可靠性基础知识介绍

合集下载

可靠性基础知识

可靠性基础知识

可靠性基础知识研究可靠性的意义对于产品来说, 可靠性问题和人身安全, 经济效益密切相关 . 因此, 研究产品的可靠性问题, 显得十分重要 . 非常迫切 .1) 提高产品可靠性, 可以防止故障和事故障的发生, 尤其是避免灾难性的事故发生 .86 年1 月28 日, 美航天飞机” 挑战者号” 由于 1 个密封圈失效, 起飞76S 后爆炸, 其中7 名宇航员丧生, 造成12 亿美元的经济损失;92 年我国发射” 澳星号” 时由于一个小小零件的故障, 发射失败, 造成了巨大的经济损失和政治影响到 .2) 提高产品的可靠性, 能使产品总的费用降低 . 提高产品的可靠性, 首先要增加费用, 如选用好的元器件, 研制部分冗余功能的电路及进行可靠性设计、分析、实验,这些都需要经费。

然而,产品可靠性的提高使得维修费及停机检查损失费大大减小,使总费用降低。

3 )提高产品的可靠性,可以减少停机时间,提高产品可用率,一台设备可顶几台用,可以发挥几倍的效益。

美国GE 公司经过分析认为,对于发电、冶金、矿山、运输等连续作业的设备,即使可靠性提高1% ,成本提高10% 也是合算的。

4 )对于公司来讲,提高产品的可靠性,可以改善公司信誉,增强竞争力,扩大市场份额,从而提高经济效益。

一般所说的“ 可靠性” 指的是“ 可信赖的” 或“ 可信任的” 。

我们说一个人是可靠的,就是说这个人是说得到做得到的人,而一个不可靠的人是一个不一定能说得到做得到的人,是否能做到要取决于这个人的意志、才能和机会。

同样,一台仪器设备,当人们要求它工作时,它就能工作,则说它是可靠的;而当人们要求它工作时,它有时工作,有时不工作,则称它是不可靠的。

根据国家标准的规定,产品的可靠性是指:产品在规定的条件下、在规定的时间内完成规定的功能的能力。

我国的可靠性工作起步较晚,20 世纪70 年代才开始在电子工业和航空工业中初步形成可靠性研究体系,并将其应用于军工产品。

可靠性理论基础知识

可靠性理论基础知识

可靠性理论基础知识可靠性理论基础知识1.可靠性定义我国军用标准GIB 451A-2005《可靠性维修性保障性术语》中,可靠性定义为:产品在规定的条件下,规定的时间内,完成规定功能的能力。

“规定条件”包括使用时的环境条件和工作条件。

“规定时间”是指产品规定了的任务时间。

“规定功能”是指产品规定了的必须具备的功能及其技术指标。

可靠性的评价可以使用概率指标或时间指标,这些指标有:可靠度、失效率、平均无故障工作时间、平均失效前时间、有效度等。

典型的失效率曲线是浴盆曲线,其分为三个阶段:早期失效期、偶然失效期、耗损失效期。

早期失效期的失效率为递减形式,即新产品失效率很高,但经过磨合期,失效率会迅速下降。

偶然失效期的失效率为一个平稳值,意味着产品进入了一个稳定的使用期。

耗损失效期的失效率为递增形式,即产品进入老年期,失效率呈递增状态,产品需要更新。

1.1可靠性参数1、失效概率密度和失效分布函数失效分布函数就是寿命的分布函数,也称为不可靠度,记为)(t F 。

它是产品或系统在规定的条件下和规定的时间内失效的概率,通常表示为)()(t T P t F ≤=失效概率密度是累积失效概率对时间t 的倒数,记为f(t)。

它是产品在包含t 的单位时间内发生失效的概率,可表示为)()()('t F dtt dF t f ==。

2、可靠度可靠度是指产品或系统在规定的条件下,规定的时间内,完成规定功能的概率。

可靠度是时间的函数,可靠度是可靠性的定量指标。

可靠度是时间的函数,记为)(t R 。

通常表示为?∞=-=>=t dt t f t F t T P t R )()(1)()(式中t 为规定的时间,T 表示产品寿命。

3、失效率已工作到时刻t 的产品,在时刻t 后单位时间内发生失效的概率成为该产品时刻t 的失效率函数,简称失效率,记为)(t λ。

)(1)()()()()()(''t F t F t R t F t R t f t -===λ。

可靠性基础知识

可靠性基础知识

质量人员必读----- 可靠性基础知识1. 平均故障间隔时间;可维修的产品,其可靠性主要的参数是MTBF(Mean Time Between Fail ),即平均故障间隔时间,也就是两次维修间的平均时间;不可维修的产品,用MTTB(Mean Time To Fail );两个参数的计算没有区别,下文只提到MTBF。

MTBF越大,说明产品的可靠性越高。

可以用以下理想测试来精确测试一批产品的MTBF;即将该批产品投入使用,当该批产品全部出现故障以后(假如第1个产品的故障时间为t1,第2个产品的故障时间为t2,第n个产品的故障时间为tn ),计算发生故障的平均时间,则由上式可以看出,理想测试就是用全部的时间和全部的故障数来算出精确的MTBF;2、失效密度入另外一个常用的参数是入,它是指在产品在t时刻失效的可能性,是失效间隔时间的倒数,也就是:入=1/MTBF。

对某一类产品而言,产品在不同的时刻有不同的失效率(也就是失效率是时间的函数),对电子产品而言,其失效率符合浴盆曲线分布(如下图):浴盆曲线,分为三部份(I、II、III 三部份):第I部份是早期失效阶段。

这段时间内,从外形上看,在失效率从一个很高的指标迅速下二降;从物理意义上理解,由于少数产品在制作后,存在一些制程、运输、调试等问题,产品有比较明显的缺陷,在投入使用的最初期,这缺陷很快就显露出来,随着时间的增长,这些明显的缺陷越来越少,也就形成了失效率迅速下降”的现象;第II部份是中期稳定阶段。

这段时间内,产品的失效率稳定在一个较低水平;从物理意义上理解,当少数产品的明显缺陷显露出来后,剩下的就是正常的产品,这部份产品可以较稳定、持久地工作,所以失效率也稳定在一个较低水平;第III部份是后期失效阶段;这段时间内,产品的失效率迅速上升;从物理意义上理解,到了后期,产品经过长时间的工作、磨损、老化,慢慢接近寿命终点,随着时间的增加(Tmax 以内),到达寿命终点的产品越来越多,失效率也就随之上升;知道了入,就可以找到产品连续工作了t时间后、还正常的概率为R(t)=e-t , 此时已经失效的概率为F(t)= 1-R(t)= 1 —e-& #61548;t 。

可靠性工程师考试资料2024

可靠性工程师考试资料2024

可靠性工程师考试资料(二)引言概述:可靠性工程师是现代工程领域中一个非常重要的职位,他们负责确保产品和系统的可靠性,以及减少可能出现的故障和风险。

为了成为一名合格的可靠性工程师,需要有一定的知识储备和专业技能。

本文将深入探讨可靠性工程师考试相关的资料,帮助考生更好地准备考试。

正文内容:一、可靠性基础知识1. 可靠性概念与定义:介绍可靠性的基本概念,如MTBF(平均无故障时间)、故障率、可靠度等,以及它们的定义与计算方法。

2. 可靠性工程原理:解析可靠性工程的基本原理,包括可靠性需求分析、可靠性设计、可靠性测试与评估等环节,以及它们之间的关系。

3. 可靠性统计方法:介绍可靠性工程中常用的统计方法,如生存分析、故障模式与影响分析(FMEA)、故障树分析(FTA)等,以及它们的应用场景和具体步骤。

二、可靠性设计与优化1. 可靠性要求确定:阐述如何根据产品和系统的使用环境、功能需求等因素确定可靠性要求,并建立相应的性能指标和测试标准。

2. 可靠性设计方法:介绍常用的可靠性设计方法,如设计失效模式与影响分析(DFMEA)、故障模式与影响分析(FMEA)、信号完整性分析等,以及它们的步骤和工具的应用。

3. 可靠性验证与验证测试:详细描述可靠性验证的流程和关键步骤,包括设计评审、模拟测试与实验验证等,以及常用的验证测试方法和技术。

三、可靠性评估与维护1. 可靠性评估方法:介绍可靠性评估的方法和指标,如可靠性预测、可靠性增长试验等,以及它们的原理和适用范围。

2. 故障数据分析与故障诊断:解析如何进行故障数据的分析和故障诊断,包括故障率分析、故障模式与效应分析等方法和工具的使用。

3. 可靠性维护与改进:探讨如何进行可靠性维护和改进,包括维护计划的制定、故障处理与预防措施等方面的技巧和方法。

四、可靠性测试与试验1. 可靠性试验方法:介绍可靠性试验的方法和技术,如加速寿命试验、可靠性生命周期试验等,以及它们的步骤和数据分析方法。

第五章 可靠性基础知识(1)可靠性的基本概念及常用度量

第五章  可靠性基础知识(1)可靠性的基本概念及常用度量

第五章可靠性基础知识第五章可靠性基础知识【考试趋势】单选3-4题,多选4-5题,综合分析1题。

考查方式以理解题和计算题为主。

总分值25-35分。

总分170分。

【大纲考点】基本脉络:可靠性概念——测量——模型——分析——试验——管理。

一、可靠性的基本概念及常用度量1.掌握可靠性、维修性与故障(失效)的概念与定义(重点)2.熟悉保障性、可用性与可信性的概念(难点)3.掌握可靠性的主要度量参数(难点)4.熟悉浴盆曲线(重点)5.了解产品质量与可靠性的关系二、基本的可靠性维修性设计与分析技术1.了解可靠性设计的基本内容和主要方法2.熟悉可靠性模型及串并联模型的计算(重点)3.熟悉可靠性预计和可靠性分配(难点)4.熟悉故障模式影响及危害性分析(重点)(难点)5.了解故障树分析(重点)6.熟悉维修性设计与分析的基本方法;三、可靠性试验三、可靠性试验1.掌握环境应力筛选(重点)2.了解可靠增长试验和加速寿命试验(重点)3.手续可靠性测定试验(难点)4.了解可靠性鉴定试验四、可信性管理1.掌握可信性管理基本原则与可信性管理方法(难点)2.了解故障报告分析及纠正措施系统(重点)3.了解可信性评审作用和方法第一节可靠性的基本概念及常用度量【考点解读】第一节可靠性的基本概念及常用度量学习目标要求:1、掌握可靠性、维修性与故障的概念与定义2、熟悉保障性、可用性及可信性的概念3、掌握可靠性的主要度量参数4、了解浴盆曲线5、了解产品质量与可靠性关系基本脉络是:可靠性——不可靠(故障)——可靠度——可靠度函数——常用指标——模型——地位意义(与质量的关系)典型考题典型考题:单选题22、下述设计方法中不属于可靠性设计的方法是()。

a、使用合格的部件b、使用连续设计c、故障模式影响分析d、降额设计23、产品使用寿命与()有关。

a、早期故障率b、规定故障率c、耗损故障率d、产品保修率一、故障(失效)及其分类一、故障(失效)及其分类1、故障定义:产品或产品的一部分不能或将不能完成预定功能的事件或状态称为故障。

可靠性基础知识介绍

可靠性基础知识介绍

高温、低温、恒温恒湿、交变湿热
温度变化测试主要应用于哪些方面?
a. 规定转换时间的温度变化,主要应用于确定元件、设 备和其他产品经受环境温度迅速变化的能力;
b. 规定温度变化速率的温度变化,主要应用于确定元件、 设备和其他产品在环境温度变化的工作能力;
c. 双液槽法温度变化,主要应用于确定元件、设备或其 他产品经受温度快速变化的能力,主要适用于玻璃金属组成的密封件及类似的试验样品。
主要应用于考核电工,电子产品在高温或低温条件下贮存和使 用的适应性。
恒温恒湿测试主要应用于哪些方面?
主要应用于考核电工电子产品、元件、材料等在恒定湿热条件 下使用和贮存的适应性。
交变湿热测试主要应用于哪些方面?
主要应用于考核电工电子产品或材料在温度循环变化、产品表 面产生凝露的湿热条件下使用和贮存的适应性。
温度范围:-40℃~+150℃ 湿度范围:20%~98%RH
HY-1000 JW-1000F-40
高温、低温、恒温恒湿、交变湿热
目前可靠性实验室能达到 300℃的试验箱有几台? GW-0250高温试验箱
内箱尺寸为 52 cm(长)
63 cm(宽)
78 cm(高)
高温、低温、恒温恒湿、交变湿热
高温、低温、恒温恒湿、交变湿热
温湿度测试过程中,不允许打开试验箱门,对样品进行测 试,这样的试验可靠性实验室能做吗?
可以。因此实验室设备都有端口可将连接线导出,在测试 中不打开箱门的情况下对样品进行性能检测。 一般温湿度相关测试中,普通试验箱内能承受的热功率有 多少? 高温200W,低温100W,低湿0W
交变湿热试验 Alternating temperature and humidity test 湿热 Damp heat 潮湿/湿气 Moisture 循环 Cycle 次数 Times 驻留时间 Dwell time 存贮 Storage

可靠性基础知识

可靠性基础知识

可靠性基础知识
——产品的失效
1、功能性失效
致命失效、漂移性失效、间歇失效 ➢ 致命失效:是指产品完全失去规定功能能力的一类失效。 ➢ 漂移性失效:是指产品的一个或几个参数超过规定值所引起的
一类失效,漂移性失效在产品使用中有时是允许的 ➢ 间歇失效:是指产品在使用或试验过程中呈现时好时坏一类的
失效。
e x
f
(x)


x0
0
x0

当故障率f(t)服从指数分布时:
f(t) λ
0
t
指数分布的概率密度函数
F(t)
t e xdx
t (e x )dx
t
e x
1 e t
0
0
0
R(t)

e xdx

e x e t
展。
概述
——可靠性定义
产品在规定条件下和规定时间内,完成规定功能的 能力(概率),就叫做电子产品的可靠性。
可靠性试验是对产品可靠性进行调查、分析和评价 的一类试验。
主要内容
一.概述 二.可靠性基础知识 三.环境试验
可靠性基础知识
——基本知识和术语
可靠性试验与环境试验
可靠性试验是对产品进行评价的各种试验如增长、筛选、验证 、验收、统计等。
可靠性基础知识
主要内容
一.概述 二.可靠性基础知识 三.环境试验
主要内容
一.概述 二.可靠性基础知识 三.环境试验
概述
——可靠性的重要性
1. 关系到企业的生存和壮大。 2. 关系到使用者的安全。 3. 提升形象,减少维护费用。 4. 是军事产品中重要的技术指标。
概述
——可靠性的发展历史

深入解读可靠性工程可靠性工程师培训核心要点

深入解读可靠性工程可靠性工程师培训核心要点

深入解读可靠性工程可靠性工程师培训核心要点1. 概述可靠性工程是一种系统工程方法,旨在确保产品、设备或系统在特定条件下的可靠性和稳定性。

可靠性工程师培训是为了让工程师掌握可靠性工程的基本理论和方法,提高其在项目开发和产品设计中的能力。

本文将深入解读可靠性工程师培训的核心要点。

2. 可靠性基础知识2.1 可靠性定义及测度可靠性是指系统或产品在特定环境条件下,在一定时间内完成所期望功能的能力。

常用的可靠性测度方法包括故障率、失效概率、平均无故障时间等。

2.2 失效机理分析失效机理分析是可靠性工程的基础,通过对系统或产品的失效机理进行深入研究,可以制定相应的可靠性改进策略。

常见的失效机理包括磨损、疲劳、腐蚀等。

3. 可靠性工具与方法3.1 可靠性测试与试验可靠性测试与试验是评估系统或产品可靠性的重要手段。

常见的可靠性测试方法包括可靠性增长试验、加速寿命试验等。

3.2 可靠性建模与分析可靠性建模与分析是通过建立系统或产品的数学模型,对其可靠性进行评估和优化。

常用的可靠性建模与分析方法包括故障树分析、失效模式与影响分析等。

3.3 可靠性工程设计可靠性工程设计是在产品或系统设计阶段考虑可靠性要求,采取相应的设计措施和技术手段来提高产品或系统的可靠性。

常见的可靠性工程设计方法包括冗余设计、容错设计等。

4. 可靠性管理与评估4.1 可靠性数据管理可靠性数据管理是对系统或产品的故障数据进行收集、整理和分析,为可靠性评估和改进提供依据。

常见的可靠性数据管理方法包括故障数据库建立、故障数据统计等。

4.2 可靠性指标评估可靠性指标评估是对系统或产品在特定条件下的可靠性进行定量评估,常用的评估指标包括可靠度、平均故障间隔时间、失效率等。

4.3 可靠性改进措施可靠性改进措施是基于可靠性评估结果,针对存在的问题采取相应的改进措施。

常见的可靠性改进措施包括质量管理、故障预防、可靠性增长等。

5. 可靠性工程实践案例本部分将介绍几个可靠性工程实践案例,以帮助可靠性工程师更好地理解和应用可靠性工程的核心要点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

预防性维修:也称维护,是根据产品功能随时 间衰减的特性及可能出现的故障采取预防性措 施,以延长产品的寿命。 恢复性维修:是产品发生故障后,使其产品尽 可能恢复故障前的状态。 产品可靠性和可维修性,是产品设计的两个重 要设计特性。在产品的方案论证、评审中,就 要对此提出要求,并落实到产品的设计中。 3、可用性 可用性定义:在要求的外部资源得到保证的前
1、可靠度R 产品在规定条件下、规定时间内、完成规定功能 的概率度量,称可靠度。也就是产品功能随时间 保持预期寿命的概率大小,是时间的函数,一般 用R(t)表示。
R(t)=P(T>t ) T:产品发生的故障时间; t:产品的规定时间。
若产品的总数为No,工作到时刻t产品发生的故 障数为r(t),产品在时刻t的可靠度观测值为:
108
灯泡不能正常点亮的故障机理。 2、浴盆曲线 大多数产品故障概率随时间变化的曲线,呈浴 盆形状,故将故障率曲线,称“浴盆曲线”。
①早期故障期 是产品刚刚投入使用的初期,此时故障率较高, 故障缺陷容易暴露,产品的早期失效一般是由 于设计缺陷、制作缺陷、材料缺陷、安装调整 不当等原因引起。 出现的早期故障可以通过加强工艺措施、质量 管理措施及环境应力筛选等设计措施加以防止。 ②偶然故障期 此时已将早期失效的故障降到最低,发生的故 障是由偶然因素引起,在此区域性能基本稳定
其它器件故障原因的故障。 非独立故障:其它产品故障引起的故障。 注意:评价产品可靠性的统计原则是:只统计 独立故障。 ③故障模式、故障机理 故障模式:故障的表现形式,称故障模式; 故障机理:引起故障的原因,称故障机理。 例:灯泡不能正常点亮,灯泡出现了故障,此 灯泡不能正常点亮的表现形式,就称为灯泡的 故障模式;引起灯泡不能正常点亮的原因是: 灯丝断路,灯泡内部发生了物理变化,这就是
例:设t=0时,有10000只灯泡投ห้องสมุดไป่ตู้工作,当t= 365天时,有300只灯泡坏了,计算工作一年后 灯泡的可靠度?
R(t)= 10000 300 =0.97
10000
例:某电子元件110个,在同样的条件下进行 试验,试验结果见下表,计算电子元件的可靠 度R(t)、累计故障(失效)分布函数F(t) 各是多少?见下表1:
可靠性基础知识简介
一、可靠性的基本概念
1、故障(失效) ①故障(失效)的定义:产品或产品的一部分 不能或将不能完成预定功能的事件或状态(可 修复),称故障。产品终止了规定功能(不可 修复),叫失效。故障通常是失效后的状态, 也有可能失效前就存在。 ②故障的分类 按故障出现的规律分:偶然故障、损耗故障; 按故障出现的结果分:致命故障、非致命故障;
表1:电子元件累计失效统计
序号 失效时间范围h 失效数 累计数r(t) 仍在工作数Ns R(t) F(t)
10
0
0
110
1
0
2 0~400
6
6
104
0.945 0.055
3 400~800
28
34
4 800~1200
37
71
5 1200~1600 23
94
6 1600~2000 9
103
7 2000~2400 5
按故障的统计特性分:独立故障、从属故障。 偶然故障:由于偶然因素引起的故障。偶然故 障是随机的,无法控制,只能通过统计概率来 预测。 损耗故障:是由于产品规定的性能随时间增加 而逐渐衰退所引起。 致命故障:完全丧失完成规定功能的能力,并 可能造成人或物的重大损失。 非致命故障:不影响任务的完成,但会导致非 计划的维修。 独立故障:由产品本身引起而又不能成为引起
4、安全性 安全性定义:是不发生危险事件的能力。导致 以下后果发生的事件为危险事件: ①人员伤亡; ②财产损失; ③环境破坏。 5、全寿命周期费用LCC 全寿命周期费用:是指在系统的整个寿命周期 内,为获取并维持系统的运营(包括处置)所 发生的全部费用。全寿命周期费用分布见图1。
图1
三、可靠性的常用度量
任务剖面是指产品完成特定任务时间内,所经 历的时间和环境的时序描述。此期间并非所有 故障都发生,并非所有故障都致命,任务期间 的所有产品故障将影响着任务的可靠性。 2、维修性 维修性定义:产品在规定的条件下和规定的时 间内,按规定的程序和方法,保持和恢复执行 规定状态的能力,维修性的概率度量,称维修 度M。 维修性分:预防性维修、修复性维修。
提下,产品在规定的条件下和规定的时刻或区 间内处于可执行规定功能状态的能力。简言之, 产品在任意时刻使用时,该产品此时表现的可 用能力 ,称产品的可用性。是可靠性、可维修 性和维修保障的综合反映。可靠性是通过延长 产品的工作时间提高产品可用性;维修性是通 缩短产品的停机时间提高产品可用性。 可用性分:固有可用性、使用可用性。可用性 的概率度量,称可用度A。 固有可用性:不受外部资源的影响; 使用可用性:受外部资源的影响。
二、可靠性的基本定义
1、可靠性 可靠性定义:产品在规定条件下、规定时间内、 完成规定功能的能力,称产品的可靠性。 产品可靠性分:固有可靠性、使用可靠性;基 本可靠性和任务可靠性。 固有可靠性:是产品在设计、制造中形成的, 是产品自身的一种固有特性,也是可控的特性, 它源于产品的设计、制作者。
使用可靠性:是产品在实际使用中,表现出的 一种性能和保持能力的一种特性。它不仅和产 品设计的固有可靠性有关,还和产品制作、操 作使用、维修保障各因素紧密相关。 基本可靠性:产品在规定条件下无故障的持续 时间或概率,称基本可靠性。在评定产品基本 可靠性时,需统计所有故障。其中所有可维修 故障,决定着对维修人员的合理安排。 任务可靠性:是产品在规定任务剖面内,完成 规定功能的能力。只考虑任务期间影响任务完 成的故障。
故障率趋于常数,A、B区是耗损期到来之前产 品的主要使用期。 出现的偶然故障,只能通过统计方法来预测。 ③耗损故障期 产品使用很长一段时间后,故障迅速上升,直 至极度。此时的故障主要由产品的老化、疲劳、 磨损、腐蚀等原因引起。 对耗损故障可通过实验数据分析耗损期到来的 起始拐点,并通过预防维修来延长产品的寿命。
相关文档
最新文档