微积分初步期末复习典型例题
电大专科微积分初步期末考试试题及答案

1微积分初步考试试题1填空题答案:f(x)=x 2—1X 2 -2x -3(6)函数y =的间断点是x +1答案:x = -11(7) lim xsin —= X答案:1(8)若 llm sln4x =2,贝y k = T sin kx答案:k = 2(9)曲线f(x)=JX+1在(1,2)点的切斜率是 1 答案:12(10)曲线f(x)=e X在(0,1)点的切线方程是答案:y =x +e(1) 函数f(X 2E 的定义域是答案:函数 f(X)= ---- 1-- +』4 -x 2In(X +2)的定义域是答案: (—2,—1)5—1,2]函数 f(X +2) = X 2+4x + 7,则 f(x) = 答案:f(X)= X 2+3(4)若函数f(X)= { i ■ 3 4 [xsi n —+1,! xX c 0 在X = 0处连续,则k =X >0 答案:k =1 (5)函数 f(X-1) =X 2-2x ,则(11)已知 f(X)=X 3 +3x,贝y f'(3) =答案:(13)若 f(X)=xe 」,则 f "(0)答案:f "(X)= —2e 」+xe 」f 70) = -2(16)若f (x)的一个原函数为ln X 2,则f (x)=2答案:-(17)若 J f (x)dx =sin 2x +c ,则 f (x)答案:2cos2x答案: f(X)=3x 2 +3XIn3f '(3)=27 (1+1 n3)(12)已知 f(X)=lnx ,贝U f “(x) =(14)2函数y=3(x-1)的单调增加区间是答案: (1,畑)(15) 2函数f(x)=ax +1在区间(0, +K )内单调增加,则a 应满足答案: a >0(18) 若 fcosxdx = 答案: sin X +c(19) 2答案:-X 丄 e +c(20)f(sin x) dx=答案:sin X +c (21) 若 J f (x)dx =F(x) +c ,贝U Jf(2x-3)dx =2方程是答案:y=2jx+1(27)由定积分的几何意义知, r J a 2 -x 2dx =答案:(29)微分方程y'+3y =0的通解为答案:y=ce°x(30)微分方程(y)3 +4xy ⑷=y 7sinx 的阶数为答案:42. 单项选择题e+e x答案:1F(2x-3) +c 2(22) 若 J f (x)dx = F(X)+c ,贝U Jxf (1 — x 2)dx答案: --F(1 -X 2) +C2 (23)12L(sin x cos2x - X + x)dx答案: —3de (24)dx1答案: 0(25)0 JU 52x dx =答案: 1(26)已知曲线y = f (x)在任意点x 处切线的斜率为1',且曲线过(4,5),则该曲线的(28) 微分方程y' = y, y(0)=i 的特解为答案:xy =e22+1)dx =(1)设函数y =,则该函数是( ).A.奇函数B.偶函数C非奇非偶函数 D .既奇又偶函数2A. d J f (x)dx = f (x) B . J f '(x)dx = f(X)答案:B(2)下列函数中为奇函数是( ). A . xsinx B . + e xC . ln(X + J 1+X 2) 2D . X +x答案:C (3)函数 x+4 + h (X + 5)的定义域为( ). A. X 答案: > -5 D B . XH -4 C . x>-5 且 XH O (4) f(x+1) =x 2-1, A. x(x +1) C .X(X-2) (x + 2)(x-1)答案:C (5)当 k时,函数 f(x)=r +2,L k,X 工0在x=0处连续.X =0B .C . 2答案:D(6)当 k时, 函数wf:1'HO ,在x=0处连续.=0 A. 0B .-1答案:B(7)函数 f(x) x 2-3x +2的间断点是(A. X = 1,x =2X =3C. X =1, X = 2, X= 3.无间断点答案:(8)若 f(X)= r cosx , 则 f(0) =).A. 2 答案:CB. 1C. -1D. -2(9)设 y =lg2x ,则 dy =( ).A 1 1 A.——dxB . ---------- d x2x xln10答案:BA . 2f(cos2x)dxf'(cos2x)sin2xd2xC . 2 f (cos2x)sin 2xdxD . - f \cos2x)sin2xd2x答案:D答案:D答案:C.f(x)在 ^x 0处连续,则一定在 x 0处可微. .f(x)在x = x 0处不连续,则一定在 x 0处不可导. .可导函数的极值点一定发生在其驻点上D.函数的极值点可能发生在不可导点上 答案:A (14) 下列函数在指定区间(亠,畑)上单调增加的是( A . sin X B答案:B(15) 下列等式成立的是((10)设y = f(x)是可微函数,则df(cos2x)=().D . -dx X⑴)若f(X)=sin X + a 3,其中a 是常数,则f "(X)=().2A . COSX + 3aB . sinx+6aC.-sinxcosx答案:C(1)函数y =(X+1)2在区间(—2,2)是( A.单调增加B .单调减少 C.先增后减D .先减后增(12)满足方程 f '(X)=0的点一定是函数 =f(x)的(A.极值点B .最值点C .驻点 D.间断点(13)下列结论中()不正确.).A. d J f (x)dx = f (x) B . J f '(x)dx = f(X)plC. f f (x)dx = f(X)dx 、答案:C(16) 以下等式成立的是(答案:D(17) Jxf7x)dx =答案:答案:.y=Cx B . y=x + C 答案:(22)下列微分方程中为可分离变量方程的是( D. Jdf(X)= f(X)A. In xdx = d(-)X.sin xdx=d(cosx)C.—仮v x.3X d^-^ In 3A. xf '(X)- f(X)+cB. xf '(X)+ cC. 1X 2f (X)+c 2答案:(18) D.(x +1) f \x )+c答案:J 』A下列定积分中积分值为X _xe -e , X2 兀 3f (x +cosx)dxJIA(19)设 A. 00的是().—x•[兀(x 2+si nx)dx• -JIf(x)是连续的奇函数,则定积分a -f (x)dx =()-aB. J a f (x)dx CJ0f(x)dx 0D. 2f a f(x)dx(20) 下列无穷积分收敛的是().A. -be J 。
数学微积分复习题集及答案

数学微积分复习题集及答案导言微积分是数学的一个重要分支,广泛应用于物理、工程、经济等领域。
为了帮助学生复习微积分知识,本文提供了一套包括复习题和答案的微积分复习题集。
通过解答这些问题,学生可以巩固对微积分的理解,提高解题能力和应用能力。
一、求导篇1. 求函数f(x) = 3x^2 + 2x + 1的导函数f'(x)。
答案:f'(x) = 6x + 2。
2. 求函数g(x) = sin(x) + cos(x)的导函数g'(x)。
答案:g'(x) = cos(x) - sin(x)。
3. 求函数h(x) = ln(x^2)的导函数h'(x)。
答案:h'(x) = 2/x。
二、定积分篇4. 求函数f(x) = 2x^2 + 3x + 1在区间[1, 3]上的定积分∫[1,3] f(x) dx。
答案:∫[1,3] f(x) dx = 26/3。
5. 求函数g(x) = e^x的不定积分F(x)。
答案:F(x) = e^x + C,其中C为任意常数。
6. 求函数h(x) = sin(x)在区间[0, π]上的定积分∫[0,π] sin(x) dx。
答案:∫[0,π] sin(x) dx = 2。
三、微分方程篇7. 求微分方程y' = 2x的通解。
答案:y = x^2 + C,其中C为任意常数。
8. 求微分方程y' = y的通解。
答案:y = Ce^x,其中C为任意常数。
9. 求微分方程y'' + y = 0的通解。
答案:y = A*sin(x) + B*cos(x),其中A和B为任意常数。
四、面积与体积篇10. 求曲线y = x^2和直线y = 2x的交点坐标,并求由该曲线、直线以及x轴所围成的面积。
答案:交点坐标为(0, 0)和(2, 4),所围成的面积为8/3。
11. 求曲线y = sin(x)在区间[0, π]上绕x轴旋转一周所形成的体积。
微积分复习题

微积分复习题微积分复习题微积分是数学中的一门重要学科,它研究的是函数的极限、导数和积分等概念与性质。
在学习微积分的过程中,我们经常会遇到各种各样的复习题,通过解答这些题目可以巩固对微积分知识的理解和应用能力。
本文将以一些典型的微积分复习题为例,展示微积分的一些重要概念和解题技巧。
一、极限题1. 求函数$f(x)=\frac{x^2-4}{x-2}$在$x=2$处的极限。
解析:首先,我们可以将函数$f(x)$进行因式分解,得到$f(x)=x+2$。
因此,当$x$趋近于2时,$f(x)$趋近于4。
所以,$\lim_{x\to 2} f(x)=4$。
2. 求函数$g(x)=\frac{\sin x}{x}$在$x=0$处的极限。
解析:对于这个函数,我们可以利用泰勒展开的方法来求解。
将$\sin x$展开为其泰勒级数形式,得到$\sin x=x-\frac{x^3}{3!}+\frac{x^5}{5!}-\frac{x^7}{7!}+...$。
因此,当$x$趋近于0时,$g(x)$趋近于1。
所以,$\lim_{x\to 0} g(x)=1$。
二、导数题1. 求函数$h(x)=3x^2-2x+1$的导函数。
解析:根据导数的定义,我们可以直接对函数$h(x)$进行求导。
对于多项式函数来说,求导的规则是将指数降低1,并乘以原指数的系数。
所以,导函数为$h'(x)=6x-2$。
2. 求函数$y=e^x$的导数。
解析:对于指数函数$y=e^x$来说,它的导数与其本身相等。
所以,导函数为$\frac{dy}{dx}=e^x$。
三、积分题1. 计算$\int (2x+1)dx$。
解析:根据积分的定义,我们可以将被积函数的每一项按照幂次降低1,并乘以原幂次的倒数。
所以,$\int (2x+1)dx=x^2+x+C$,其中C为常数。
2. 计算$\int_0^1 x^2dx$。
解析:这是一个定积分,我们可以直接根据积分的性质进行计算。
【精选资料】微积分期末复习题及答案

数三《微积分》期末复习题一、选择题1. 对于xy x y x f +=2),(,原点(0,0)( C ).(A ) 不是驻点 (B ) 是极大值点 (C ) 是驻点却不是极值点 (D ) 是极小值点 2.下列积分值为0的是___C_A. ⎰+∞+0211dx x ; B. ⎰-1121dx x(利用几何意义去判定); C. 22sin (cos cos )1x x x dx xππ-++⎰; D. ⎰--1121dx x . 解:2arctan 11002π==+∞++∞⎰x dx x C :考察奇偶函数在对称区间上的积分D :利用几何意义:此积分可以看成函数012≥-=x y 在(-1,1)上的面积。
0,11222≥=+⇒-=y y x x y ,即是上半圆的面积2π3. 二元函数2222222,0(,)00,xy x y x y f x y x y ⎧+≠⎪+=⎨+=⎪⎩在点(0,0)处( B ). A. 连续,偏导数存在; B. 不连续,偏导数存在; C. 连续,偏导数不存在; D. 不连续,偏导数不存在. 4. 下列级数收敛的是___D____.A . 21+151n n n n ∞=++∑ B. ∑∞=+11n n n n )(C . ∑∞=⎥⎦⎤⎢⎣⎡-1)32(1n n nD. ∑∞=1!n n n n . 5 . 级数113cos ()n nn n ∞=-∑( B ). (A )条件收敛 (B ) 绝对收敛 (C ) 发散 (D ) 敛散性不能判定解:11333cos cos ()()nn n n n n -=≤,而113()nn ∞=∑收敛,所以绝对收敛。
6 设)(x f 为连续函数,⎰⎰=t tydx x f dy t F 1)()(,则'(2)_____.F =(A) )(2f ; (B) )(22f ; (C) )(2f -; (D) 0. 解:对⎰⎰=tt ydx x f dy t F 1)()(交换积分次序得⎰⎰⎰-==tt x dx x x f dy x f dx t F 111)1)(()()(所以),1)(()(-='t t f t F'(2)(2).F f = 所以选A二、填空题1、若D 为区域2218x y ≤+≤,则3Ddxdy ⎰⎰=( 21π )=⎰⎰Ddxdy 3πππ21)8(33=-=⋅D S2、函数()y zf x=,其中f 可微,则.))((2x y x y f x z -'=∂∂3. 若ln 21()x xF x t dt =⎰,则()F x '=___2411ln x x x +________.所以本题的答案为24ln x x x+4. 已知22(,)y f x y x y xy x+=+-,则222)1()1(),(y y y x y x f ++-=__________.解:令vuv y v u x x y v y x u +=+=⇒=+=11,, 所以22211)()(),(v v v u v u f ++-=,222)1()1(),(y y y x y x f ++-= 5 设arctanxz y =,则=),(|11dz 1122dz dx dy =- . 本题考查全微分,求全微分实质就是两个偏导数z x y ∂∂∂,然后再利用z zdz dx dy x y∂∂=+∂∂ 本题:2222222111(),()1()1()zy z x xx x xy x y y y x y y y∂∂=⋅==⋅-=-∂+∂+++ 在点(1,1)处,有11,22z z x y ∂∂==-∂∂,所以1122dz dx dy =-6.若级数为1111,357-+-+ 则它的一般项__121)1(1--=-n u n n _______.7. 交换积分次序()⎰⎰12xxdy y x f dx ,=1(,)ydy f x y dx ⎰.8. 定积分4121cos ()xx x x dx e -⋅+=⎰______32______. 考查定积分的奇偶性,三、计算题1.求极限(,)limx y →.解:(,)(,)(,)limlimlimx y x y x y →→→==(,)(0,0)lim 1)2x y →==2. 已知方程),(x yxy f x z 3=,f 具有二阶连续偏导数,求222,,,z z z z x y y x y∂∂∂∂∂∂∂∂∂. 分析:本题考察复合函数求导,特别要注意在求二阶偏导数时要注意11(,)yf f xy x''=,22(,)yf f xy x''=。
微积分(全册)期末复习题

《微积分》(全册)期末复习题 黄士叶 老师一、填空题1、复合函数x y 5sin 4=可分解为______________________;2、若y=f (x )的定义域是[0,1],则)(2x f 的定义域是__________;3、=-→)13(lim 1x x ___ 4、=++→21lim1x x x ____ 5、=+∞→22342limxx x ____6、=-+-→265lim22x x x x _______;7、=++-∞→3223lim232x x x x ___8、=→x x x 5sin lim_ 9.=→xx x ωsin lim_____10、=-→xxx x sin tan lim______;11、=→xx x tan lim_____12.xx xx 21lim )(+∞→=____ 13.x x x 1)1lim -→( = ___ 14、xx x)81lim -∞→( = __;15、43)31lim +∞→+x x x( = ______; 16xx x2)21lim +∞→( = ______;17、函数2)2(1+=x y 的间断点是______;是第______类间断点;18、函数2212)(2>≤⎩⎨⎧-=x x x x x f ,当2→x 时的左极限是______;右极限是______;在2=x 处______;(填是否连续) 19、函数3313)(≥<⎩⎨⎧-=x x x xx f ,当3→x 时的左极限是______;右极限是______;极限是______;在3=x 处______;(填是否连续) 20、函数2)1(1-=x y 当______时,是无穷大量;当______时,是无穷小量;21、函数11)2(1++-=x x y 的间断点是______和______;22、函数)(x f y =在点x 处的导数)(x f '表示曲线)(x f y =在点(x ,y )处的______和______; 23、曲线x y ln =在点M (e ,1)处的切线方程是____________ ;24、若函数)(x f y =在点0x 处可导,则)(x f y =在点0x 处必______,且=→)(lim 0x f x x ______;25、函数112)(3++=x x x f 在定义域内是单调______的; 26、函数6)1()(-=x x f 的凹区间为________ ;27、已知函数)(x f y =在点0x 处可导,且)(0x f 是极小值,则=')(0x f ___ ; 28、若点(1,4)是曲线23bx ax y +=的拐点,则a =_____,=b ___ ;29、已知函数F (x )和G (x )都是函数f (x )的原函数,且G (x )=2x e ,F (0)=0,则F(x )=________ ;30、已知不定积分⎰+=,)()(C x F dx x f 则⎰=dx x F x f )()(________ ;31、根据定积分的几何意义可知:⎰=-1021dx x ____;32、已知0)2(1⎰=+dx b x ,则b=________ ; 33、已知连续函数)(x f 是奇函数,且1)(10-=⎰dx x f ,则⎰-=01)(dx x f ________ ;34、曲线y=x 3在点A(2,8)处的切线斜率为_________; 二、选择题1、=→x x e 1lim ( )A 0; B -∞; C +∞; D 不存在。
2016年电大专科微积分初步期末考试试题及答案

微积分初步考试试题1、填空题 (1)函数)2ln(1)(-=x x f 的定义域是 .答案:2>x 且3≠x . (2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f.答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k(5)函数x x x f 2)1(2-=-,则=)(x f . 答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x (7)=∞→xx x 1sinlim . 答案:1 (8)若2sin 4sin lim0=→kxxx ,则=k .答案:2=k (9)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (10)曲线xx f e )(=在)1,0(点的切线方程是 . 答案:e x y +=(11)已知x x x f 3)(3+=,则)3(f '= .答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(12)已知x x f ln )(=,则)(x f ''= .答案:x x f 1)(=',)(x f ''=21x- (13)若x x x f -=e )(,则='')0(f.答案:x x x x f --+-=''e e 2)(='')0(f 2-(14)函数y x =-312()的单调增加区间是 . 答案:),1(+∞(15)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a(16)若)(x f 的一个原函数为2ln x ,则=)(x f . 答案:x2(17)若⎰+=c x x x f 2sin d )(,则)(x f .答案:x 2cos 2(18)若______________d os ⎰=x x c 答案:c x +sin (19)=⎰-2de x.答案:c x +-2e(20)='⎰x x d )(sin.答案:c x +sin (21)若⎰+=c x F x x f )(d )(,则⎰=-x x f d )32(.答案:c x F +-)32(21(22)若⎰+=c x F x x f )(d )(,则⎰=-x x xf d )1(2 .答案:c x F +--)1(212 (23).______d )2cos (sin 112=+-⎰-x x x x x答案:32- (24)=+⎰e 12d )1ln(d d x x x. 答案:0 (25)x x d e 02⎰∞-= .答案:21 (26)已知曲线)(x f y =在任意点x 处切线的斜率为x1,且曲线过)5,4(,则该曲线的方程是 .答案:12+=x y (27)由定积分的几何意义知,x x a ad 022⎰-= .答案:42a π(28)微分方程1)0(,=='y y y 的特解为 . 答案:xy e =(29)微分方程03=+'y y 的通解为 . 答案:x c y 3e-=(30)微分方程x y xy y sin 4)(7)4(3=+''的阶数为 .答案:42.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e xx +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( ) A .)1(+x x B .2x C .)2(-x x D .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( )A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A (8)若x x f xcos e)(-=,则)0(f '=( ). A. 2 B. 1 C. -1 D. -2答案:C(9)设y x =lg 2,则d y =( ).A .12d x x B .1d x x ln10 C .ln10x x d D .1d xx 答案:B(10)设)(x f y =是可微函数,则=)2(cos d x f ( ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos ' C .x x x f d 2sin )2(cos 2' D .x x x f d22sin )2(cos '- 答案:D(11)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos 答案:C(1)函数2)1(+=x y 在区间)2,2(-是( ) A .单调增加 B .单调减少 C .先增后减 D .先减后增 答案:D(12)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(13)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上. D .函数的极值点可能发生在不可导点上. 答案:A(14)下列函数在指定区间(,)-∞+∞上单调增加的是( ).A .x sinB .x eC .2x D .x -3答案:B(15)下列等式成立的是( ). A .)(d )(d x f x x f =⎰ B .)(d )(x f x x f ='⎰C .)(d )(d dx f x x f x =⎰D .)()(d x f x f =⎰ 答案:C(16)以下等式成立的是( )A . )1d(d ln xx x = B .)(cos d d sin x x x =C .x xxd d = D .3ln 3d d 3xxx =答案:D(17)=''⎰x x f x d )(( )A. c x f x f x +-')()(B. c x f x +')(C.c x f x +')(212D. c x f x +'+)()1( 答案:A(18)下列定积分中积分值为0的是( ).A .x xx d 2e e 11⎰--- B .x xx d 2e e 11⎰--+ C .x x x d )cos (3⎰-+ππD .x x x d )sin (2⎰-+ππ答案:A(19)设)(x f 是连续的奇函数,则定积分=⎰aax x f -d )(( )A .0B .⎰-d )(ax x f C .⎰ax x f 0d )( D .⎰0-d )(2ax x f答案:A(20)下列无穷积分收敛的是( ). A .⎰∞+0d in x x s B .⎰∞+1d 1x xC .⎰∞+1d 1x xD .⎰∞+-02d e x x答案:D(21)微分方程0='y 的通解为( ).A .Cx y =B .C x y += C .C y =D .0=y 答案:C(22)下列微分方程中为可分离变量方程的是( )A. y x x y +=d d ;B. y xy x y +=d d ;C. x xy x y sin d d +=;D. )(d d x y x xy += 答案:B 3、计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x(3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x(4)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(5)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2c o s s i n 34c o s4-= (6)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (7)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-=(8)x x d )12(10⎰-解:c x x x x x +-=--=-⎰⎰111010)12(221)1d(2)12(21d )12( (9)x x x d 1sin2⎰解:c x x x x x x +=-=⎰⎰1cos 1d 1sin d 1sin2(10)x x x d )e 4(e 22ln 0+⎰解:)e d(4)e 4(d )e 4(e 22ln 022ln 0x x x x x ++=+⎰⎰=3152)64216(31)e 4(2ln 03=-=+x (11)x xxd ln 51e1⎰+ 解:27)136(101)ln 51(101)ln 51()ln 51(51d ln 51121e1=-=+=++=+⎰⎰ee x x d x x x x (12)x x x d e 10⎰解:1ee d e ed e 101101=-=-=⎰⎰x xx xx x x x(13)⎰π20d sin x x x解:1sin d cos cos d sin 20202020==+-=ππππ⎰⎰xx x x x x x x4、应用题(1)欲做一个底为正方形,容积为108立方米的长方体开口容器,怎样做法用料最省?解:设底边的边长为x ,高为h ,用材料为y ,由已知22108,108xh h x == x x x x x xh x y 432108442222+=⋅+=+=令043222=-='xx y ,解得6=x 是唯一驻点,且04322263>⨯+=''=x x y , 说明6=x 是函数的极小值点,所以当6=x ,361082==h 用料最省. (2)用钢板焊接一个容积为43m 的正方形的水箱,已知钢板每平方米10元,焊接费40元,问水箱的尺寸如何选择,可使总费最低?最低总费是多少? 解:设水箱的底边长为x ,高为h ,表面积为S ,且有24xh =所以,164)(22xx xh x x S +=+= 2162)(x x x S -=' 令0)(='x S ,得2=x ,因为本问题存在最小值,且函数的驻点唯一,所以,当1,2==h x 时水箱的面积最小. 此时的费用为 1604010)2(=+⨯S (元)。
微积分复习试题及答案10套(大学期末复习资料)

微积分复习试题及答案10套(大学期末复习资料)习题一(A) 1、求下列函数的定义域:ln(4),x2(1) (2) (3) y,y,logarcsinxyx,,4a||2x,113y,,log(2x,3)(4) (5) yx,,,1arctanax,2x2、求下列函数的反函数及其定义域xx,32(1) (2) (3) yy,,yx,,,1ln(2)x2,1x,3x,,(4)yx,,,2sin,[,] 3223、将下列复合函分解成若干个基本初等函数2x(1) (2) (3) yx,lnlnlnyx,,(32ln)ye,,arcsin123(4) y,logcosxa4、求下列函数的解析式:112,求. (1)设fxx(),,,fx()2xx2(2)设,求 fgxgfx[()],[()]fxxgxx()1,()cos,,,5、用数列极限定义证明下列极限:1232n,1,,(1)lim(3)3 (2) lim, (3) ,lim0nn,,n,,n,,3353n,n6、用函数极限定义证明下列极限:x,31x,32lim(8)1x,,lim1,lim,(1) (2) (3) 23x,x,,x,,3xx,967、求下列数列极限22nn,,211020100nn,,3100n,limlimlim(1) (2) (3)32n,,n,,n,,54n,n,144nn,,,12n111,,,,?,lim,,lim,,,(4)? (5) ,,222,,x,,x,,1223n(n1),,,nnn,,,,1111,,k,0(6) (7)() lim,,,?lim,,2x,,x,,n,31541,,nknnkn,,,111,,,,?12n222lim(1)nnn,,(8) (9) limx,,x,,111,,,,?12n5558、用极限的定义说明下列极限不存在:1x,3limcosx(1) (2) (3) limsinlimx,,x,0x,3x|3|x,9、求下列函数极限:22xx,,56xx,,562(1) (2) (3) limlimlim(21)xx,,x,x,13x,3x,3x,2222256x,xx,,44()xx,,,(4) (5) (6) limlimlim2x,x,,,220xx,,21x,2,nx,1x,9x,1(7) (8) (9) limlimlimm3,1xx,9x,1x,1x,3x,1 2nnxxx,,,,?13x,,12(10), (11)lim() (12)limlim33x,1,x1x,1xx,,111,xx,110、求下列函数极限:22xx,,56xx,,56 (2) (1)limlim2x,,x,,x,3x,3nn,1axaxaxa,,,,?011nn,lim(11)xx,,,(3) (4)lim,(,0)ab,00mm,1x,,x,,bxbxbxb,,,,?011mm,lim(11)xxx,,,(5) x,,11、求下列极限式中的参变量的值:2axbx,,6lim3,(1)设,求的值; ab,x,,23x,2xaxb,,lim5,,(2)设,求的值; ab,x,11x,22axbxc,,lim1,(3)设,求的值; abc,,x,,31x,12x,0arcsin~xxtan~xx1cos~,xx12、证明:当时,有:(1),(2) ,(3); 213、利用等价无穷小的性质,求下列极限:sin2xsin2xsecxlimlimlim(1) (2) (3) 2x,0x,0x,0,tan5x3x2x3sinx21111sin,,x,limlim()(4) (5)lim (6)x,0x,0x,0xxx,tansinxxtansin1cos,x14、利用重要极限的性质,求下列极限:sin2xsinsinxa,xxsin(1) (2) (3) limlimlimx,0xa,x,0,sin3xxa,1cos2x xsinxx,tan3sin2xx,4,,(4) (5) (6) limlimlim1,,,x,0x,0,,xsinxx,3xx,, xxx,3xk,21,,,,,,(7) (8) (9) limlim1,,lim1,,,,,,,,,,xxx,,xxxk,,,,,,, 1/x(10)lim12,x ,,,,x15、讨论下列函数的连续性:,,,xx1,,2fxxx()11,,,,(1) ,,211xx,,,x,x,0,sinx,x,0(2)若,在处连续,则为何值. fxax()0,,a,,1,1sin1,,xxx,x,e(0,x,1)(3) 为何值时函数f(x),在[0,2]上连续 a,a,x(1,x,2),53xx,,,52016、证明方程在区间上至少有一个根. (0,1)32x,0x,317、证明曲线在与之间至少与轴有一交点. xyxxx,,,,252(B)arccoslg(3,x)y,1、函数的定义域为 ( ) 228,3x,x(A) ,,,,,7,3 (B) (-7, 3) (C) ,7,2.9 (D) (-7, 2.9),1 2、若与互为反函数,则关系式( )成立。
电大专科《微积分初步》复习题及答案

电大微积分初步考试小抄一、填空题 ⒈函数xx f -=51)(的定义域是→x <5⒉∞→xx x sin lim1sin lim =∞→x x ,01→∞→x 时, ⒊已知xx f 2)(=,则)(x f ''⒋若⎰+=c x F xx f )(d )(,则⎰-x x f d )32(⒌微分方程x y y x =+'''e sin )(y '''6.函数)2ln(1)(+=x x f }{}{}122-1ln )2(ln 2-x 02ln 0≠+⇒≠+⇒≠+x x x x ,>,>,> ∴{}1- 2-x |≠且>x 7.→x x x 2sin lim 0 211212lim 2sin lim 00=⋅=→→x x x x x x 21:222sin lim0==→x x x 8.若y = x (x – 1)(x – 2)(x – 3),则y '(0)y=x(x-1)(x-2)(x-3)=(x 2-x)(x 2-5x+6)=x 4-5x 3+6x x 2-6x=x 4-6x 3+11x 2-6x , 622184y 23x-+-='x x ⇐(把0带入X ),6)0(-='∴y 9.⎰-x x d ed 2)()(x f dx x f ='⎰)(或dx xf dx x f d )())((=⎰ 10.微分方程1)0(,=='y y y y y =' y dxdy= ⎰⎰==∴dx dy dx y dy y 两边积分 e c x y +=∴又y(0)=1 (x=0 , y=1) c x y +=∴ln 010==∴+c e c,11.函数24)2ln(1)(x x x f -++=的定义域是⎩⎨⎧-≠≤-⇒⎩⎨⎧≠+≤-⇒⎪⎩⎪⎨⎧≠+≤≤⇒⎪⎪⎩⎪⎪⎨⎧≠++≥-122122x 21ln )2ln(2-2x 2-0)2(ln 02042x x x x x x x x <<>> 12.若函数⎪⎩⎪⎨⎧=≠+=0,0,13sin )(x k x xx x f ,在0=x 处连续,则k )()(lim00x x f x f x =→ ()(x f 在x 0处连续) ∵k f =)0(113sin 0lim )13sin (0lim =+⋅→=+→∴xx x x x x(无穷小量x 有界函数) 13.曲线x y =在点)1,1(处的切线方程是xx y 2== , x y 2121-=' 切k y ==='∴211x |2121y)1(11y +=⇒-=-∴∴x x 方程 14.'⎰x x s d )in (15.微分方程y y x y sin 4)(5=+''16.函数)2ln()(-=x x x f {}3x 2x |122)2ln(20)2ln(02≠⇒⎩⎨⎧≠-⇒⎩⎨⎧≠-⇒⎩⎨⎧≠--且>>>>x x x n x x x x 17.∞→xx x 2sin lim 18.已知x x f 3)(+=,则)3(f '3ln 3)(2xx f +='3ln 2727)3(+='∴f19.⎰2de x 20.微分方程x y xyy sin 4)(7)4(=+ 二、单项选择题⒈设函数2e e xx y +=-,则该函数是(偶函数).∵所以是偶函数)(2e e )(x f x f xx =+=--⒉函数233)(2+--=x x x x f 的间断点是(2,1==x x )分母无意义的点是间断点∴2,1,0232===+-x x x x⒊下列结论中()(x f 在0x x =处不连续,则一定在0x 处不可导)正确.可导必连续,伹连续并一定可导;极值点可能在驻点上,也可能在使导数无意义的点上⒋如果等式⎰+-=c x x f x x 11e d e )(,则=)(x f)()1()()(,1u )(),()(,)()(111'-•='-•'='∴=-=='∴='∴+=⎰---x e xe e e y xe xf x F C x F dx x f u u x u x,令22112121)()()(xx f x e e x f xex e xxxu=∴=∴=•=----⒌下列微分方程中,(x yx y y sin =+' )是线性微分方程. 6.设函数2e e xx y --=,则该函数是(奇函数).7.当=k (2 )时,函数⎩⎨⎧=≠+=0,,2)(2x k xx x f 在0=x 处连续.8.下列函数在指定区间(,)-∞+∞上单调减少的是(x -3).9.11.设1)1(2-=+x x f,则(x f 12.若函数f (x )在点x 0处可导,但)(0x f A ≠)是错误的.13.函数2)1(+=x y 在区间)2,2(-是(先减后增) 14.=''⎰x x f x d )((c x f x f x +-')()()16.17.当=k (2)时,函数⎩⎨⎧=≠+=0,,1e )(x k x x f x 在0=x 处连续.18.函数12+=x y 在区间)2,2(-是(先单调下降再单调上升)19.在切线斜率为2x 的积分曲线族中,通过点(1, 4)的曲线为(y = x 2+ 3).20.微分方程1)0(,=='y y y 的特解为(xy e =).三、计算题⒈计算极限423lim222-+-→x x x x . 解:41)2()1(lim 2)2(1(lim22=+-=---→→x x x x x x x ) ⒉设x x y x+=-2e,求y d . 解:x e x e xx 23221x2-+=⨯+-e y x 21-=e y u=1,u= -2x)(11e y u =′·(-2x)′=e u·(-2)= -2·e -2x∴y ′= -2e -2x +x 2123 ∴dy=(-2·e -2x+x2123)dx⒊计算不定积分x xx d sin ⎰解:令u=x21x =,u ′=xx 212121=-∴dx xdu21=∴u sin ·2du=⎰udu sin 2=2(-cos)+cc x x xde 210x∴⎰1u v ′dx=uv x vd u -110|'⎰1)(010101110|||=-'-=-=-⋅=∴⎰⎰e e ee ee e e x dxx dx x x x xx x∴原式=25.计算极限9152lim 223--+→x x x x34353lim )3)(3()3)(5(3lim =++→=+--+→x x x x x x x x6.设x x x y cos ln +=,求y d 解:x x x y xxcos ln cos ln 2321+=+⋅=y 1=lncosxy 1=lnu1,u=cosx ∴xx x u x u ycos sin )sin (1)(cos )(ln 11-=-⋅='⋅'=y 1=xxx cos sin 2321-∴dy=(xx x cos sin 2321-)dx7.计算不定积分x x d )21(9⎰-解:dx x ⎰-)21(9令u=1-2x , u ′= -2 ∴du dx x du 212-=⇒-=c c dudu x u u u+-=++⋅-=-=-⋅-⎰⎰20192121)21()21(1010998.计算定积分x x xd e 1⎰-解:u=x,e e xx v v ---==', )()(1111010|x d dxx dx x e e e e e xxx x--=--⋅-=⋅⎰⎰⎰-----=1)11(1|11=--=---ee e e x9.计算极限4586lim 224+-+-→x x x x x3212lim )4)(1()4)(2(lim 44=--=----→→x x x x x x x x 10.设x y x3sin 2+=,求y dy 1=sin3x y 1=sinu , u=3x ,x y3cos 3x 3sinu 1='⋅'=')()(∴y ′=2xln2+3cos3x ∴dy=(2xln2+3cos3x)dx 11.计算不定积分x x x d cos ⎰⎰xdx x cos u=x , v ′=cosx , v=sinx ⎰⎰+--=-⋅=cx x x xdx x x xdx x )cos (sin sin sin cos12.计算定积分x x x d ln 51e1⎰+⎰⎰⎰⎰+=+=+e e e edxx x dxx x x dxx x dx x 11e111ln 51ln 5ln ln 51|令u=lnx, u ′=x1, du=x 1dx , 1≤x ≤e 0≤lnx ≤1∴2121ln |102101===⎰⎰u udu dx x x e∴原式=1+5·21=2713.计算极限623lim 222-++-→x x x x x解:5131lim )2)(3x ()1)(2(lim22=+-=-+--→→x x x x x x x 14.设xx y 12e =,求y '解:ex xy 12⋅=(ey x11=) ,ey u=1, xu 1= ,xe x e e y xu u x 21211)1()1()(-=-⋅='⋅'=) ee xe x e e x e x x1x12x12x1x12x122)(2)()(y -=-⋅+='⋅+⋅'='∴x x15.计算不定积分x x d )12(10⎰-解:dx x ⎰-)12(10u=2x-1 ,d '=2 du=2dx∴c du du dx u uux +⋅=⋅=⋅=⎰⎰⎰-1121212111101010)12(c x +=-)(121121 16.计算定积分⎰1d e x x x解:dx x e x⎰⋅1u=x , e xv =' , e xv =1)1(1110|=--=-⋅=⎰⎰e e dx x dx x e e e xx x四、应用题(本题16分)用钢板焊接一个容积为43m 的底为正方形的无盖水箱,已知钢板每平方米10元,焊接费40元,问水箱的尺寸如何选择,可使总费最低?最低总费是多少? 解:设水箱的底边长为x ,高为h,表面积为s ,且有h=x24所以S(x)=x 2+4xh=x 2+x16'xx S 2162-='令S '(x )=0,得x=2因为本问题存在最小值,且函数的驻点唯一,所以x=2,h=1时水箱的表面积最小。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《微积分初步》期末复习典型例题
一、 函数、 极限与连续
( 一) 考核要求
1.了解常量和变量的概念; 理解函数的概念; 了解初等函数和分段函数的概念.熟练掌握求函数的定义域、 函数值的方法; 掌握将复合函数分解成较简单函数的方法.
2.了解极限概念, 会求简单极限.
3.了解函数连续的概念, 会判断函数的连续性, 并会求函数的间断点.
( 二) 典型例题
1.填空题
( 1) 函数)2ln(1)(-=x x f 的定义域是 .
答案: 2>x 且3≠x .
( 2) 函数2
4)2ln(1)(x x x f -++=的定义域是 .
答案: ]2,1()1,2(-⋃--
( 3) 函数74)2(2++=+x x x f , 则=)(x f . 答案: 3)(2+=x x f
( 4) 若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x x x x f 在0=x 处连续, 则
=k .
答案: 1=k
( 5) 函数x x x f 2)1(2-=-, 则=)(x f .
答案: 1)(2-=x x f
( 6) 函数1322+--=x x x y 的间断点是 .
答案: 1-=x ( 7) =∞
→x x x 1sin lim . 答案: 1
( 8) 若2sin 4sin lim 0=→kx x x , 则=k .
答案: 2=k
2.单项选择题
( 1) 设函数2e e x x y +=-, 则该函数是( ) .
A .奇函数
B .偶函数
C .非奇非偶函数
D .既奇又偶函数
答案: B
( 2) 下列函数中为奇函数是( ) .
A .x x sin
B .2e e x x +-
C .)1ln(2x x ++
D .
2x x + 答案: C
( 3) 函数)5ln(4+++=x x x y 的定义域为( ) .
A .5->x
B .4-≠x
C .5->x 且0≠x
D .5->x 且4-≠x 答案: D
( 4) 设1)1(2-=+x x f , 则=)(x f ( )
A .)1(+x x
B .2x
C .)2(-x x
D .)1)(2(-+x x
答案: C
( 5) 当=k ( ) 时, 函数⎩⎨⎧=≠+=0,
0,2)(x k x e x f x 在0=x 处连续. A .0 B .1 C .2 D .3
答案: D
( 6) 当=k ( ) 时, 函数⎩
⎨⎧=≠+=0,0,1)(2x k x x x f , 在0=x 处连续.
A .0
B .1
C .2
D .1-
答案: B
( 7) 函数2
33)(2+--=x x x x f 的间断点是( ) A .2,1==x x B .3=x
C .3,2,1===x x x
D .无间断点
答案: A
3.计算题 ( 1) 4
23lim 222-+-→x x x x . 解: 4121lim )2)(2()1)(2(lim 4
23lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x ( 2) 3
29lim 223---→x x x x 解: 2
34613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x ( 3) 4
586lim 224+-+-→x x x x x 解: 3
212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x ( 4) 计算极限x x x 11lim 0
--→. 解: )
11(11lim )11()11)(11(lim 11lim 000+---=+-+---=--→→→x x x x x x x x x x x x 21)11(1lim
0-=+--=→x x
( 5) 计算极限x x x 4sin 11lim 0
--→ 解: x x x 4sin 11lim 0--→)
11(4sin 11lim )11(4sin )11)(11(lim 00+---=+-+---=→→x x x x x x x x x 81)11(4sin 44lim )11(4sin lim 00-=+--=+--=→→x x x
x x x
x x 二、 导数与微分
( 一) 考核要求
1.了解导数概念, 会求曲线的切线方程.
2.熟练掌握求导数的方法(导数基本公式、 导数的四则运算法则、 复合函数求导法则), 会求简单的隐函数的导数.
3.了解微分的概念, 掌握求微分的方法.
4.了解高阶导数的概念, 掌握求显函数的二阶导数的方法. ( 二) 典型例题
1.填空题
( 1) 曲线1)(+=x x f 在)2,1(点的切斜率是 . 答案: 21
( 2) 曲线x x f e )(=在)1,0(点的切线方程是 . 答案: e x y +=
( 3) 已知x x x f 3)(3+=, 则)3(f '= .。