模糊数学2009-5(模糊识别实例)
本科数学专业课程中思政元素的实践探索——以“模糊数学”为例

本科数学专业课程中思政元素的实践探索——以“模糊数学”为例近几年,在国家政策的指导下,课程思政建设正在全国各个高校如火如荼地展开,其效果也在高等教育中凸显出来[1]。
课程思政作为立德树人根本任务的重要举措,已经成为各类专业课程与思政元素有机结合的完美体现。
要将思政元素和专业知识双重目标分解落实,明确实施途径和方式,才能切实达到育人、育才统一的建设效果。
数学专业课程以其严谨的逻辑思维要求和独特的课程体系,使得与思政元素结合的切入点尤其关键。
如何将晦涩难懂的数学知识与鲜活高尚的思政元素融为一体,是很多大学数学教师潜心摸索的问题[2]。
笔者以数学专业课程——“模糊数学”的讲授过程为例,谈几点自己的看法。
一、课程思政引入数学类专业课中存在的问题(一)重视程度不足教育部颁布的《国家中长期教育改革和发展规划(2010-2020年)》中指出,高校教师的80%是专业教师,课程的80%是专业课程,学生学习时间的80%用于专业学习,专业课程教学是课程思政的最主要的依托。
但是目前高校中仍有少数专业教师在思想政治教育的认识上存在误区,导致对思政元素引入专业课堂的积极性不高、针对性不强。
同时,也有部分教师对教学中思政元素的引入一带而过,敷衍了事,这样的教学既没有达到思想政治育人的目的,也降低了专业知识传授的效果。
(二)课程体系不完善高校专业课程的培养目标通常强调提升学生的专业技能,在教学设计环节弱化了思想政治教育设计的周密性和科学性;在开展教学过程中,思想政治教育与专业教育出现了较大的脱节。
特别是数学类专业课程,专业知识中思政元素的挖掘不够全面,与专业课程结合比较片面,没有将专业教育与思想政治教育紧密融合,形成协同效应。
由于高校数学类专业课程具有较为完备的课程标准,尤其在基本概念、理论推导、计算过程等方面都已经形成了完善的教学体系和考核标准,因此,教师在教学过程中,往往只在标准框架下进行基本规范的教学活动,更加注重基本知识的讲解和逻辑思维的培养,对课程思政考虑不足,更没有在教学设计和教学对策中更好地融入思政元素,这不利于教学质量更好的提升,在一定程度上也阻碍了课程思政的顺利进行。
模糊数学2009-4(分布函数、贴近度)讲解

39
确定隶属函数的例子
模糊概念:“年轻人” 进行统计,发现曲线与柯西分布的
偏小型相似
吉林大学计算机科学与技术学院
40
确定三个参数
a = 25 β= 2 α =?
考虑最模糊的点(30岁,隶属度应该 是0.5)
α =1/25
吉林大学计算机科学与技术学院
41
课上作业
在一个荧光屏上,用一个光点的上 下运动快慢代表15种不同的运动速 度,记V={1,2,…,15},主试者随机 给出15种速率,让被试者按 “快”“中”“慢”进行分类,每 种速率共给出320次,判断结果如下 表:
吉林大学计算机科学与技术学院
21
3. 抛物型(偏大型)
吉林大学计算机科学与技术学院
22
3.抛物型(中间型)
吉林大学计算机科学与技术学院
23
4.正态分布
吉林大学计算机科学与技术学院
24
4.正态分布(中间型)
吉林大学计算机科学与技术学院
25
4.正态分布(偏小型)
吉林大学计算机科学与技术学院
26
4.正态分布(偏大型)
吉林大学计算机科学与技术学院
27
4.正态分布(另一种中间型)
吉林大学计算机科学与技术学院
28
5.柯西分布
吉林大学计算机科学与技术学院
29
5.柯西分布(中间型)
吉林大学计算机科学与技术学院
30
5.柯西分布(偏小型)
吉林大学计算机科学与技术学院
31
5.柯西分布(偏大型)
A 0.5 0.8 0.2 0.6 1 1 1 2 3 4 56
吉林大学计算机科学与技术学院
4
模糊数学方法

2) 对称性: 若(x, y)R,则(y, x)R,即集合中(x, y)元素同属于类R 时, 则
(y, x)也同属于R;
3) 传递性: (x, y)R,(y, z)R,则有(x, z)R。
上述三条性质称为等价关系,满足这三条性质的集合R为一分类关
系。
聚类分析的基本思想是用相似性尺度来衡量事物之间的亲疏程度, 并
定义3 模糊集运算定义。若A、B为X上两个模糊集,它们的和集、 交集和A的余集都是模糊集, 其隶属函数分别定义为:
(AB) (x)= max ( A(x), B(x) ) (AB) (x)= min ( A(x), B(x) ) AC (x)=1-A(x) 关于模糊集的和、交等运算,可以推广到任意多个模糊集合中去。
假设R2=(rij ),即rij =
(rik∧rkj ),说明xi 与xj是通过第三者K作为媒介而发生关系,rik∧rkj表 示xi 与xj 的关系密切程度是以min(rik , rkj)为准则,因k是任意的, 故从一 切rik∧rkj中寻求一个使xi 和xj 关系最密切的通道。Rm随m的增加,允许 连接xi 与xj 的链的边就越多。由于从xi 到xj 的一切链中, 一定存在一个使 最大边长达到极小的链,这个边长就是相当于
糊变量,相应的参数分别为
,
,
(i=1, 2, …, n; j=1, 2, …, m)。其中,
,
,
,而
是xij的方差。待判别对象B的m个指标分别具有参数aj , bj (j=1, 2, …, m),且为正态型模糊变量,则B与各个类型的贴近度为
记Si=
,又有Si0=
,按贴近原则可认为B与Ai 0最贴近。
提供了以下8种建立相似矩阵的方法:
《模糊数学教案》课件

《模糊数学教案》课件一、教学目标1. 让学生了解模糊数学的基本概念和原理,理解模糊集合及其表示方法。
2. 培养学生运用模糊数学解决实际问题的能力,提高学生的数学思维水平。
3. 通过对模糊数学的学习,激发学生对数学的兴趣,培养学生的创新意识。
二、教学内容1. 模糊集合的概念及其表示方法2. 隶属度函数的概念及性质3. 模糊集合的基本运算4. 模糊集合在实际问题中的应用三、教学重点与难点1. 重点:模糊集合的概念、隶属度函数的性质、模糊集合的基本运算。
2. 难点:隶属度函数的绘制方法、模糊集合在实际问题中的应用。
四、教学方法与手段1. 采用讲授法、案例分析法、讨论法等多种教学方法,引导学生主动参与课堂。
2. 利用多媒体课件、板书等教学手段,生动形象地展示模糊数学的概念和应用。
五、教学过程1. 引入新课:通过生活中的实例,如“天气预报”等,引出模糊数学的概念。
2. 讲解模糊集合的概念及其表示方法,引导学生理解并掌握相关概念。
3. 讲解隶属度函数的概念及性质,并通过实例让学生绘制隶属度函数。
4. 讲解模糊集合的基本运算,让学生了解并掌握运算方法。
5. 分析模糊集合在实际问题中的应用,让学生体会模糊数学的价值。
6. 课堂练习:布置相关题目,让学生巩固所学知识。
8. 课后作业:布置适量作业,让学生巩固所学知识。
六、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答情况,了解学生的学习状态。
2. 课后作业:检查学生作业完成情况,评估学生对课堂所学知识的掌握程度。
3. 课堂练习:分析学生课堂练习的正确率,了解学生对模糊数学概念和运算的掌握情况。
4. 小组讨论:评估学生在小组讨论中的表现,考查学生的合作能力和创新思维。
七、教学拓展1. 模糊数学在领域的应用,如模糊控制、模糊识别等。
2. 模糊数学在其他学科领域的应用,如生物学、化学、物理学等。
3. 国内外模糊数学的研究动态和最新成果。
八、教学反思2. 分析学生的学习反馈,调整教学内容和教学方法。
模糊模式识别的几种基本模型研究_陈振华

模糊模式识别的方法

第21页/共26页
例:按气候谚语来预报地区冬季的降雪量。 内蒙古丰镇地区流行三条谚语:①夏热冬雪大,
②秋霜晚冬雪大,③秋分刮西北风冬雪大。现在根据三 条言语来预报丰镇地区冬季降雪量。
为描述“夏热” ( A~1) 、”秋霜晚” (A~2) 、”秋分刮西北 风” ( A~3) 等概念,在气象现象中提取以下特征:
第8页/共26页
等腰三角形的隶属函数I(A,B,C)应满足下条件: (1) 当A = B 或者 B = C时, I(A,B,C )=1; (2) 当A =180, B =60, C =0时, I(A,B,C )=0; (3) 0≤I(A,B,C )≤1. 因此,定义I(A,B,C ) =1–[(A–B)∧(B – C)]/60.
x
50 15
2
,
1,
0 x 50, x 50.
第16页/共26页
当 x0 = 8 时,即物价上涨率为 8 %,我们有: A1(8) = 0.3679, A2 (8) = 0.8521, A3(8) = 0.0529 A4(8) 0, A5 (8) 0。
此时,通货状态属于轻度通货膨胀。
模式识别(Pattern Recognition)是一门判断学科, 属于计算机应用领域,主要目的是让计算机仿照人的思 维方式对客观事物进行识别、判断和分类。
如:阅读一篇手写文字;医生诊断病人的病情;破案 时对指纹图像的鉴别;军事上对舰船目标的识别等等 ,都可归结为模式识别问题。
但是,在实际中,由于客观事物本身的模糊性,加上 人们对客观事物的反映过程也会产生模糊性,使得经典 的识别方法已不能适应客观实际的要求。因此,模式识 别与模糊数学关系很紧密。
最新最全模糊数学方法综合整理

模糊数学方法模糊数学是从量的角度研究和处理模糊现象的科学.这里模糊性是指客观事物的差异在中介过渡时所呈现的“亦此亦比”性.比如用某种方法治疗某病的疗效“显效”与“好转”、某医院管理工作“达标”与“基本达标”、某篇学术论文水平“很高”与“较高”等等.从一个等级到另一个等级间没有一个明确的分界,中间经历了一个从量变到质变的连续过渡过程,这个现象叫中介过渡.由这种中介过渡引起的划分上的“亦此亦比”性就是模糊性.在自然科学或社会科学研究中,存在着许多定义不很严格或者说具有模糊性的概念。
这里所谓的模糊性,主要是指客观事物的差异在中间过渡中的不分明性,如某一生态条件对某种害虫、某种作物的存活或适应性可以评价为“有利、比较有利、不那么有利、不利”;灾害性霜冻气候对农业产量的影响程度为“较重、严重、很严重”,等等。
这些通常是本来就属于模糊的概念,为处理分析这些“模糊”概念的数据,便产生了模糊集合论。
根据集合论的要求,一个对象对应于一个集合,要么属于,要么不属于,二者必居其一,且仅居其一。
这样的集合论本身并无法处理具体的模糊概念。
为处理这些模糊概念而进行的种种努力,催生了模糊数学。
模糊数学的理论基础是模糊集。
模糊集的理论是1965年美国自动控制专家查德(L. A. Zadeh)教授首先提出来的,近10多年来发展很快。
模糊集合论的提出虽然较晚,但目前在各个领域的应用十分广泛。
实践证明,模糊数学在农业中主要用于病虫测报、种植区划、品种选育等方面,在图像识别、天气预报、地质地震、交通运输、医疗诊断、信息控制、人工智能等诸多领域的应用也已初见成效。
从该学科的发展趋势来看,它具有极其强大的生命力和渗透力。
在侧重于应用的模糊数学分析中,经常应用到聚类分析、模式识别和综合评判等方法。
在DPS系统中,我们将模糊数学的分析方法与一般常规统计方法区别开来,列专章介绍其分析原理及系统设计的有关功能模块程序的操作要领,供用户参考和使用。
模糊数学方法_数学建模ppt课件

c的关系隶属度大于等于ⅰ,那么a 和c的关系隶属度也大于等于ⅰ
传递性的判断
模糊数学应用
• 模糊聚类 • 模糊综合评判 • 模糊预测 • 模糊层次分析法 • 模糊推理 • 模糊控制 • 模糊约束
模糊聚类
模糊聚类
模糊综合评判
模糊预测
• 元素指标评价向量的距离或相似度
模糊关系
• 定义5 从集合A到集合B的一个模糊关系是指AXB 的一个模糊子集. 特别地
• 定义6 AXA的一个模糊子集称为A上的一个二元模 糊关系.
模糊关系的运算
模糊关系的运算
模糊关系的截集
• 模糊关系的a截集为一个经典关系. • 将模糊关系当成模糊子集来理解,其截集定义可
由模糊子集的定义来刻画. • 通过矩阵理解,a截集表示将矩阵中元素大于等于
n
模糊集合的相似度
• 用1减去相对距离,则可以得到相似度的概念. • 相似度,也可以理解为贴近度.有多种理论模型.
【0,1】区间上的算子
• [0,1]区间上的一个二元运算称为算子. • 这里的二元运算是广义的二元运算.例如常规乘法
运算,取大,取小,加法运算与1的取小复合: Min(a+b,1). • 重要的有两类:三角模,像乘法运算,取小运算; • 三角余模:像取大, Min(a+b,1)等. • 同学们可以查其它的算子
a的数变为1,其余的变为0.
模糊关系的合成
• 一个从X到Y的模糊关系R和一个从Y到Z的关系Q 合成为一个从X到Z的模糊关系Q.R,合成规则为 将常规矩阵乘法运算中的加法用取大,乘法用取 小代替.
论域X上的模糊关系的三大性质
• 自反性:自身和自身的关系隶属度为1 • 对称性: a和b的关系隶属度与b 和a的关系隶属度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
贴近度 内积 外积 格贴近度 模糊模式识别
识别对象为论域中一个元素 识别对象为论域的一个模糊集合
模糊模式识别——实例
条形码识别 几何图形识别 手写文字的识别
实例1——条形码识别
条形码
条形码或条码(barcode)是将宽度不 等的多个黑条和空白,按照一定的 编码规则排列,用以表达一组信息 的图形标识符。
实验结果
噪声
打印缺陷等偶然因素
实验结果
在噪声达到31.43%的情况下 正确识别率>90%
印刷体手写体
手写体vs.印刷体
复杂的多 用方格矩阵法,则需要更多小方格 向量的维数大 计算困难
寻求适用于手写体的简便方法
模糊方位转换技术
模糊现象
文字的方向,与事先给定的8个方向 不完全一致,只能说是大致这个方 向。
号码串向量(3,2,2,7,7,1,1,0,7,7,6,6,5) 确定各方向关于标准方向的隶属程度 得到“3”的号码串模糊向量 存储至计算机作为“3”的标准向量
识别数字
确定待识别数字的号码串模糊向量 与计算机中的标准向量逐一比较 择近原则 实现数字识别
程序实现
真正应用,更加复杂。
待识别对象:A4×5
因印刷灰度不同 A = (aij)4×5 ,aij∈[0,1]
定义贴近度
45
(mi(jk ) aij )
(M k , A)
i 1 4
j 1 5
(mi(jk ) aij )
i1 j 1
待识别矩阵A是什么数字?
通过商场的扫描仪,扫描一个商品得到 的某个数字所对应的矩阵:
1 1 1 0 0
M
0
1
1
1 1
1 1
0 0
0 0
1
1
1
0
0
0 1 1 1 0
M
3
0
0
1 1
1 1
1 1
0 0
0
1
1
1
0
比较
0.5 0.8 0.5 0.1 0.3
A
0.5
0.9
0.9
0.2
0.2
0.3 0.5 0.9 0.8 0.3
0.4
0.5
0
Байду номын сангаас0.5
0.5
实例2—— 几何图形识别
现实情况
现实印刷过程中
喷黑色 导致不同程度的黑色——灰度 不是理想情况下绝对的黑或白
此时,一个数字所对应的4×5矩阵R, 会有如下表示
R = (rij)4×5 ,rij∈[0,1] rij越靠近1,则灰度越大(越黑);越靠近
0,则灰度越小(越白)
模式识别问题
10个模型:数字0-9所对应的标准 4×5矩阵M0,…,M9
0111000111 0000111111
1 1 1 0 0
以数字0为例
M
0
1
1
1 1
1 1
0 0
0 0
数字0: 1 1 1 0 0
1
1
1
0
0
黑条 黑条 黑条 白条 白条
把每个条码都分成4段
黑条对应的四段: (1 1 1 1)T 白条对应的四段: (0 0 0 0)T
数字0可以用一个4×5的矩 阵来表示
0.5 0.8 0.5 0.1 0.3
A
0.5 0.3
0.9 0.5
0.9 0.9
0.2 0.8
0.2 0.3
0.4
0.5
0
0.5
0
.5
贴近度
(Mk,A)的贴近度计算结果如下: M0 M1 M2 M3 M4 M5 M6 M7 M8 M9
0.45 0.39 0.35 0.44 0.36 0.33 0.41 0.27 0.35 0.32
每个数字的标准向量都不止一个 More details, see “用Delphi实现模糊
方位转换技术 ” 公共邮箱
方格矩阵法
标准矩阵
内存中的标准向量
7×5的矩阵,可变成1×35的向量
待识别的打印文字
将待识别的印刷体文字表示成7×5 阶的模糊矩阵
信息未必清晰,与标准矩阵未必一致
转化为1×35的模糊向量 择近原则
贴近度的选取
前者描述两者对该区域占有的相似程度 后者描述两者空白区域的相似程度
图中1的方向相同吗?
8个方向——8个模糊集
论域U是什么?
与方向0的角度 [-22.5,337.5]
方向0的隶属函数
方向1,2的隶属函数
方向6,7的隶属函数
任务:识别手写数字
确定标准数字 将手写数字与标准数字做比较
确定数字的标准向量
0,1,2,…,9——共10个数字 以数字3为例
可将三角形隶属函数的确定方法, 推广到四边形中
教材第64页,有兴趣可自行阅读
实例3——手写文字的识别
文字识别
简单的情况
英文 数字(1-9)、字母(26个)
两种方法
方格矩阵法(印刷体) 模糊方位转换技术(手写)
方格矩阵法
印刷体的字母或数字 局限在一个框内 框分成若干小方格 矩阵表示
什么?
等腰三角形的论域
设论域为全体三角形,即 U={三角形(A,B,C) | A+B+C=180,
A≥B≥C≥0 }
等腰三角形的隶属函数
设u=(A,B,C)为任意一个三角形,u对于模 糊集合“等腰三角形”的隶属度为
I (u)=1- min{A-B,B-C}/60
Why?
AB角度或BC角度越接近,u越接近等腰三 角形
什么是几何图形识别?
许多模式识别,归结为几何图形识 别。例如:
机器自动识别染色体
几何图形常划分为若干三角形
三角形类型
等腰三角形I 直角三角形R 等腰直角三角形R∩I 等边三角形E 非典型三角形T
三角形vs. 模糊集
以等腰三角形为例
现实问题中的等腰三角形=标准等腰 三角形?
具有模糊性 若用模糊集表示等腰三角形, 论域是
数字条形码
10个数字:0,1,2,3,4,5,6,7,8,9
每个数字用5个有序条码表示
3个黑条 2个白条 思考:为什么是5个有序条码且3个黑
条2个白条?
用1表示黑条,用0表示白条
条码表
0 数字 1 2 3 4 5 6 7 8 9 1110110100
码1 1 0 1 1 0 1 0 1 0 序1 0 1 1 0 1 1 0 0 1
何时隶属度最大? 何时隶属度最小?
其他三角形的隶属函数
直角三角形:R(u)=1-|A-90|/90 等腰直角三角形:I∩R 等边三角形:E(u)=1- (A-C)/180 任意三角形:T=Rc∩Ec∩Ic
请计算
利用最大隶属原则,请问 u=(87,51,42)是什么三角形?
四边形的隶属函数