,计葬机天才、黑客的年龄越来越小,神童不断出现,他们未必理解计算机的制作过程就能编写软件、破译密码。
每一代新科技黑箱的出现,就为相对“无知识”的年轻一代的崛起与赶超提供了机会。
其次.处在相付低端的科技黑箱往往与语境和主体无关,而处于高端的科技黑箱则需满足特定主体在特定场合乃至心理的需要。
人们很少能对一把锤子做什么改进,而使用一个月后的电脑则已经深深地打上了个人的印记,这就锐明,在认识变得简单易行之时,实践变得复杂和重要.最后,当科技为我们打开一扇又一扇门的时候,我们能拒绝它的诱惑不进去吗?而一旦进去,我们的行为能不受制于房间和走道的形状吗?表面上是使用者在支配科技黑箱,然而科技黑箱却正在使用者“不知情”的情况下,对使用者施加潜移双化的影响,也就是说使用者被生产方对象化了。
2012年高考真题——文综历史(全国卷)解析版

2012年普通高等学校招生全国统一考试(新课标全国卷)文科综合历史部分试题24.汉武帝设置十三州刺史以监察地方,并将豪强大族“田宅逾制”作为重要的监察内容,各地财产达300万钱的豪族被迁到长安附近集中居住。
这表明:A.政权的政治与经济支柱是豪强大族B.政治权力与经济势力出现严重分离C.抑制豪强是缓解土地兼并的重要措施D.经济手段是巩固专制集权的主要方式【考点】古代中国土地制度【解析】关键信息:将豪强大族“田宅逾制”作为重要的监察内容。
“被迁到长安附近集中居住”的原因是“各地财产达300万钱”、“田宅逾制”,说明汉武帝的做法是要抑制豪强,其目的是缓解土地兼并,C项正确;“经济支柱”说法错误,A项排除;B项无从反映;题干的是政治手段,D项排除。
【答案】C25.许仙与白娘子自由相恋因法海和尚作梗终成悲剧,菩萨化身的济公游戏人间维持正义。
这些在宋代杭州流传的故事,反映出当时A.对僧人爱憎交加的社会心态B.民间思想借助戏剧广泛传播C.中国文化的地域性浓厚D.市民阶层的价值取向【考点】古代中国的科学技术与文学艺术:京剧等剧种的产生和发展【解析】题干中的故事具有世俗化的特征,这是因宋代商业经济的发展,市民阶层的兴起,D项正确;ABC项都无法从题干中反映。
【答案】D26.明后期松江人何良俊记述:“(正德)以前,百姓十一在官,十九在田……今去农而改业为工商者三倍于前矣。
昔日原无游手之人,今去农而游手趁食(谋生)者又十之二三也。
大抵以十分百姓言之,已六七分去农。
“据此可知A.工商业的发展造成农业的衰退B.工商业的发展导致了社会结构的变动C.财富分配不均引起贫富分化加剧D.无业游民增加促成了工商业的发展【考点】古代中国经济的发展【解析】关键信息:去农而改业为工商者三倍于前矣、今去农而游手趁食(谋生)者又十之二三也、已六七分去农。
从题干中反映了明后期松江人绝大部分弃农而从事工商业活动的经济现象,B项正确;ACD项题干无从反映。
高考数学十年真题专题汇总—集合概念与运算

高考数学十年真题专题汇总—集合概念与运算年份题号考点考查内容2011文1集合运算两个离散集合的交集运算,集合的子集的个数2012理1与集合有关的新概念问题由新概念确定集合的个数文1集合间关系一元二次不等式解法,集合间关系的判断2013卷1理1集合间关系一元二次不等式的解法,集合间关系的判断文1集合运算集合概念,两个离散集合的交集运算卷2理1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算文1集合运算个连续集合与一个离散集合的交集运算2014卷1理1集合运算一元二次不等式解法,两个连续集合的交集运算文1集合运算两个连续集合的交集运算卷2理2集合元素一元二次不等式解法,一个连续集合与一个离散集合的交集运算文1集合元素一元二次方程解法,两个离散集合的交集运算2015卷1文1集合运算集合概念,两个离散集合的交集运算卷2理1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算文1集合运算两个连续集合的并集2016卷1理1集合运算一元二次不等式解法,一元一次不等式解法,两个连续集合交集运算文1集合运算一个连续集合与一个离散集合的交集运算卷2理1集合运算一元二次不等式解法,两个离散集合并集运算文1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算卷3理1集合运算一元二次不等式解法,两个连续集合的交集运算文1集合运算两个离散集合的补集运算2017卷1理1集合运算指数不等式解法,两个连续集合的并集、交集运算文1集合运算一元一次不等式解法,两个连续集合的并集、交集运算卷2理2集合运算一元二次方程解法,两个离散集合交集运算文1集合运算两个离散集合的并集运算卷3理1集合概念与表示直线与圆的位置关系,交集的概念.文1集合运算两个离散集合的交集运算2018卷1理1集合运算一元二次不等式解法,补集运算文1集合运算两个离散集合的交集运算卷2理2集合概念与表示点与圆的位置关系,集合概念文1集合运算两个离散集合的交集运算卷3文理1集合运算一元一次不等式解法,一个连续集合与一个离散集合的交集运算2019卷1理1集合运算一元二次不等式解法,两个连续集合的交集运算文2集合运算三个离散集合的补集、交集运算卷2理1集合运算一元二次不等式解法,一元一次不等式解法,两个连续集合的交集运算文1集合运算两个连续集合的交集运算卷3文理1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算2020卷1理2集合运算一元二次不等式的解法,含参数的一元一次不等式的解法,利用集合的交集运算求参数的值文1集合运算一元二次不等式解法,一个连续集合与一个离散集合的交集运算卷2理1集合运算两个离散集合的并集、补集运算文1集合运算绝对值不等式的解法,一个连续集合与一个离散集合的交集运算卷3理1集合运算二元一次方程及二元一次不等式混合组的整数解的解法,一个连续集合与一个离散集合的交集运算文1集合运算一个连续集合与一个离散集合的交集运算考点出现频率2021年预测集合的含义与表示37次考2次在理科卷中可能考查本考点集合间关系37次考2次可能在试卷中考查两个几何关系的判定或子集的个数问题集合间运算37次考32次常与一元二次不等式解法、一元一次不等式解法、指数、对数不等式解法结合重点考查集合的交集运算,也可能考查集合的并集、补集运算与集合有关的创新问题37次考1次考查与集合有关的创新问题可能性不大考点1集合的含义与表示1.【2020年高考全国Ⅲ卷文数1】已知集合{}1,2,3,5,7,11A =,{}315|B x x =<<,则A ∩B 中元素的个数为()A .2B .3C .4D .52.【2020年高考全国Ⅲ卷理数1】已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为()A .2B .3C .4D .63.【2017新课标3,理1】已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为A .3B .2C .1D .04.【2018新课标2,理1】已知集合 = ,2+ 2≤3, ∈ , ∈ ,则 中元素的个数为()A .9B .8C .5D .45.【2013山东,理1】已知集合A ={0,1,2},则集合B ={}|,x y x A y A -∈∈中元素的个数是A .1B .3C .5D .96.【2013江西,理1】若集合{}2|10A x R ax ax =∈++=中只有一个元素,则a =A .4B .2C .0D .0或47.【2012江西,理1】若集合{1,1}A =-,{0,2}B =,则集合{|,,}z z x y x A y B =+∈∈中的元素的个数为()A .5B .4C .3D .28.【2011广东,理1】已知集合A ={(,)|,x y x y 为实数,且221}x y +=,B ={(,)|,x y x y 为实数,且1}x y +=,则A ⋂B 的元素个数为A .4B .3C .2D .19.【2011福建,理1】i 是虚数单位,若集合S ={-1,0,1},则A .i ∈SB .2i ∈SC .3i ∈SD .2i∈S 10.【2012天津,文9】集合{}R 25A x x =∈-≤中的最小整数为_______.考点2集合间关系1.【2012新课标,文1】已知集合2{|20}A x x x =--<,{|11}B x x =-<<,则A .A BÜB .B AÜC .A B=D .A B =∅2.【2012新课标卷1,理1】已知集合A={x |x 2-2x >0},B={x |-5<x <5},则()A 、A∩B=∅B 、A ∪B=RC 、B ⊆AD 、A ⊆B3.【2015重庆,理1】已知集合{}1,2,3A =,{}2,3B =,则A .A =BB .A B =∅∩C .A BÜD .B AÜ4.【2012福建,理1】已知集合{1,2,3,4}M =,{2,2}N =-,下列结论成立的是()A .N M⊆B .M N M= C .M N N= D .{2}M N = 5.【2011浙江,理1】若{|1},{|1}P x x Q x x =<=>-,则()A .P Q⊆B .Q P⊆C .R C P Q⊆D .R Q C P⊆6.【2011北京,理1】已知集合P =2{|1}x x ≤,{}M a =.若P M P = ,则a 的取值范围是A .(-∞,-1]B .[1,+∞)C .[-1,1]D .(-∞,-1] [1,+∞)7.【2013新课标1,理1】已知集合A ={x |x 2-2x >0},B ={x |-5<x <5=,则()A .A ∩B =∅B .A ∪B =RC .B ⊆AD .A ⊆B8.【2012大纲,文1】已知集合A ={x ︱x 是平行四边形},B ={x ︱x 是矩形},C ={x ︱x 是正方形},D ={x ︱x 是菱形},则A .A ⊆BB .C ⊆BC .D ⊆C D .A ⊆D9.【2012年湖北,文1】已知集合2{|320,}A x x x x =-+=∈R ,{|05,}B x x x =<<∈N ,则满足条件A CB ⊆⊆的集合C 的个数为()A .1B .2C .3D .4考点3集合间的基本运算1.【2011课标,文1】已知集合M={0,1,2,3,4},N={1,3,5},P=M ∩N ,则P 的子集共有(A)2个(B)4个(C)6个(D)8个2.【2013新课标2,理1】已知集合M={x ∈R|2(1)4x -<},N={-1,0,1,2,3},则M ∩N=A .{0,1,2}B .{-1,0,1,2}C .{-1,0,2,3}D .{0,1,2,3}3.【2013新课标2,文1】已知集合M={x|-3<x<1},N={-3,-2,-1,0,1},则M ∩N=()(A){-2,-1,0,1}(B){-3,-2,-1,0}(C){-2,-1,0}(D){-3,-2,-1}4.【2013新课标I ,文1】已知集合A={1,2,3,4},2{|,}B x x n n A ==∈,则A∩B=()(A){1,4}(B){2,3}(C){9,16}(D){1,2}5.【2014新课标1,理1】已知集合A={x |2230x x --≥},B={x |-2≤x <2},则A B ⋂=A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)6.【2014新课标2,理1】设集合M={0,1,2},N={}2|320x x x -+≤,则M N ⋂=()A .{1}B .{2}C .{0,1}D .{1,2}7.【2014新课标1,文1】已知集合M ={|13}x x -<<,N ={|21}x x -<<则M N = ()A.)1,2(-B .)1,1(-C .)3,1(D .)3,2(-8.【2014新课标2,文1】设集合2{2,0,2},{|20}A B x x x =-=--=,则A B = ()A.∅B .{}2C .{0}D .{2}-9.【2015新课标2,理1】已知集合21,01,2A =--{,,},{}(1)(20B x x x =-+<,则A B = ()A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,210.【2015新课标1,文1】已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为()(A)5(B)4(C)3(D)211.【2015新课标2,文1】已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B = ()A .()1,3-B .()1,0-C .()0,2D .()2,312.【2016新课标1,理1】设集合}034|{2<+-=x x x A ,}032|{>-=x x B ,则B A ⋂=(A)3(3,2--(B)3(3,2-(C)3(1,2(D)3(,3)213.【2016新课标2,理2】已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B = ()(A){1}(B){12},(C){0123},,,(D){10123}-,,,,14.【2016新课标3,理1】设集合{}{}|(2)(3)0,|0S x x x T x x =--≥=>,则T S ⋂=(A)[2,3](B)(-∞,2]U [3,+∞)(C)[3,+∞)(D)(0,2]U [3,+∞)15.【2016新课标2,文1】已知集合{123}A =,,,2{|9}B x x =<,则A B = ()(A){210123}--,,,,,(B){21012}--,,,,(C){123},,(D){12},16.【2016新课标1,文1】设集合{1,3,5,7}A =,{|25}B x x =≤≤,则A B = ()(A){1,3}(B){3,5}(C){5,7}(D){1,7}17.【2016新课标3,文1】设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=(A){48},(B){026},,(C){02610},,,(D){0246810},,,,,18.【2017新课标1,理1】已知集合A ={x |x <1},B ={x |31x <},则A .{|0}AB x x =< B .A B =RC .{|1}A B x x => D .A B =∅19.【2017新课标1,文1】已知集合A ={}|2x x <,B ={}|320x x ->,则()A .A B =3|2x x ⎧⎫<⎨⎬⎩⎭B .A B =∅C .A B 3|2x x ⎧⎫=<⎨⎬⎩⎭D .A B=R20.【2017新课标2,理2】设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B = ,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,521.【2017新课标2,文1】设集合{}{}123234A B ==,,, ,,, 则A B =()A .{}123,4,,B .{}123,,C .{}234,,D .{}134,,22.【2017新课标3,文1】已知集合A={1,2,3,4},B={2,4,6,8},则A ⋂B 中元素的个数为()A .1B .2C .3D .423.【2018新课标1,理1】已知集合 = 2− −2>0,则∁ =A . −1< <2B . −1≤ ≤2C . | <−1∪ | >2D . | ≤−1∪ | ≥224.【2018新课标3,理1】已知集合 = | −1≥0, =0,1,2,则 ∩ =A .0B .1C .1,2D .0,1,225.【2018新课标1,文1】已知集合,,则()A .B .C .D .26.【2018新课标2,文1】已知集合,,则A .B .C .D .27.【2019新课标1,理1】已知集合{}}242{60M x x N x x x =-<<=--<,,则M N ⋂=()A .}{43x x -<<B .}{42x x -<<-C .}{22x x -<<D .}{23x x <<28.【2019新课标1,文2】已知集合{}{}{}1,2,3,4,5,6,72,3,4,52,3,6,7U A B ===,,,则C U B A =()A .{}1,6B .{}1,7C .{}6,7D .{}1,6,729.【2019新课标2,理1】设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},则A ∩B =A .(-∞,1)B .(-2,1)C .(-3,-1)D .(3,+∞)30.【2019新课标2,文1】.已知集合={|1}A x x >-,{|2}B x x =<,则A ∩B =A .(–1,+∞)B .(–∞,2)C .(–1,2)D .∅31.【2019新课标3,理1】已知集合{}{}21,0,1,21A B x x ,=-=≤,则A B ⋂=()A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,232.【2019浙江,1】已知全集{}1,0,1,2,3U =-,集合{}0,1,2A =,{}1,0,1B =-,则U A B ð=A .{}1-B .{}0,1C .{}1,2,3-D .{}1,0,1,3-33.【2019天津,理1】设集合{1,1,2,3,5},{2,3,4},{|13}A B C x x =-==∈<R ,则()A C B =A .{}2B .{}2,3C .{}1,2,3-D .{}1,2,3,434.【2011辽宁,理1】已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若 N ð=M I ∅,则=N M A .MB .NC .ID .∅35.【2018天津,理1】设全集为R ,集合{02}A x x =<<,{1}B x x =≥,则()=R I A B ðA .{01}x x <≤B .{01}x x <<C .{12}x x <≤D .{02}x x <<36.【2017山东,理1】设函数24y x =-的定义域A ,函数ln(1)y x =-的定义域为B ,则A B = ()A .(1,2)B .(1,2]C .(2,1)-D .[2,1)-37.【2017天津,理1】设集合{1,2,6}A =,{2,4}B =,{|15}C x x =∈-R ≤≤,则()A B C = A .{2}B .{1,2,4}C .{1,2,4,6}D .{|15}x x ∈-R ≤≤38.【2017浙江,理1】已知集合{|11}P x x =-<<,{|02}Q x x =<<,那么P Q =A .(1,2)-B .(0,1)C .(1,0)-D .(1,2)39.【2016年山东,理1】设集合2{|2,},{|10},x A y y x B x x ==∈=-<R 则A B =A .(1,1)-B .(0,1)C .(1,)-+∞D .(0,)+∞40.【2016年天津,理1】已知集合{1,2,3,4},{|32},A B y y x x A ===-∈,则A B =A .{1}B .{4}C .{1,3}D .{1,4}41.【2015浙江,理1】已知集合2{20},{12}P x x x Q x x =-=<≥≤,则()R P Q =ðA .[0,1)B .(0,2]C .(1,2)D .[1,2]42.【2015四川,理1】设集合{|(1)(2)0}A=x x x +-<,集合{|13}B x x =<<,则A B = A .{|13}x x -<<B .{|11}x x -<<C .{|12}x x <<D .{|23}x x <<43.【2015福建,理1】若集合{}234,,,A i i i i =(i 是虚数单位),{}1,1B =-,则A B 等于()A .{}1-B .{}1C .{}1,1-D .∅44.【2015广东,理1】若集合()(){}410M x x x =++=,()(){}410N x x x =--=,则M N = A .{}1,4B .{}1,4--C .{}0D .∅45.【2015陕西,理1】设集合2{|}M x x x ==,{|lg 0}N x x =≤,则M N =A .[0,1]B .(0,1]C .[0,1)D .(,1]-∞46.【2015天津,理1】已知全集{}1,2,3,4,5,6,7,8U =,集合{}2,3,5,6A =,集合{}1,3,4,6,7B =,则集合U A B =ðA .{}2,5B .{}3,6C .{}2,5,6D .{}2,3,5,6,847.【2014山东,理1】设集合},]2,0[,2{},21{∈==<-=x y y B x x A x 则=B A A .[0,2]B .(1,3)C .[1,3)D .(1,4)48.【2014浙江,理1】设全集{}2|≥∈=x N x U ,集合{}5|2≥∈=x N x A ,则=A C U A .∅B .}2{C .}5{D .}5,2{49.【2014辽宁,理1】已知全集,{|0},{|1}U R A x x B x x ==≤=≥,则集合()U C A B = A .{|0}x x ≥B .{|1}x x ≤C .{|01}x x ≤≤D .{|01}x x <<50.【2013山东,】已知集合B A 、均为全集}4,3,2,1{=U 的子集,且(){4}U A B = ð,{1,2}B =,则U A B =ðA .{3}B .{4}C .{3,4}D .∅51.【2013陕西,理1】设全集为R ,函数()f x =的定义域为M ,则C M R 为A .[-1,1]B .(-1,1)C .,1][1,)(∞-⋃+∞-D .,1)(1,)(∞-⋃+∞-52.【2013湖北,理1】已知全集为R ,集合112xA x ⎧⎫⎪⎪⎛⎫=≤⎨⎬ ⎪⎝⎭⎪⎪⎩⎭,{}2|680B x x x =-+≤,则()R A C B =A .{}|0x x ≤B .{}|24x x ≤≤C .{}|024x x x ≤<>或D .{}|024x x x <≤≥或53.【2011江西,理1】若全集{1,2,3,4,5,6},{2,3},{1,4}U M N ===,则集合{5,6}等于A .M N⋃B .M N⋂C .()()n n C M C N ⋃D .()()n n C M C N ⋂54.【2011辽宁】已知M ,N 为集合I 的非空真子集,且M ,N 不相等,若 N ð=M I ∅,则=N M A .MB .NC .ID .∅55.【2017江苏】已知集合{1,2}A =,2{,3B a a =+},若{1}A B = ,则实数a 的值为_.56.【2020年高考全国Ⅰ卷文数1】已知集合2{|340},{4,1,3,5}A x x x B =--<=-,则A B = ()A .{4,1}-B .{1,5}C .{3,5}D .{1,3}57.【2020年高考全国I 卷理数2】设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =()A .–4B .–2C .2D .458.【2020年高考全国II 卷文数1】已知集合A ={x ||x |<3,x ∈Z },B ={x ||x |>1,x ∈Z },则A ∩B =()A .∅B .{–3,–2,2,3)C .{–2,0,2}D .{–2,2}59.【2020年高考全国II 卷理数1】已知集合{}{}{}2,1,0,1,2,3,1,0,1,1,2U A B =--=-=,则()U A B =ð()A .{}2,3-B .{}2,2,3-C .{}2,1,0,3--D .{}2,1,0,2,3--60.【2020年高考浙江卷1】已知集合P ={|14}x x <<,{|23}Q x x =<<则P Q =()A .{|12}x x <≤B .{|23}x x <<C .{|23}x x <≤D .{|14}x x <<61.【2020年高考北京卷1】已知集合{1,0,1,2},{03}A B x x =-=<<,则A B = A .{1,0,1}-B .{0,1}C .{1,1,2}-D .{1,2}62.【2020年高考山东卷1】设集合{|13}A x x =≤≤,{|24}B x x =<<,则=A B A .{|23}x x <≤B .{|23}x x ≤≤C .{|14}x x ≤<D .{|14}x x <<63.【2020年高考天津卷1】设全集{3,2,1,0,1,2,3}U =---,集合{1,0,1,2},{3,0,2,3}A B =-=-,则()U A B = ð()A .{3,3}-B .{0,2}C .{1,1}-D .{3,2,1,1,3}---64.【2020年高考上海卷1】已知集合{}{}1,2,4,2,4,5A B ==,则A B = .65.【2020年高考江苏卷1】已知集合{}{}1,0,1,2,0,2,3A B =-=,则A B =.考点4与集合有关的创新问题1.(2012课标,理1).已知集合A ={1,2,3,4,5},B ={(x ,y )|x ∈A ,y ∈A ,x y -∈A },则B 中所含元素的个数为()A .3B .6C .8D .102.【2015湖北】已知集合22{(,)1,,}A x y x y x y =+≤∈Z ,{(,)||2,||2,B x y x y =≤≤,}x y ∈Z ,定义集合12121122{(,)(,),(,)}A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕中元素的个数为()A .77B .49C .45D .303.【2013广东,理8】设整数4n ≥,集合{}1,2,3,,X n = ,令集合{(,,)|,,S x y z x y z X =∈,且三条件,,x y z y z x z x y <<<<<<恰有一个成立},若(),,x y z 和(),,z w x 都在S 中,则下列选项正确的是A .(),,y z w S ∈,(),,x y w S ∉B .(),,y z w S ∈,(),,x y w S ∈C .(),,y z w S ∉,(),,x y w S∈D .(),,y z w S ∉,(),,x y w S∉4.【2012福建,文12】在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k],即[k]={5n k +丨n ∈Z},k=0,1,2,3,4.给出如下四个结论:①2011∈[1];②-3∈[3];③Z=[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一“类”的充要条件是“a b -∈[0]”.其中正确的结论个数是()A .1B .2C .3D .45.【2013浑南,文15】对于E ={12100,,,a a a }的子集X ={12,,,kii i a a a },定义X 的“特征数列”为12100,,,x x x ,其中121k i i i x x x ==== ,其余项均为0,例如子集{23,a a }的“特征数列”为0,1,1,0,0,…,0(1)子集{135,,a a a }的“特征数列”的前三项和等于;(2)若E 的子集P 的“特征数列”12100,,,p p p 满足11p =,11i i p p ++=,1≤i ≤99;E 的子集Q 的“特征数列”12100,,,q q q 满足11q =,121j j j q q q ++++=,1≤j ≤98,则P∩Q 的元素个数为_________.7.【2018北京,理20】设n 为正整数,集合12={|(,,,),{0,1},1,2,,}n k A t t t t k n αα=∈= .对于集合A中的任意元素12(,,,)n x x x α= 和12(,,,)n y y y β= ,记(,)M αβ=111122221[(||)(||)(||)]2n n n n x y x y x y x y x y x y +--++--+++-- .(1)当3n =时,若(1,1,0)α=,(0,1,1)β=,求(,)M αα和(,)M αβ的值;(2)当4n =时,设B 是A 的子集,且满足:对于B 中的任意元素,αβ,当,αβ相同时,(,)M αβ是奇数;当,αβ不同时,(,)M αβ是偶数.求集合B 中元素个数的最大值;(3)给定不小于2的n ,设B 是A 的子集,且满足:对于B 中的任意两个不同的元素,αβ,(,)0M αβ=.写出一个集合B ,使其元素个数最多,并说明理由.。
2012年高考新课标全国卷文科数学试题(附答案)

2012年普通高等学校招生全国统一考试(新课标全国卷)文科数学试题一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的.(1)已知集合A={x |x 2−x −2〈0},B={x |−1〈x 〈1},则(A )A 错误!B (B )B 错误!A (C )A=B (D )A ∩B=∅(2)复数z =32i i -++的共轭复数是 (A )2i + (B )2i - (C )1i -+ (D )1i --(3)在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线112y x =+上,则这组样本数据的样本相关系数为(A)−1 (B)0 (C )错误! (D )1 (4)设1F ,2F 是椭圆E :2222x y a b+=1(a >b >0)的 左、 右焦点,P 为直线32a x =上一点,△21F PF 是底角为030的等腰三角形,则E 的离心率为(A )12 (B )23 (C )34 D 。
45(5)已知正三角形ABC 的顶点A (1,1),B (1,3),顶点C 在第一象限,若点(x ,y )在△ABC内部,则z x y =-+的取值范围是(A)(1-错误!,2) (B )(0,2) (C )(错误!-1,2) (D )(0,1+错误!)(6)如果执行右边的程序框图,输入正整数N (N ≥2)和实数1a ,2a ,…,N a ,输出A ,B ,则(A)A +B 为1a ,2a ,…,N a 的和(B)2A B +为1a ,2a ,…,N a 的算术平均数 (C )A 和B 分别为1a ,2a ,…,N a 中的最大数和最小数(D)A 和B 分别为1a ,2a ,…,N a 中的最小数和最大数(7)如图,网格上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为(A )6(B )9(C )12(D )18(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为错误!,则此球的体积为(A )错误!π (B)4错误!π (C )4错误!π (D)6错误!π(9)已知ω〉0,0ϕπ<<,直线x =4π和x =54π是函数()sin()f x x ωϕ=+图像的两条相邻的对称轴,则ϕ=(A )错误! (B )错误! (C)错误! (D )错误!(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线216y x =的准线交于A 、B 两点,||AB =43,则C 的实轴长为(A )2 (B )22 (C )4 (D )8(11)当0〈x ≤错误!时,4log x a x <,则a 的取值范围是(A )(0,错误!) (B )(错误!,1) (C )(1,错误!) (D )(错误!,2)(12)数列{n a }满足1(1)21n n n a a n ++-=-,则{n a }的前60项和为(A )3690 (B)3660 (C)1845 (D)1830二.填空题:本大题共4小题,每小题5分。
2012年高考英语短文改错_真题汇编(含解析)

2012年高考全国英语试题分类汇编:短文改错1.【2012全国新课标】I learned early in life that I had to be more patient and little aggressive. From thetime I was about four until I was about six, I destroyed each of my toy. Iwas happy when the toys worked, but when things did wrong, I got angry and broke it. Fora while parents bought me new toys. But before long they beganto see which was happening. When I tear apart my fifth birthday toy train, my father said, "That's it. No more toys to you." My punishment lasted a year. Meanwhile, I found out that with more patience I must make my toys to last.My attitude changed from then on.1.【答案】little---less【解析】根据文意:我不得不多一些耐心而少一些挑衅性。
此处less修饰形容词。
【考点定位】考查副词的用法。
2.【答案】toy—toys【解析】根据each of 可知,应该是我的玩具中的每一个,故用复数形式toys。
【考点定位】考查名词的单复数形式。
3.【答案】did—went或者did 后加go【解析】考查短语go wrong意为:出错。
【考点定位】考查固定短语的表达法。
2012年高考新课标全国卷语文试题(附答案及详细解析)(1)(1)

2012年普通高等学校招生全国统一考试(新课标卷)语文答案解析河南省实验中学崔矿山一、现代文阅读1.C解析:偷换概念,“价值观和伦理道德对科学知识进行了修正”错,原文是“价值观……进行了选择”,“修正”应为“选择”。
2.B解析:强加因果,前后两句话无因果关系,且“根本原因”文中无此信息。
3.D解析:无中生有,“其直接后果就是科技这把双刃剑的哪一刃都变得更加锋利”错,“直接后果”纯属主观臆测。
二、古代诗文阅读(36分)(一)文言文阅读(19分)4.D解析:阙:空缺,缺额。
5.C解析:①表现的是何灌的正直,而不是“恪尽职守”;⑤说的是萧燧的节俭;⑥说的是萧燧关心百姓的仁爱之心。
6.A解析:“与其亲党”错。
原文是“其亲党”,即秦桧的亲党,而非秦桧及其亲党。
7. (1).(5分)如今有德才和无德才的人混杂一道,风俗浇薄虚浮,兵力未强,财力未富,应当卧薪尝胆以求国内安定太平。
解析:关键词“杂糅”“浇浮”“治”各1分,大意2分。
(2).萧燧说:“东部西部不属同路,按说不该给粮食,但哪忍心对原管辖地区不闻不问呢?”解析:关键词“异路”“安”“旧治”各1分,大意2分。
(二)古代诗歌阅读(11分)8.这首词表达了对远方行人的深切思念。
首句起兴,以红叶黄花染绘出深秋的特殊色调,渲染离别的悲凉气氛,增添对远方行人绵绵不尽的思念情怀。
9.关系是:“就砚旋研墨”暗指以临窗滴下的泪水研墨,和泪作书。
原因是:红笺被泪水浸湿。
由于情到深处,词中主人公在作书时不停流泪,泪水落到纸上,红笺因而褪去了颜色。
解析:本题考查鉴赏古典诗歌的能力。
第8题侧重考查作品的思想感情和表现手法,第9题侧重考查对诗歌深层内涵的挖掘赏析。
首句因感秋而怀远,借景抒情,点出主题。
接着写鸿雁随着天际的浮云飞尽,闺中人遥望渺渺长空,盼望归鸿带来游子的音信,但令她失望——“无信”。
下片写悲感流泪,泪弹不尽,临窗而下,有砚承泪,遂以研墨作书。
笺色之红因泪而淡直至褪尽,用夸张的修辞,极写痴情之深。
2012年语文高考真题 诗歌鉴赏题(标准整理版 含答案)

2012年高考诗歌鉴赏题1、(江西卷)阅读下面一首宋词,完成后面的题目。
(8分)江城子秦观西城杨柳弄春柔。
动离忧,泪难收。
犹记多情,曾为系归舟。
碧野朱桥当日事,人不见,水空流。
韶华不为少年留。
恨悠悠,几时休。
飞絮落花时候、一登楼。
便作春江都是泪,流不尽,许多愁。
[注]①韶华:青春年华,又指美好的春光。
②变做:纵使。
(1)概括“杨柳”“飞絮”意象的内涵,并分析这首词表达的情感。
(4分)(2)词中“便做春江都是泪,流不尽,许多愁”一句是从“问君能有几多愁,恰似一江春水向东流”(李煜《虞美人》)化用而来,请比较两者的异同。
(4分)2、(辽宁卷)(二)古代诗歌阅读(11分)阅读下面这首宋诗,完成8~9题。
初见嵩山张耒年来鞍马困尘埃,赖有青山豁我怀。
日暮北风吹雨去,数峰清瘦出云来。
[注] 张耒:北宋诗人,苏门四学士之一,因受苏轼牵连,累遭贬谪。
(1)作者初见嵩山是什么样的心情?这样的心情是怎样表现出来的?请结合全诗简析。
(5分)(2)“数峰清瘦出云来”一句妙在何处?“清瘦”有何种精神内涵?(6分)3、(上海卷)(四)阅读下面的作品,完成第14-16题。
(8分)春江晚景张九龄江林皆秀发,云日复相鲜。
征路那①逢此,春心益渺然②。
兴来只自得,佳处莫能传。
薄暮津亭下,余花满客船。
[注]①那:同“哪”。
②渺然:广阔辽远的样子。
(1)与诗歌题目中“江”字直接照应的词语有“江林”“津亭”和“客船”。
(1分)(2)对本诗分析正确的一项是()(3分)A.本诗用典与写实相结合,含蓄而又自然。
B.本诗以咏物为题材,脉络清晰而且顺畅。
C.颔联、颈联对仗工整,符合律诗的要求。
D.全诗的语言清新淡雅,又不失朴实之风。
(3)从情景关系的角度,赏析本诗前两联是如何表达作者情感的。
(4分)5、(天津卷)14. 阅读下面这首律诗,按要求作答。
(8分)野菊【宋】杨万里未与骚人当糗粮①,况随流俗作重阳。
政②缘在野有幽色,肯为无人减妙香?已晚相逢半山碧,便忙也折一枝北京渣油泵黄。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2012年普通高等学校招生全国统一考试
文科数学
第Ⅰ卷
一、选择题:本大题共12小题,每小题5分,在每小题给同的四个选项中,只有一项是符合题目要求的。
1、已知集合A={x |x 2-x -2<0},B={x |-1<x <1},则
(A )A ⊂≠B (B )B ⊂≠A (C )A=B (D )A ∩B=∅
(2)复数z =-3+i 2+i 的共轭复数是
(A )2+i (B )2-i (C )-1+i (D )-1-i
3、在一组样本数据(x 1,y 1),(x 2,y 2),…,(x n ,y n )(n ≥2,x 1,x 2,…,x n 不全相等)的散点
图中,若所有样本点(x i ,y i )(i =1,2,…,n )都在直线y =12x +1上,则这组样本数据的样本相关系
数为
(A )-1 (B )0 (C )12 (D )1
(4)设F 1、F 2是椭圆E :x 2a 2+y 2b 2=1(a >b >0)的左、右焦点,P 为直线x =3a 2上一点,△F 1PF 2是底
角为30°的等腰三角形,则E 的离心率为( )
(A )12 (B )23 (C )34 (D )45
5、已知正三角形ABC 的顶点A(1,1),B(1,3),顶点C 在第一象限,若点(x ,y )在△ABC 内部,则z =-x+y 的取值范围是
(A )(1-3,2) (B )(0,2) (C )(3-1,2) (D )(0,1+3)
(6)如果执行右边的程序框图,输入正整数N(N ≥2)和实数a 1,a 2,…,a N ,输出A,B ,则
(A )A+B 为a 1,a 2,…,a N 的和
(B )A +B 2为a 1,a 2,…,a N 的算术平均数
(C )A 和B 分别是a 1,a 2,…,a N 中最大的数和最小的数
(D )A 和B 分别是a 1,a 2,…,a N 中最小的数和最大的数
(7)如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为
(A )6
(B )9
(C )12
(D )18
开始
A=x
B=x x >A
否
输出A ,B 是 输入N ,a 1,a 2,…,a N
结束
x <B
k ≥N
k =1,A =a 1,B=a 1
k =k+1
x =a k
是
否 否
是
(8)平面α截球O 的球面所得圆的半径为1,球心O 到平面α的距离为2,则此球的体积为
(A )6π (B )43π (C )46π (D )63π
(9)已知ω>0,0<φ<π,直线x =π4和x =5π4是函数f (x )=sin(ωx +φ)图像的两条相邻的对称轴,则
φ=
(A )π4 (B )π3 (C )π2 (D )3π4
(10)等轴双曲线C 的中心在原点,焦点在x 轴上,C 与抛物线y 2=16x 的准线交于A ,B 两点,|AB|=43,则C 的实轴长为
(A ) 2 (B )2 2 (C )4 (D )8
(11)当0<x ≤12时,4x <log a x ,则a 的取值范围是
(A )(0,22) (B )(22,1) (C )(1,2) (D )(2,2)
(12)数列{a n }满足a n +1+(-1)n a n =2n -1,则{a n }的前60项和为
(A )3690 (B )3660 (C )1845 (D )1830
第Ⅱ卷
本卷包括必考题和选考题两部分。
第13题-第21题为必考题,每个试题考生都必须作答,第22-24题为选考题,考生根据要求作答。
二.填空题:本大题共4小题,每小题5分。
(13)曲线y =x (3ln x +1)在点(1,1)处的切线方程为________
(14)等比数列{a n }的前n 项和为S n ,若S 3+3S 2=0,则公比q =_______
(15)已知向量a ,b 夹角为45° ,且|a |=1,|2a -b |=10,则|b |=
(16)设函数f (x )=(x +1)2+sin x x 2+1的最大值为M ,最小值为m ,则M+m =____
三、解答题:解答应写出文字说明,证明过程或演算步骤。
(17)(本小题满分12分)
已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,c =
3a sinC -c cosA
(1) 求A
(2) 若a =2,△ABC 的面积为3,求b ,c
18.(本小题满分12分)
某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售。
如果当天卖不完,剩下的玫瑰花做垃圾处理。
(Ⅰ)若花店一天购进17枝玫瑰花,求当天的利润y (单位:元)关于当天需求量n (单位:枝,n ∈N )的函数解析式。
(Ⅱ)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表: 日需求量n 14 15 16 17 18 19 20
频数 10 20 16 16 15 13 10
(1)假设花店在这100天内每天购进17枝玫瑰花,求这100天的日利润(单位:元)的平均数;
(2)若花店一天购进17枝玫瑰花,以100天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于75元的概率。
(19)(本小题满分12分)
如图,三棱柱ABC -A 1B 1C 1中,侧棱垂直底面,∠ACB=90°,AC=BC=1
2AA 1,D 是棱AA 1的中点 (I)证明:平面BDC 1⊥平面BDC
(Ⅱ)平面BDC 1分此棱柱为两部分,求这两部分体积的比。
(20)(本小题满分12分)
设抛物线C :x 2=2py (p >0)的焦点为F ,准线为l ,A 为C 上一点,已知以F 为圆心,FA 为半径的圆F 交l 于B ,D 两点。
B 1
C B A
D C 1 A 1
(I )若∠BFD =90°,△ABD 的面积为42,求p 的值及圆F 的方程;
(II )若A ,B ,F 三点在同一直线m 上,直线n 与m 平行,且n 与C 只有一个公共点,求坐标原点到m ,n 距离的比值。
(21)(本小题满分12分)
设函数f (x )= e x -ax -2
(Ⅰ)求f (x )的单调区间
(Ⅱ)若a =1,k 为整数,且当x >0时,(x -k ) f ´(x )+x +1>0,求k 的最大值
请考生在第22,23,24题中任选一题做答,如果多做,则按所做的第一题计分,做答时请写清楚题号。
(22)(本小题满分10分)选修4-1:几何证明选讲
如图,D ,E 分别为△ABC 边AB ,AC 的中点,直线DE 交△ABC 的外接圆于F ,G 两点,若CF//AB ,证明:
F
G D E
A
B C
(Ⅰ)CD=BC ;
(Ⅱ)△BCD ∽△GBD
(23)(本小题满分10分)选修4—4;坐标系与参数方程
已知曲线C 1的参数方程是⎩⎪⎨⎪⎧
x =2cos φy =3sin φ(φ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程是ρ=2.正方形ABCD 的顶点都在C 2上,且A 、B 、C 、
D 以逆时针次序排列,点A 的极坐标为(2,π3)
(Ⅰ)求点A 、B 、C 、D 的直角坐标;
(Ⅱ)设P 为C 1上任意一点,求|PA| 2+ |PB|2 + |PC| 2+ |PD|2的取值范围。
(24)(本小题满分10分)选修4—5:不等式选讲 已知函数f (x ) = |x + a | + |x -2|.
(Ⅰ)当a =-3时,求不等式f (x )≥3的解集;
(Ⅱ)若f (x )≤|x -4|的解集包含[1,2],求a 的取值范围。